Abstract

A linearly frequency-modulated, actively Q-switched, single-frequency ring fiber laser based on injection seeding from an ultra-short cavity is demonstrated at 1083 nm. A piezoelectric transducer is employed to obtain linearly frequency-modulating performance and over 1.05 GHz frequency-tuning range is achieved with a modulating frequency reaching tens of kilohertz. A maximum peak power of the stable output pulse is over 3.83 W during frequency-modulating process. This type of pulsed fiber laser provides a promising candidate for coherent LIDAR in the measurement of thermosphere.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High OSNR watt-level single-frequency one-stage PM-MOPA fiber laser at 1083 nm

Changsheng Yang, Shanhui Xu, Qi Yang, Shupei Mo, Can Li, Xin He, Zhouming Feng, Zhongmin Yang, and Zhonghong Jiang
Opt. Express 22(1) 1181-1186 (2014)

Q-switched fiber laser based on an acousto-optic modulator with injection seeding technique

Wencai Li, Haowei Liu, Ji Zhang, Hu Long, Sujuan Feng, and Qinghe Mao
Appl. Opt. 55(17) 4584-4588 (2016)

High-peak-power, single-frequency, single-mode, linearly polarized, nanosecond all-fiber laser based on self-phase modulation compensation

Rongtao Su, Pu Zhou, Pengfei Ma, Haibin Lü, and Xiaojun Xu
Appl. Opt. 52(30) 7331-7335 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
    [Crossref]
  2. Y. Ma, X. Wang, J. Leng, H. Xiao, X. Dong, J. Zhu, W. Du, P. Zhou, X. Xu, L. Si, Z. Liu, and Y. Zhao, “Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique,” Opt. Lett. 36(6), 951–953 (2011).
    [Crossref] [PubMed]
  3. T. Wu, X. Peng, W. Gong, Y. Zhan, Z. Lin, B. Luo, and H. Guo, “Observation and optimization of 4He atomic polarization spectroscopy,” Opt. Lett. 38(6), 986–988 (2013).
    [Crossref] [PubMed]
  4. J. M. Vaughan, “Coherent laser spectroscopy and doppler lidar sensing in the atmosphere,” Phys. Scr. T 78(1), 73–81 (1998).
    [Crossref]
  5. A. J. Gerrand, T. J. Kane, D. D. Meisel, J. P. Thayer, and R. B. Kerr, “Investigation of a resonance Lidar for measurement of thermospheric metastable helium,” J. Atmos. Sol. Terr. Phys. 59(16), 2023–2035 (1997).
    [Crossref]
  6. L. S. Waldrop, R. B. Kerr, S. A. Gonzalez, M. P. Sulzer, J. Noto, and F. Kamalabadi, “Generation of metastable helium and the 1083 nm emission in the upper thermosphere,” J. Geophys. Res. Space Phys. 110, A08304 (2005).
  7. C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
    [Crossref]
  8. S. Gao and R. Hui, “Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection,” Opt. Lett. 37(11), 2022–2024 (2012).
    [Crossref] [PubMed]
  9. R. Huffaker and R. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84(2), 181–204 (1996).
    [Crossref]
  10. M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 microm,” Opt. Lett. 32(8), 897–899 (2007).
    [Crossref] [PubMed]
  11. A. Wang, H. Ming, J. Xie, X. Chen, L. Lv, W. Huang, and L. Xu, “Single-frequency Q-switched erbium-doped fiber ring laser by combination of a distributed Bragg reflector laser and a Mach-Zender interferometer,” Appl. Opt. 42(18), 3528–3530 (2003).
    [Crossref] [PubMed]
  12. M. Chen, Z. Meng, Q. Sun, S. Sun, and X. Tu, “Mechanism and characteristics of a fast-tuning Brillouin/erbium fiber laser,” Opt. Express 22(12), 15039–15048 (2014).
    [Crossref] [PubMed]
  13. Y. Zhang, Z. Feng, S. Xu, S. Mo, C. Yang, C. Li, J. Gan, D. Chen, and Z. Yang, “Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm,” J. Opt. 17(12), 125705 (2015).
    [Crossref]
  14. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb³⁺-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
    [Crossref] [PubMed]
  15. C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
    [Crossref]
  16. S. Xu, C. Li, W. Zhang, S. Mo, C. Yang, X. Wei, Z. Feng, Q. Qian, S. Shen, M. Peng, Q. Zhang, and Z. Yang, “Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm,” Opt. Lett. 38(4), 501–503 (2013).
    [Crossref] [PubMed]
  17. C. Yang, S. Xu, Q. Yang, S. Mo, C. Li, X. He, Z. Feng, Z. Yang, and Z. Jiang, “High OSNR watt-level single-frequency one-stage PM-MOPA fiber laser at 1083 nm,” Opt. Express 22(1), 1181–1186 (2014).
    [Crossref] [PubMed]
  18. Y. Wang and C. Q. Xu, “Actively Q-switched fiber lasers: switching dynamics and nonlinear processes,” Prog. Quantum Electron. 31(3), 131–216 (2007).
    [Crossref]

2015 (1)

Y. Zhang, Z. Feng, S. Xu, S. Mo, C. Yang, C. Li, J. Gan, D. Chen, and Z. Yang, “Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm,” J. Opt. 17(12), 125705 (2015).
[Crossref]

2014 (2)

2013 (3)

2012 (1)

2011 (2)

2009 (1)

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

2007 (2)

Y. Wang and C. Q. Xu, “Actively Q-switched fiber lasers: switching dynamics and nonlinear processes,” Prog. Quantum Electron. 31(3), 131–216 (2007).
[Crossref]

M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 microm,” Opt. Lett. 32(8), 897–899 (2007).
[Crossref] [PubMed]

2005 (2)

L. S. Waldrop, R. B. Kerr, S. A. Gonzalez, M. P. Sulzer, J. Noto, and F. Kamalabadi, “Generation of metastable helium and the 1083 nm emission in the upper thermosphere,” J. Geophys. Res. Space Phys. 110, A08304 (2005).

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

2003 (1)

1998 (1)

J. M. Vaughan, “Coherent laser spectroscopy and doppler lidar sensing in the atmosphere,” Phys. Scr. T 78(1), 73–81 (1998).
[Crossref]

1997 (1)

A. J. Gerrand, T. J. Kane, D. D. Meisel, J. P. Thayer, and R. B. Kerr, “Investigation of a resonance Lidar for measurement of thermospheric metastable helium,” J. Atmos. Sol. Terr. Phys. 59(16), 2023–2035 (1997).
[Crossref]

1996 (1)

R. Huffaker and R. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84(2), 181–204 (1996).
[Crossref]

Carlson, C. G.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

Chen, D.

Y. Zhang, Z. Feng, S. Xu, S. Mo, C. Yang, C. Li, J. Gan, D. Chen, and Z. Yang, “Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm,” J. Opt. 17(12), 125705 (2015).
[Crossref]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb³⁺-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

Chen, M.

Chen, X.

Coleman, J. J.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

Dong, X.

Dragic, P. D.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

Du, W.

Feng, Z.

Y. Zhang, Z. Feng, S. Xu, S. Mo, C. Yang, C. Li, J. Gan, D. Chen, and Z. Yang, “Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm,” J. Opt. 17(12), 125705 (2015).
[Crossref]

C. Yang, S. Xu, Q. Yang, S. Mo, C. Li, X. He, Z. Feng, Z. Yang, and Z. Jiang, “High OSNR watt-level single-frequency one-stage PM-MOPA fiber laser at 1083 nm,” Opt. Express 22(1), 1181–1186 (2014).
[Crossref] [PubMed]

S. Xu, C. Li, W. Zhang, S. Mo, C. Yang, X. Wei, Z. Feng, Q. Qian, S. Shen, M. Peng, Q. Zhang, and Z. Yang, “Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm,” Opt. Lett. 38(4), 501–503 (2013).
[Crossref] [PubMed]

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

Gan, J.

Y. Zhang, Z. Feng, S. Xu, S. Mo, C. Yang, C. Li, J. Gan, D. Chen, and Z. Yang, “Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm,” J. Opt. 17(12), 125705 (2015).
[Crossref]

Gao, S.

Geng, J.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Gerrand, A. J.

A. J. Gerrand, T. J. Kane, D. D. Meisel, J. P. Thayer, and R. B. Kerr, “Investigation of a resonance Lidar for measurement of thermospheric metastable helium,” J. Atmos. Sol. Terr. Phys. 59(16), 2023–2035 (1997).
[Crossref]

Gong, W.

Gonzalez, S. A.

L. S. Waldrop, R. B. Kerr, S. A. Gonzalez, M. P. Sulzer, J. Noto, and F. Kamalabadi, “Generation of metastable helium and the 1083 nm emission in the upper thermosphere,” J. Geophys. Res. Space Phys. 110, A08304 (2005).

Guo, H.

Hardesty, R.

R. Huffaker and R. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84(2), 181–204 (1996).
[Crossref]

He, X.

Huang, W.

Huffaker, R.

R. Huffaker and R. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84(2), 181–204 (1996).
[Crossref]

Hui, R.

Jiang, S.

M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 microm,” Opt. Lett. 32(8), 897–899 (2007).
[Crossref] [PubMed]

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Jiang, Z.

Kamalabadi, F.

L. S. Waldrop, R. B. Kerr, S. A. Gonzalez, M. P. Sulzer, J. Noto, and F. Kamalabadi, “Generation of metastable helium and the 1083 nm emission in the upper thermosphere,” J. Geophys. Res. Space Phys. 110, A08304 (2005).

Kane, T. J.

A. J. Gerrand, T. J. Kane, D. D. Meisel, J. P. Thayer, and R. B. Kerr, “Investigation of a resonance Lidar for measurement of thermospheric metastable helium,” J. Atmos. Sol. Terr. Phys. 59(16), 2023–2035 (1997).
[Crossref]

Kerr, R. B.

L. S. Waldrop, R. B. Kerr, S. A. Gonzalez, M. P. Sulzer, J. Noto, and F. Kamalabadi, “Generation of metastable helium and the 1083 nm emission in the upper thermosphere,” J. Geophys. Res. Space Phys. 110, A08304 (2005).

A. J. Gerrand, T. J. Kane, D. D. Meisel, J. P. Thayer, and R. B. Kerr, “Investigation of a resonance Lidar for measurement of thermospheric metastable helium,” J. Atmos. Sol. Terr. Phys. 59(16), 2023–2035 (1997).
[Crossref]

Leigh, M.

Leng, J.

Li, C.

Y. Zhang, Z. Feng, S. Xu, S. Mo, C. Yang, C. Li, J. Gan, D. Chen, and Z. Yang, “Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm,” J. Opt. 17(12), 125705 (2015).
[Crossref]

C. Yang, S. Xu, Q. Yang, S. Mo, C. Li, X. He, Z. Feng, Z. Yang, and Z. Jiang, “High OSNR watt-level single-frequency one-stage PM-MOPA fiber laser at 1083 nm,” Opt. Express 22(1), 1181–1186 (2014).
[Crossref] [PubMed]

S. Xu, C. Li, W. Zhang, S. Mo, C. Yang, X. Wei, Z. Feng, Q. Qian, S. Shen, M. Peng, Q. Zhang, and Z. Yang, “Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm,” Opt. Lett. 38(4), 501–503 (2013).
[Crossref] [PubMed]

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

Lin, Z.

Liu, Z.

Luo, B.

Lv, L.

Ma, Y.

Meisel, D. D.

A. J. Gerrand, T. J. Kane, D. D. Meisel, J. P. Thayer, and R. B. Kerr, “Investigation of a resonance Lidar for measurement of thermospheric metastable helium,” J. Atmos. Sol. Terr. Phys. 59(16), 2023–2035 (1997).
[Crossref]

Meng, Z.

Ming, H.

Mo, S.

Y. Zhang, Z. Feng, S. Xu, S. Mo, C. Yang, C. Li, J. Gan, D. Chen, and Z. Yang, “Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm,” J. Opt. 17(12), 125705 (2015).
[Crossref]

C. Yang, S. Xu, Q. Yang, S. Mo, C. Li, X. He, Z. Feng, Z. Yang, and Z. Jiang, “High OSNR watt-level single-frequency one-stage PM-MOPA fiber laser at 1083 nm,” Opt. Express 22(1), 1181–1186 (2014).
[Crossref] [PubMed]

S. Xu, C. Li, W. Zhang, S. Mo, C. Yang, X. Wei, Z. Feng, Q. Qian, S. Shen, M. Peng, Q. Zhang, and Z. Yang, “Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm,” Opt. Lett. 38(4), 501–503 (2013).
[Crossref] [PubMed]

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

Noto, J.

L. S. Waldrop, R. B. Kerr, S. A. Gonzalez, M. P. Sulzer, J. Noto, and F. Kamalabadi, “Generation of metastable helium and the 1083 nm emission in the upper thermosphere,” J. Geophys. Res. Space Phys. 110, A08304 (2005).

Peng, M.

Peng, X.

Peyghambarian, N.

Price, R. K.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

Qian, Q.

Qiu, J.

Shen, S.

Shi, W.

Si, L.

Spiegelberg, C.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Sulzer, M. P.

L. S. Waldrop, R. B. Kerr, S. A. Gonzalez, M. P. Sulzer, J. Noto, and F. Kamalabadi, “Generation of metastable helium and the 1083 nm emission in the upper thermosphere,” J. Geophys. Res. Space Phys. 110, A08304 (2005).

Sun, Q.

Sun, S.

Swenson, G. R.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

Thayer, J. P.

A. J. Gerrand, T. J. Kane, D. D. Meisel, J. P. Thayer, and R. B. Kerr, “Investigation of a resonance Lidar for measurement of thermospheric metastable helium,” J. Atmos. Sol. Terr. Phys. 59(16), 2023–2035 (1997).
[Crossref]

Tu, X.

Vaughan, J. M.

J. M. Vaughan, “Coherent laser spectroscopy and doppler lidar sensing in the atmosphere,” Phys. Scr. T 78(1), 73–81 (1998).
[Crossref]

Waldrop, L. S.

L. S. Waldrop, R. B. Kerr, S. A. Gonzalez, M. P. Sulzer, J. Noto, and F. Kamalabadi, “Generation of metastable helium and the 1083 nm emission in the upper thermosphere,” J. Geophys. Res. Space Phys. 110, A08304 (2005).

Wang, A.

Wang, J.

Wang, X.

Wang, Y.

Y. Wang and C. Q. Xu, “Actively Q-switched fiber lasers: switching dynamics and nonlinear processes,” Prog. Quantum Electron. 31(3), 131–216 (2007).
[Crossref]

Wei, X.

Wu, T.

Xiao, H.

Xie, J.

Xu, C. Q.

Y. Wang and C. Q. Xu, “Actively Q-switched fiber lasers: switching dynamics and nonlinear processes,” Prog. Quantum Electron. 31(3), 131–216 (2007).
[Crossref]

Xu, L.

Xu, S.

Xu, X.

Yang, C.

Y. Zhang, Z. Feng, S. Xu, S. Mo, C. Yang, C. Li, J. Gan, D. Chen, and Z. Yang, “Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm,” J. Opt. 17(12), 125705 (2015).
[Crossref]

C. Yang, S. Xu, Q. Yang, S. Mo, C. Li, X. He, Z. Feng, Z. Yang, and Z. Jiang, “High OSNR watt-level single-frequency one-stage PM-MOPA fiber laser at 1083 nm,” Opt. Express 22(1), 1181–1186 (2014).
[Crossref] [PubMed]

S. Xu, C. Li, W. Zhang, S. Mo, C. Yang, X. Wei, Z. Feng, Q. Qian, S. Shen, M. Peng, Q. Zhang, and Z. Yang, “Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm,” Opt. Lett. 38(4), 501–503 (2013).
[Crossref] [PubMed]

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

Yang, Q.

Yang, Z.

Zhan, B.

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

Zhan, Y.

Zhang, Q.

Zhang, W.

Zhang, Y.

Y. Zhang, Z. Feng, S. Xu, S. Mo, C. Yang, C. Li, J. Gan, D. Chen, and Z. Yang, “Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm,” J. Opt. 17(12), 125705 (2015).
[Crossref]

Zhao, Y.

Zhou, P.

Zhu, J.

Zong, J.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

J. Atmos. Sol. Terr. Phys. (1)

A. J. Gerrand, T. J. Kane, D. D. Meisel, J. P. Thayer, and R. B. Kerr, “Investigation of a resonance Lidar for measurement of thermospheric metastable helium,” J. Atmos. Sol. Terr. Phys. 59(16), 2023–2035 (1997).
[Crossref]

J. Geophys. Res. Space Phys. (1)

L. S. Waldrop, R. B. Kerr, S. A. Gonzalez, M. P. Sulzer, J. Noto, and F. Kamalabadi, “Generation of metastable helium and the 1083 nm emission in the upper thermosphere,” J. Geophys. Res. Space Phys. 110, A08304 (2005).

J. Opt. (1)

Y. Zhang, Z. Feng, S. Xu, S. Mo, C. Yang, C. Li, J. Gan, D. Chen, and Z. Yang, “Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm,” J. Opt. 17(12), 125705 (2015).
[Crossref]

Laser Phys. Lett. (1)

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Phys. Scr. T (1)

J. M. Vaughan, “Coherent laser spectroscopy and doppler lidar sensing in the atmosphere,” Phys. Scr. T 78(1), 73–81 (1998).
[Crossref]

Proc. IEEE (1)

R. Huffaker and R. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84(2), 181–204 (1996).
[Crossref]

Prog. Quantum Electron. (1)

Y. Wang and C. Q. Xu, “Actively Q-switched fiber lasers: switching dynamics and nonlinear processes,” Prog. Quantum Electron. 31(3), 131–216 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic drawing of linearly frequency-modulated pulsed single-frequency fiber laser at 1083 nm. NB-FBG: narrow band fiber Bragg grating, WB-FBG: wide band fiber Bragg grating.

Fig. 2
Fig. 2

(a) Frequency-tuning range versus modulating frequency of the PZT with a modulating signal voltage of 20 V. (b) Frequency-tuning response against the applied voltage at four different modulating frequencies

Fig. 3
Fig. 3

(a) Spectra of output laser with and without injection seeding. (b) Single-frequency performance of the injection seeded ring laser measured by FPI.

Fig. 4
Fig. 4

(a) Average power and peak power of the output pulse versus repetition rate with a fixed pump power. Inset: Pulsing shape of the laser at repetition rate of 1 kHz. (b) Trace of the pulse trains (red) and the corresponding driving signals (blue) of AOM at repetition rate of 1 kHz.

Metrics