Abstract

We report the first Kerr-lens mode-locked (KLM) bulk frequency comb in the 1-μm spectral regime. The fundamental KLM Yb:CYA laser is pumped by a low-noise, high-bright 976-nm fiber laser and typically provides 250-mW output power and 57-fs pulse duration. Only 58-mW output pulses were launched into a 1.3-m photonic crystal fiber (PCF) for one octave-spanning supercontinuum generation. Using a simplified collinear f-2f interferometer, the free-running carrier-envelope offset (CEO) frequency was measured to be 42-dB signal-to-noise ratio (SNR) for a 100-kHz resolution and 9.6-kHz full width at half maximum (FWHM) under a 100-Hz resolution. A long-term CEO control at 23 MHz was ultimately realized by feeding the phase error signal to the pump power of the oscillator. The integrated phase noise (IPN) of the locked CEO was measured to be 316 mrad with an integrated range from 1 Hz to 10 MHz. The standard deviation and Allan deviation for more than 4-hour recording are 1.6 mHz and 5.6 × 10−18 (for 1-s gate time), respectively. This is, to the best of our knowledge, the best stability achieved among the 1-μm solid-state frequency combs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-stability Yb-doped fiber optical frequency comb with 2 × 10−18/s stability in-loop

Lihui Pang, Hainian Han, Zhibin Zhao, Wenjun Liu, and Zhiyi Wei
Opt. Express 24(25) 28993-29000 (2016)

Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser

Stephane Schilt, Nikola Bucalovic, Vladimir Dolgovskiy, Christian Schori, Max C. Stumpf, Gianni Di Domenico, Selina Pekarek, Andreas E. H. Oehler, Thomas Südmeyer, Ursula Keller, and Pierre Thomann
Opt. Express 19(24) 24171-24181 (2011)

Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate

Sargis Hakobyan, Valentin J. Wittwer, Pierre Brochard, Kutan Gürel, Stéphane Schilt, Aline S. Mayer, Ursula Keller, and Thomas Südmeyer
Opt. Express 25(17) 20437-20453 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [Crossref]
  2. S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [Crossref]
  3. A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  4. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [Crossref] [PubMed]
  5. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
    [Crossref] [PubMed]
  6. C. Benko, T. K. Allison, A. Cingoz, L. Hua, F. Labaye, D. C. Yost, and J. Ye, “Extreme ultraviolet radiation with coherence time greater than 1 s,” Nat. Photonics 8(7), 530–536 (2014).
    [Crossref]
  7. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  8. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
    [Crossref] [PubMed]
  9. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
    [Crossref] [PubMed]
  10. F. L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, and M. Yoshida, “Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser,” Opt. Lett. 28(17), 1516–1518 (2003).
    [Crossref] [PubMed]
  11. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature 2(6), 355–359 (2008).
  12. A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
    [Crossref] [PubMed]
  13. L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
    [Crossref] [PubMed]
  14. T. M. Fortier, A. Bartels, and S. A. Diddams, “Octave-spanning Ti:sapphire laser with a repetition rate >1 ghz for optical frequency measurements and comparisons,” Opt. Lett. 31(7), 1011–1013 (2006).
    [Crossref] [PubMed]
  15. R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hánsch, P. Russbüldt, K. Gäbel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 26(17), 1376–1378 (2001).
    [Crossref] [PubMed]
  16. K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, and M. F. Yan, “Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser,” Opt. Lett. 30(8), 932–934 (2005).
    [Crossref] [PubMed]
  17. S. A. Meyer, J. A. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” Eur. Phys. J. D 48(1), 19–26 (2008).
    [Crossref]
  18. M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, J. M. Dudley, and U. Keller, “Self-referencable frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010).
    [Crossref]
  19. S. Schilt, N. Bucalovic, V. Dolgovskiy, C. Schori, M. C. Stumpf, G. D. Domenico, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, U. Keller, and P. Thomann, “Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-μm solid-state laser,” Opt. Express 19(24), 24171–24181 (2011).
  20. S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express 19(17), 16491–16497 (2011).
    [Crossref] [PubMed]
  21. A. Klenner, M. Golling, and U. Keller, “A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal,” Opt. Express 21(8), 10351–10357 (2013).
    [Crossref] [PubMed]
  22. C. J. Saraceno, S. Pekarek, O. H. Heckl, C. R. E. Baer, C. Schriber, M. Golling, K. Beil, C. Kränkel, G. Huber, U. Keller, and T. Südmeyer, “Self-referenceable frequency comb from an ultrafast thin disk laser,” Opt. Express 20(9), 9650–9656 (2012).
    [Crossref] [PubMed]
  23. A. Klenner, F. Emaury, C. Schriber, A. Diebold, C. J. Saraceno, S. Schilt, U. Keller, and T. Südmeyer, “Phase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser,” Opt. Express 21(21), 24770–24780 (2013).
    [Crossref] [PubMed]
  24. C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
    [Crossref] [PubMed]
  25. O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
    [Crossref] [PubMed]
  26. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
    [Crossref]
  27. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
    [Crossref] [PubMed]
  28. W. Zhang, H. Han, Y. Zhao, Q. Du, and Z. Wei, “A 350 MHz Ti:sapphire laser comb based on monolithic scheme and absolute frequency measurement of 729 nm laser,” Opt. Express 17(8), 6059–6067 (2009).
    [Crossref] [PubMed]
  29. W. D. Tan, D. Y. Tang, X. D. Xu, D. Z. Li, J. Zhang, C. W. Xu, and J. Xu, “Femtosecond and continuous-wave laser performance of a diode-pumped Yb3+:CaYAlO4 laser,” Opt. Lett. 36(2), 259–261 (2011).
    [Crossref] [PubMed]
  30. W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61fs pulse duration,” Opt. Express 22(16), 19040–19046 (2014).
    [Crossref] [PubMed]
  31. Z. Yu, H. Han, J. Zhang, L. Hou, Y. Xie, and Z. Wei, “Kerr-lens mode-locked Yb3+:CaYAlO4 laser and octave-spanning supercontinuum generation,” in Advanced Solid State Laser Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM5A.25.
    [Crossref]
  32. A. Vernaleken, B. Schmidt, M. Wolferstetter, T. W. Hänsch, R. Holzwarth, and P. Hommelhoff, “Carrier-envelope frequency stabilization of a Ti:sapphire oscillator using different pump lasers,” Opt. Express 20(16), 18387–18396 (2012).
    [Crossref] [PubMed]
  33. R. P. Scott, T. D. Mulder, K. A. Baker, and B. H. Kolner, “Amplitude and phase noise sensitivity of modelocked Ti:sapphire lasers in terms of a complex noise transfer function,” Opt. Express 15(14), 9090–9095 (2007).
    [Crossref] [PubMed]
  34. T. D. Mulder, R. P. Scott, and B. H. Kolner, “Amplitude and envelope phase noise of a modelocked laser predicted from its noise transfer function and the pump noise power spectrum,” Opt. Express 16(18), 14186–14191 (2008).
    [Crossref] [PubMed]
  35. M. Hoffmann, S. Schilt, and T. Südmeyer, “CEO stabilization of a femtosecond laser using a SESAM as fast opto-optical modulator,” Opt. Express 21(24), 30054–30064 (2013).
    [Crossref] [PubMed]
  36. B. H. Kolner, “Dynamic temperature distribution in cylindrical laser rods with time-varying pump sources,” IEEE J. Sel. Top. Quant. Electron. 18(1), 486–493 (2012).
    [Crossref]
  37. R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
    [Crossref]
  38. Y. Jiang, Z. Bi, L. Robertsson, and L. S. Ma, “A collinear self-referencing set-up for control of the carrier-envelope offset frequency in Ti:sapphire femtosecond laser frequency combs,” Metrologia 42(4), 304–307 (2005).
    [Crossref]
  39. Z. Yu, H. Han, L. Hou, and Z. Wei, “Carrier-envelope phase stabilized octave-spanning laser with monolithic scheme,” in 2015 Conference on Lasers and Electro-optics Pacific Rim (Optical Society of America, 2015), paper 26F3_3.
    [Crossref]
  40. W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 432–438 (2012).
    [Crossref] [PubMed]
  41. C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 3084–3086 (2012).
    [Crossref] [PubMed]
  42. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
    [Crossref]

2015 (1)

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (3)

2012 (7)

C. J. Saraceno, S. Pekarek, O. H. Heckl, C. R. E. Baer, C. Schriber, M. Golling, K. Beil, C. Kränkel, G. Huber, U. Keller, and T. Südmeyer, “Self-referenceable frequency comb from an ultrafast thin disk laser,” Opt. Express 20(9), 9650–9656 (2012).
[Crossref] [PubMed]

C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 3084–3086 (2012).
[Crossref] [PubMed]

A. Vernaleken, B. Schmidt, M. Wolferstetter, T. W. Hänsch, R. Holzwarth, and P. Hommelhoff, “Carrier-envelope frequency stabilization of a Ti:sapphire oscillator using different pump lasers,” Opt. Express 20(16), 18387–18396 (2012).
[Crossref] [PubMed]

W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 432–438 (2012).
[Crossref] [PubMed]

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

B. H. Kolner, “Dynamic temperature distribution in cylindrical laser rods with time-varying pump sources,” IEEE J. Sel. Top. Quant. Electron. 18(1), 486–493 (2012).
[Crossref]

2011 (3)

2010 (4)

A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
[Crossref] [PubMed]

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[Crossref]

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, J. M. Dudley, and U. Keller, “Self-referencable frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010).
[Crossref]

2009 (1)

2008 (4)

S. A. Meyer, J. A. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” Eur. Phys. J. D 48(1), 19–26 (2008).
[Crossref]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature 2(6), 355–359 (2008).

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

T. D. Mulder, R. P. Scott, and B. H. Kolner, “Amplitude and envelope phase noise of a modelocked laser predicted from its noise transfer function and the pump noise power spectrum,” Opt. Express 16(18), 14186–14191 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

T. M. Fortier, A. Bartels, and S. A. Diddams, “Octave-spanning Ti:sapphire laser with a repetition rate >1 ghz for optical frequency measurements and comparisons,” Opt. Lett. 31(7), 1011–1013 (2006).
[Crossref] [PubMed]

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[Crossref]

2005 (2)

Y. Jiang, Z. Bi, L. Robertsson, and L. S. Ma, “A collinear self-referencing set-up for control of the carrier-envelope offset frequency in Ti:sapphire femtosecond laser frequency combs,” Metrologia 42(4), 304–307 (2005).
[Crossref]

K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, and M. F. Yan, “Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser,” Opt. Lett. 30(8), 932–934 (2005).
[Crossref] [PubMed]

2004 (1)

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

2003 (3)

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

F. L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, and M. Yoshida, “Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser,” Opt. Lett. 28(17), 1516–1518 (2003).
[Crossref] [PubMed]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

2001 (2)

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

1993 (1)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[Crossref]

Allison, T. K.

C. Benko, T. K. Allison, A. Cingoz, L. Hua, F. Labaye, D. C. Yost, and J. Ye, “Extreme ultraviolet radiation with coherence time greater than 1 s,” Nat. Photonics 8(7), 530–536 (2014).
[Crossref]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

Anderson, A.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Apolonski, A.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

Assion, A.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Baer, C. R. E.

Baker, K. A.

Bartels, A.

T. M. Fortier, A. Bartels, and S. A. Diddams, “Octave-spanning Ti:sapphire laser with a repetition rate >1 ghz for optical frequency measurements and comparisons,” Opt. Lett. 31(7), 1011–1013 (2006).
[Crossref] [PubMed]

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Beil, K.

Benedick, A. J.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Benko, C.

C. Benko, T. K. Allison, A. Cingoz, L. Hua, F. Labaye, D. C. Yost, and J. Ye, “Extreme ultraviolet radiation with coherence time greater than 1 s,” Nat. Photonics 8(7), 530–536 (2014).
[Crossref]

Bethge, J.

Bi, Z.

Y. Jiang, Z. Bi, L. Robertsson, and L. S. Ma, “A collinear self-referencing set-up for control of the carrier-envelope offset frequency in Ti:sapphire femtosecond laser frequency combs,” Metrologia 42(4), 304–307 (2005).
[Crossref]

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Brabec, T.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[Crossref] [PubMed]

Brons, J.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

Bucalovic, N.

Cingoz, A.

C. Benko, T. K. Allison, A. Cingoz, L. Hua, F. Labaye, D. C. Yost, and J. Ye, “Extreme ultraviolet radiation with coherence time greater than 1 s,” Nat. Photonics 8(7), 530–536 (2014).
[Crossref]

Cingöz, A.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

Coen, S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Coq, Y.

W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 432–438 (2012).
[Crossref] [PubMed]

Corkum, P.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[Crossref] [PubMed]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Diddams, S. A.

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[Crossref]

S. A. Meyer, J. A. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” Eur. Phys. J. D 48(1), 19–26 (2008).
[Crossref]

T. M. Fortier, A. Bartels, and S. A. Diddams, “Octave-spanning Ti:sapphire laser with a repetition rate >1 ghz for optical frequency measurements and comparisons,” Opt. Lett. 31(7), 1011–1013 (2006).
[Crossref] [PubMed]

K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, and M. F. Yan, “Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser,” Opt. Lett. 30(8), 932–934 (2005).
[Crossref] [PubMed]

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Diebold, A.

Dolgovskiy, V.

Domenico, G. D.

Drescher, M.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[Crossref] [PubMed]

Du, Q.

Dudley, J. M.

S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express 19(17), 16491–16497 (2011).
[Crossref] [PubMed]

M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, J. M. Dudley, and U. Keller, “Self-referencable frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Emaury, F.

Fedulova, E.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

Fendel, P.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Fermann, M. E.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 3084–3086 (2012).
[Crossref] [PubMed]

A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature 2(6), 355–359 (2008).

Fischer, M.

W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 432–438 (2012).
[Crossref] [PubMed]

Fortier, T. M.

Frei, H.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Gäbel, K.

Gini, E.

Glenday, A. G.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Golling, M.

Grebing, C.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Han, H.

Hansch, T. W.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hánsch, T. W.

Hänsch, T. W.

Hartl, I.

C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 3084–3086 (2012).
[Crossref] [PubMed]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature 2(6), 355–359 (2008).

Haus, H. A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[Crossref]

Heckl, O. H.

Heinzmann, U.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[Crossref] [PubMed]

Hentschel, M.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[Crossref] [PubMed]

Hirai, A.

Hoffmann, M.

Hollberg, L.

K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, and M. F. Yan, “Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser,” Opt. Lett. 30(8), 932–934 (2005).
[Crossref] [PubMed]

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Holzwarth, R.

Hommelhoff, P.

Hong, F. L.

Hou, L.

Z. Yu, H. Han, L. Hou, and Z. Wei, “Carrier-envelope phase stabilized octave-spanning laser with monolithic scheme,” in 2015 Conference on Lasers and Electro-optics Pacific Rim (Optical Society of America, 2015), paper 26F3_3.
[Crossref]

Hua, L.

C. Benko, T. K. Allison, A. Cingoz, L. Hua, F. Labaye, D. C. Yost, and J. Ye, “Extreme ultraviolet radiation with coherence time greater than 1 s,” Nat. Photonics 8(7), 530–536 (2014).
[Crossref]

Huber, G.

Inaba, H.

Jia, Y.

Jiang, Y.

Y. Jiang, Z. Bi, L. Robertsson, and L. S. Ma, “A collinear self-referencing set-up for control of the carrier-envelope offset frequency in Ti:sapphire femtosecond laser frequency combs,” Metrologia 42(4), 304–307 (2005).
[Crossref]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Kärtner, F. X.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Keller, U.

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
[Crossref] [PubMed]

A. Klenner, M. Golling, and U. Keller, “A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal,” Opt. Express 21(8), 10351–10357 (2013).
[Crossref] [PubMed]

A. Klenner, F. Emaury, C. Schriber, A. Diebold, C. J. Saraceno, S. Schilt, U. Keller, and T. Südmeyer, “Phase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser,” Opt. Express 21(21), 24770–24780 (2013).
[Crossref] [PubMed]

C. J. Saraceno, S. Pekarek, O. H. Heckl, C. R. E. Baer, C. Schriber, M. Golling, K. Beil, C. Kränkel, G. Huber, U. Keller, and T. Südmeyer, “Self-referenceable frequency comb from an ultrafast thin disk laser,” Opt. Express 20(9), 9650–9656 (2012).
[Crossref] [PubMed]

S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express 19(17), 16491–16497 (2011).
[Crossref] [PubMed]

S. Schilt, N. Bucalovic, V. Dolgovskiy, C. Schori, M. C. Stumpf, G. D. Domenico, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, U. Keller, and P. Thomann, “Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-μm solid-state laser,” Opt. Express 19(24), 24171–24181 (2011).

M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, J. M. Dudley, and U. Keller, “Self-referencable frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010).
[Crossref]

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[Crossref]

Kienberger, R.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[Crossref] [PubMed]

Kim, K.

Klenner, A.

Knight, J. C.

Koke, S.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Kolner, B. H.

Kränkel, C.

Krausz, F.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[Crossref] [PubMed]

Kundermann, S.

Labaye, F.

C. Benko, T. K. Allison, A. Cingoz, L. Hua, F. Labaye, D. C. Yost, and J. Ye, “Extreme ultraviolet radiation with coherence time greater than 1 s,” Nat. Photonics 8(7), 530–536 (2014).
[Crossref]

Lecomte, S.

Lee, C. C.

Li, C. H.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Li, D. Z.

Link, S. M.

Lours, M.

W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 432–438 (2012).
[Crossref] [PubMed]

Lücking, F.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

Ma, L. S.

Y. Jiang, Z. Bi, L. Robertsson, and L. S. Ma, “A collinear self-referencing set-up for control of the carrier-envelope offset frequency in Ti:sapphire femtosecond laser frequency combs,” Metrologia 42(4), 304–307 (2005).
[Crossref]

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Mangold, M.

Marcinkevicius, A.

A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature 2(6), 355–359 (2008).

Martin, M. J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature 2(6), 355–359 (2008).

Matsumoto, H.

Mayer, A. S.

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[Crossref]

Meyer, S. A.

S. A. Meyer, J. A. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” Eur. Phys. J. D 48(1), 19–26 (2008).
[Crossref]

Milosevic, N.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[Crossref] [PubMed]

Minoshima, K.

Mohr, C.

Mulder, T. D.

Newbury, N. R.

K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, and M. F. Yan, “Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser,” Opt. Lett. 30(8), 932–934 (2005).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Nicholson, J. W.

Oates, C.

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Oates, C. W.

Oehler, A. E. H.

Onae, A.

Paschotta, R.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[Crossref]

Pekarek, S.

Peng, Y.

Pervak, V.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

Phillips, D. F.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Picque, N.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Poprawe, R.

Pronin, O.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Reider, G. A.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[Crossref] [PubMed]

Robertsson, L.

Y. Jiang, Z. Bi, L. Robertsson, and L. S. Ma, “A collinear self-referencing set-up for control of the carrier-envelope offset frequency in Ti:sapphire femtosecond laser frequency combs,” Metrologia 42(4), 304–307 (2005).
[Crossref]

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Ruehl, A.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
[Crossref] [PubMed]

Russbüldt, P.

Russell, P. St. J.

Santarelli, G.

W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 432–438 (2012).
[Crossref] [PubMed]

Saraceno, C. J.

Sasselov, D.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Schibli, T. R.

C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 3084–3086 (2012).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature 2(6), 355–359 (2008).

Schilt, S.

Schlatter, A.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schmidt, B.

Schori, C.

Schriber, C.

Scott, R. P.

Seidel, M.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

Spielmann, C.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[Crossref] [PubMed]

Squier, J. A.

S. A. Meyer, J. A. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” Eur. Phys. J. D 48(1), 19–26 (2008).
[Crossref]

Steinmeyer, G.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Stumpf, M. C.

Sudmeyer, T.

Südmeyer, T.

Sugiura, T.

Suzuki, S.

Szentgyorgyi, A.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Takada, H.

Tan, W. D.

Tang, D. Y.

Telle, H. R.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[Crossref]

Thomann, P.

Tian, W.

Tilma, B. W.

Trubetskov, M.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

Udem, T.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hánsch, P. Russbüldt, K. Gäbel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 26(17), 1376–1378 (2001).
[Crossref] [PubMed]

Vernaleken, A.

Wadsworth, W. J.

Walsworth, R. L.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Wang, Z.

Washburn, B. R.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Wei, L.

Wei, Z.

Wilpers, G.

K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, and M. F. Yan, “Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser,” Opt. Lett. 30(8), 932–934 (2005).
[Crossref] [PubMed]

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Windeler, R. S.

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Wolferstetter, M.

Xu, C. W.

Xu, J.

Xu, X. D.

Yan, M. F.

Ye, J.

C. Benko, T. K. Allison, A. Cingoz, L. Hua, F. Labaye, D. C. Yost, and J. Ye, “Extreme ultraviolet radiation with coherence time greater than 1 s,” Nat. Photonics 8(7), 530–536 (2014).
[Crossref]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature 2(6), 355–359 (2008).

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Yoshida, M.

Yost, D. C.

C. Benko, T. K. Allison, A. Cingoz, L. Hua, F. Labaye, D. C. Yost, and J. Ye, “Extreme ultraviolet radiation with coherence time greater than 1 s,” Nat. Photonics 8(7), 530–536 (2014).
[Crossref]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature 2(6), 355–359 (2008).

Yu, Z.

Z. Yu, H. Han, L. Hou, and Z. Wei, “Carrier-envelope phase stabilized octave-spanning laser with monolithic scheme,” in 2015 Conference on Lasers and Electro-optics Pacific Rim (Optical Society of America, 2015), paper 26F3_3.
[Crossref]

Zaugg, C. A.

Zeller, S. C.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[Crossref]

Zhang, J.

Zhang, W.

W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 432–438 (2012).
[Crossref] [PubMed]

W. Zhang, H. Han, Y. Zhao, Q. Du, and Z. Wei, “A 350 MHz Ti:sapphire laser comb based on monolithic scheme and absolute frequency measurement of 729 nm laser,” Opt. Express 17(8), 6059–6067 (2009).
[Crossref] [PubMed]

Zhao, Y.

Zheng, L.

Zhu, J.

Zhu, Z.

Zimmermann, M.

Zucco, M.

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Appl. Phys. B (2)

M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, J. M. Dudley, and U. Keller, “Self-referencable frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010).
[Crossref]

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[Crossref]

Eur. Phys. J. D (1)

S. A. Meyer, J. A. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” Eur. Phys. J. D 48(1), 19–26 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[Crossref]

IEEE J. Sel. Top. Quant. Electron. (1)

B. H. Kolner, “Dynamic temperature distribution in cylindrical laser rods with time-varying pump sources,” IEEE J. Sel. Top. Quant. Electron. 18(1), 486–493 (2012).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 432–438 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Metrologia (1)

Y. Jiang, Z. Bi, L. Robertsson, and L. S. Ma, “A collinear self-referencing set-up for control of the carrier-envelope offset frequency in Ti:sapphire femtosecond laser frequency combs,” Metrologia 42(4), 304–307 (2005).
[Crossref]

Nat. Commun. (1)

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

C. Benko, T. K. Allison, A. Cingoz, L. Hua, F. Labaye, D. C. Yost, and J. Ye, “Extreme ultraviolet radiation with coherence time greater than 1 s,” Nat. Photonics 8(7), 530–536 (2014).
[Crossref]

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Nature (5)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature 2(6), 355–359 (2008).

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

Opt. Express (12)

R. P. Scott, T. D. Mulder, K. A. Baker, and B. H. Kolner, “Amplitude and phase noise sensitivity of modelocked Ti:sapphire lasers in terms of a complex noise transfer function,” Opt. Express 15(14), 9090–9095 (2007).
[Crossref] [PubMed]

T. D. Mulder, R. P. Scott, and B. H. Kolner, “Amplitude and envelope phase noise of a modelocked laser predicted from its noise transfer function and the pump noise power spectrum,” Opt. Express 16(18), 14186–14191 (2008).
[Crossref] [PubMed]

W. Zhang, H. Han, Y. Zhao, Q. Du, and Z. Wei, “A 350 MHz Ti:sapphire laser comb based on monolithic scheme and absolute frequency measurement of 729 nm laser,” Opt. Express 17(8), 6059–6067 (2009).
[Crossref] [PubMed]

S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express 19(17), 16491–16497 (2011).
[Crossref] [PubMed]

S. Schilt, N. Bucalovic, V. Dolgovskiy, C. Schori, M. C. Stumpf, G. D. Domenico, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, U. Keller, and P. Thomann, “Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-μm solid-state laser,” Opt. Express 19(24), 24171–24181 (2011).

C. J. Saraceno, S. Pekarek, O. H. Heckl, C. R. E. Baer, C. Schriber, M. Golling, K. Beil, C. Kränkel, G. Huber, U. Keller, and T. Südmeyer, “Self-referenceable frequency comb from an ultrafast thin disk laser,” Opt. Express 20(9), 9650–9656 (2012).
[Crossref] [PubMed]

A. Vernaleken, B. Schmidt, M. Wolferstetter, T. W. Hänsch, R. Holzwarth, and P. Hommelhoff, “Carrier-envelope frequency stabilization of a Ti:sapphire oscillator using different pump lasers,” Opt. Express 20(16), 18387–18396 (2012).
[Crossref] [PubMed]

A. Klenner, M. Golling, and U. Keller, “A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal,” Opt. Express 21(8), 10351–10357 (2013).
[Crossref] [PubMed]

A. Klenner, F. Emaury, C. Schriber, A. Diebold, C. J. Saraceno, S. Schilt, U. Keller, and T. Südmeyer, “Phase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser,” Opt. Express 21(21), 24770–24780 (2013).
[Crossref] [PubMed]

M. Hoffmann, S. Schilt, and T. Südmeyer, “CEO stabilization of a femtosecond laser using a SESAM as fast opto-optical modulator,” Opt. Express 21(24), 30054–30064 (2013).
[Crossref] [PubMed]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
[Crossref] [PubMed]

W. Tian, Z. Wang, L. Wei, Y. Peng, J. Zhang, Z. Zhu, J. Zhu, H. Han, Y. Jia, L. Zheng, J. Xu, and Z. Wei, “Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61fs pulse duration,” Opt. Express 22(16), 19040–19046 (2014).
[Crossref] [PubMed]

Opt. Lett. (7)

C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 3084–3086 (2012).
[Crossref] [PubMed]

A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
[Crossref] [PubMed]

R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hánsch, P. Russbüldt, K. Gäbel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 26(17), 1376–1378 (2001).
[Crossref] [PubMed]

F. L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, and M. Yoshida, “Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser,” Opt. Lett. 28(17), 1516–1518 (2003).
[Crossref] [PubMed]

K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, and M. F. Yan, “Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser,” Opt. Lett. 30(8), 932–934 (2005).
[Crossref] [PubMed]

T. M. Fortier, A. Bartels, and S. A. Diddams, “Octave-spanning Ti:sapphire laser with a repetition rate >1 ghz for optical frequency measurements and comparisons,” Opt. Lett. 31(7), 1011–1013 (2006).
[Crossref] [PubMed]

W. D. Tan, D. Y. Tang, X. D. Xu, D. Z. Li, J. Zhang, C. W. Xu, and J. Xu, “Femtosecond and continuous-wave laser performance of a diode-pumped Yb3+:CaYAlO4 laser,” Opt. Lett. 36(2), 259–261 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Science (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Other (2)

Z. Yu, H. Han, J. Zhang, L. Hou, Y. Xie, and Z. Wei, “Kerr-lens mode-locked Yb3+:CaYAlO4 laser and octave-spanning supercontinuum generation,” in Advanced Solid State Laser Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM5A.25.
[Crossref]

Z. Yu, H. Han, L. Hou, and Z. Wei, “Carrier-envelope phase stabilized octave-spanning laser with monolithic scheme,” in 2015 Conference on Lasers and Electro-optics Pacific Rim (Optical Society of America, 2015), paper 26F3_3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Self-referenced solid-state frequency combs classified in terms of emission wavelength and pulse duration of the fundamental laser sources. Frequency comb from bulk Yb:CYA oscillator has the broadest output spectrum in the 1-μm regime.

Fig. 2
Fig. 2

Schematic diagram of the OFC from a KLM Yb:CYA laser. F1, F2: spherical lenses; F3, F4: aspherical lenses; M1-M7: high reflective mirrors; M3 and M4: Gires-Tournois interferometers (GTIs) with dispersion of −1000 fs2 and −250 fs2; AOM: acoustic optical modulator; OC: output coupler; HWP: half-wavelength plate; TFP: thin film polarizer; PCF: photonic crystal fiber; DM: dichroic mirror; PBS: polarization beam splitter; APD: avalanche photo diode; PS: power splitter; PLL: phase locked loop; SA: spectrum analyzer; FC: frequency counter. Rb-clock: Rubidium clock.

Fig. 3
Fig. 3

(a) Relative intensity noise of the novel fiber source and traditional LD source; (b) mode-locked output spectra in linear scale (black line) and logarithmic scale (blue line); (c) the measured autocorrelation and fits for sech2-pulse.

Fig. 4
Fig. 4

(a) The spectral width versus power coupled into the PCFs, note: the PCFs with different lengths are the same type with 976 nm zero dispersion wavelength (ZWD); (b) The measured (black line) and simulated (gray line) SC spectra generated by a 1.3-m PCF, the blue line is the mode-locked output spectrum of the laser.

Fig. 5
Fig. 5

Radio frequency spectrum with 42-dB SNR fceo beat signal (unaveraged, RBW = 100 kHz), frep: repetition rate; the inset: free-running fceo signal fitted with a 9.6-kHz FWHM square-Lorenztian line shape (RBW = 100 Hz).

Fig. 6
Fig. 6

(a) The frequency spectrum of the locked fceo signal; (b) phase noise and integrated phase noise of the locked fceo signal.

Fig. 7
Fig. 7

The frequency deviation of the locked fceo signal for more than 4 hours recorded by the counter at 1-s gate time and the corresponding Allan deviation to the optical laser frequency νoptopt = 1048nm).

Metrics