Abstract

A fully stabilized all polarization-maintaining Er frequency comb with a nonlinear amplifying loop mirror with below 0.2 rad carrier-envelope-offset frequency phase noise is demonstrated. The integrated timing jitter is measured as 40 attosecond from 10 kHz to 10 MHz, which is the lowest value of any Er fiber frequency comb to date.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator

N. Kuse, C.-C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M.E. Fermann
Opt. Express 23(19) 24342-24350 (2015)

Robust optical-frequency-comb based on the hybrid mode-locked Er:fiber femtosecond laser

Yanyan Zhang, Songtao Fan, Lulu Yan, Long Zhang, Xiaofei Zhang, Wenge Guo, Shougang Zhang, and Haifeng Jiang
Opt. Express 25(18) 21719-21725 (2017)

All-in-fiber SESAM based comb oscillator with an intra-cavity electro-optic modulator for coherent high bandwidth stabilization

S. M. Schweyer, B. Eder, P. Putzer, M. Mayerbacher, N. Lemke, K. U. Schreiber, U. Hugentobler, and R. Kienberger
Opt. Express 26(18) 23798-23807 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
    [Crossref] [PubMed]
  2. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [Crossref]
  3. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [Crossref]
  4. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
    [Crossref] [PubMed]
  5. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
    [Crossref]
  6. C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 3084–3086 (2012).
    [Crossref] [PubMed]
  7. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16(7), 502–504 (1991).
    [Crossref] [PubMed]
  8. I. Hartl, L. Dong, M. E. Fermann, T. R. Schibli, A. Onae, F.-L. Hong, H. Inaba, K. Minoshima, and H. Matsumoto, “Long-term carrier envelope phase locking of a PM fiber frequency comb source,” Optical Fiber Communication Conference (OSA, 2005), paper OFJ2.
    [Crossref]
  9. E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
    [Crossref] [PubMed]
  10. L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996–7006 (2014).
    [Crossref] [PubMed]
  11. N. Kuse, C.-C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M. E. Fermann, “Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator,” Opt. Express 23(19), 24342–24350 (2015).
    [Crossref] [PubMed]
  12. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15(13), 752–754 (1990).
    [Crossref] [PubMed]
  13. I. N. Duling, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16(8), 539–541 (1991).
    [Crossref] [PubMed]
  14. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13(1), 56–58 (1988).
    [Crossref] [PubMed]
  15. C.-C. Lee, S. Suzuki, W. Xie, and T. R. Schibli, “Broadband graphene electro-optic modulators with sub-wavelength thickness,” Opt. Express 20(5), 5264–5269 (2012).
    [Crossref] [PubMed]
  16. D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
    [Crossref] [PubMed]
  17. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
    [Crossref] [PubMed]
  18. J. W. Nicholson and M. Andrejco, “A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser,” Opt. Express 14(18), 8160–8167 (2006).
    [Crossref] [PubMed]
  19. G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
  20. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
    [Crossref] [PubMed]
  21. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
    [Crossref]
  22. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
    [Crossref]
  23. K. Jung, J. Shin, and J. Kim, “Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter,” IEEE Photonics J. 5(3), 5500906 (2013).
  24. C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
    [Crossref]
  25. J. Szczepanek, T. M. Kardaś, M. Michalska, C. Radzewicz, and Y. Stepanenko, “Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror,” Opt. Lett. 40(15), 3500–3503 (2015).
    [Crossref] [PubMed]
  26. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  27. H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Quantum Electron. 20(5), 0901108 (2013).
  28. T. K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C. H. Nam, and J. Kim, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Opt. Lett. 36(22), 4443–4445 (2011).
    [Crossref] [PubMed]
  29. C. Kim, S. Bae, K. Kieu, and J. Kim, “Sub-femtosecond timing jitter, all-fiber, CNT-mode-locked Er-laser at telecom wavelength,” Opt. Express 21(22), 26533–26541 (2013).
    [Crossref] [PubMed]
  30. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28(11), 947–949 (2003).
    [Crossref] [PubMed]
  31. J. Kim, J. Chen, Z. Zhang, F. N. C. Wong, F. X. Kärtner, F. Loehl, and H. Schlarb, “Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator,” Opt. Lett. 32(9), 1044–1046 (2007).
    [Crossref] [PubMed]
  32. H. Lin, D. K. Donald, and W. V. Sorin, “Optimizing polarization states in a figure-8 laser using a nonreciprocal phase shifter,” J. Lightwave Technol. 12(7), 1121–1128 (1994).
    [Crossref]
  33. M. E. Fermann, M. Hofer, F. Haberl, A. J. Schmidt, and L. Turi, “Additive-pulse-compression mode locking of a neodymium fiber laser,” Opt. Lett. 16(4), 244–246 (1991).
    [Crossref] [PubMed]
  34. S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: part I—theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997).
    [Crossref]
  35. R. Paschotta, “Timing jitter and phase noiseof mode-locked fiber lasers,” Opt. Express 18(5), 5041–5054 (2010).
    [Crossref] [PubMed]

2015 (3)

2014 (2)

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996–7006 (2014).
[Crossref] [PubMed]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

2013 (5)

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).

K. Jung, J. Shin, and J. Kim, “Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter,” IEEE Photonics J. 5(3), 5500906 (2013).

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Quantum Electron. 20(5), 0901108 (2013).

C. Kim, S. Bae, K. Kieu, and J. Kim, “Sub-femtosecond timing jitter, all-fiber, CNT-mode-locked Er-laser at telecom wavelength,” Opt. Express 21(22), 26533–26541 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

T. K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C. H. Nam, and J. Kim, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Opt. Lett. 36(22), 4443–4445 (2011).
[Crossref] [PubMed]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

2010 (3)

2009 (1)

2008 (1)

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

2007 (2)

2006 (1)

2005 (1)

2004 (1)

2003 (1)

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

1997 (1)

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: part I—theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997).
[Crossref]

1994 (1)

H. Lin, D. K. Donald, and W. V. Sorin, “Optimizing polarization states in a figure-8 laser using a nonreciprocal phase shifter,” J. Lightwave Technol. 12(7), 1121–1128 (1994).
[Crossref]

1991 (3)

1990 (1)

1988 (1)

Aguergaray, C.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Andrejco, M.

Aspelmeyer, M.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).

Bae, S.

Baumann, E.

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Bethge, J.

Bishof, M.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Bloom, B. J.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Broderick, N. G. R.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Bromley, S. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Campbell, S. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Chen, J.

Coddington, I.

Cole, G. D.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).

Cundiff, S. T.

D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Das, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Diddams, S. A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[Crossref]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Donald, D. K.

H. Lin, D. K. Donald, and W. V. Sorin, “Optimizing polarization states in a figure-8 laser using a nonreciprocal phase shifter,” J. Lightwave Technol. 12(7), 1121–1128 (1994).
[Crossref]

Doran, N. J.

Duling, I. N.

Erkintalo, M.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Fermann, M. E.

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Fujimoto, J. G.

Giorgetta, F. R.

Gopinath, J. T.

Haberl, F.

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Hänsch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Hartl, I.

C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 3084–3086 (2012).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Hati, A.

Haus, H. A.

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: part I—theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997).
[Crossref]

Hawker, R.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Hochreiter, H.

Hofer, M.

Holman, K. W.

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Hong, F. L.

Hosaka, K.

Hudson, D. D.

Inaba, H.

Ippen, E. P.

Iwakuni, K.

Jiang, J.

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Jones, D. J.

D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Jones, R. J.

Jørgensen, C. G.

Jung, K.

K. Jung, J. Shin, and J. Kim, “Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter,” IEEE Photonics J. 5(3), 5500906 (2013).

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Quantum Electron. 20(5), 0901108 (2013).

T. K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C. H. Nam, and J. Kim, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Opt. Lett. 36(22), 4443–4445 (2011).
[Crossref] [PubMed]

Kaertner, F. X.

Kardas, T. M.

Kärtner, F. X.

Katori, H.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Katsuyama, T.

Kawato, S.

Kieu, K.

Kim, C.

Kim, H.

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Quantum Electron. 20(5), 0901108 (2013).

T. K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C. H. Nam, and J. Kim, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Opt. Lett. 36(22), 4443–4445 (2011).
[Crossref] [PubMed]

Kim, J.

Kim, T. K.

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Kobayashi, T.

Kohno, T.

Kolodziejski, L. A.

Kuse, N.

Kuzucu, O.

Lee, C. C.

Lee, C.-C.

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Lin, H.

H. Lin, D. K. Donald, and W. V. Sorin, “Optimizing polarization states in a figure-8 laser using a nonreciprocal phase shifter,” J. Lightwave Technol. 12(7), 1121–1128 (1994).
[Crossref]

Loehl, F.

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Marcinkevicius, A.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Martin, M. J.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Michalska, M.

Minoshima, K.

Mohr, C.

Nakajima, Y.

Nam, C. H.

Namiki, S.

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: part I—theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997).
[Crossref]

Newbury, N. R.

Nicholson, J. W.

Nicholson, T. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Ober, M. H.

Ohkubo, T.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Onae, A.

Paschotta, R.

Petrich, G. S.

Qin, P.

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Quantum Electron. 20(5), 0901108 (2013).

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Radzewicz, C.

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Rieker, G. B.

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Runge, A. F. J.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Schibli, T. R.

Schlarb, H.

Schmidt, A. J.

Shin, J.

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Quantum Electron. 20(5), 0901108 (2013).

K. Jung, J. Shin, and J. Kim, “Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter,” IEEE Photonics J. 5(3), 5500906 (2013).

Sinclair, L. C.

Song, Y.

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Quantum Electron. 20(5), 0901108 (2013).

T. K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C. H. Nam, and J. Kim, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Opt. Lett. 36(22), 4443–4445 (2011).
[Crossref] [PubMed]

Sorin, W. V.

H. Lin, D. K. Donald, and W. V. Sorin, “Optimizing polarization states in a figure-8 laser using a nonreciprocal phase shifter,” J. Lightwave Technol. 12(7), 1121–1128 (1994).
[Crossref]

Stepanenko, Y.

Suzuki, S.

Swann, W. C.

Szczepanek, J.

Takamoto, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Tandon, S. N.

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Turi, L.

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Ushijima, I.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Valley, G. C.

Wang, C.

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Quantum Electron. 20(5), 0901108 (2013).

Washburn, B. R.

Williams, J. R.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Wong, F. N. C.

Wood, D.

Xie, W.

Yan, M. F.

Yang, H.

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Quantum Electron. 20(5), 0901108 (2013).

Yasuda, M.

Ye, J.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Yost, D. C.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Zhang, W.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).

Zhang, X.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Zhang, Z.

Appl. Phys. Lett. (1)

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

IEEE J. Quantum Electron. (2)

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Quantum Electron. 20(5), 0901108 (2013).

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: part I—theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997).
[Crossref]

IEEE Photonics J. (1)

K. Jung, J. Shin, and J. Kim, “Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter,” IEEE Photonics J. 5(3), 5500906 (2013).

J. Lightwave Technol. (1)

H. Lin, D. K. Donald, and W. V. Sorin, “Optimizing polarization states in a figure-8 laser using a nonreciprocal phase shifter,” J. Lightwave Technol. 12(7), 1121–1128 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (5)

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Nature (1)

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Opt. Express (8)

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref] [PubMed]

R. Paschotta, “Timing jitter and phase noiseof mode-locked fiber lasers,” Opt. Express 18(5), 5041–5054 (2010).
[Crossref] [PubMed]

C. Kim, S. Bae, K. Kieu, and J. Kim, “Sub-femtosecond timing jitter, all-fiber, CNT-mode-locked Er-laser at telecom wavelength,” Opt. Express 21(22), 26533–26541 (2013).
[Crossref] [PubMed]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996–7006 (2014).
[Crossref] [PubMed]

N. Kuse, C.-C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M. E. Fermann, “Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator,” Opt. Express 23(19), 24342–24350 (2015).
[Crossref] [PubMed]

C.-C. Lee, S. Suzuki, W. Xie, and T. R. Schibli, “Broadband graphene electro-optic modulators with sub-wavelength thickness,” Opt. Express 20(5), 5264–5269 (2012).
[Crossref] [PubMed]

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
[Crossref] [PubMed]

J. W. Nicholson and M. Andrejco, “A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser,” Opt. Express 14(18), 8160–8167 (2006).
[Crossref] [PubMed]

Opt. Lett. (13)

D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
[Crossref] [PubMed]

M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15(13), 752–754 (1990).
[Crossref] [PubMed]

I. N. Duling, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16(8), 539–541 (1991).
[Crossref] [PubMed]

N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13(1), 56–58 (1988).
[Crossref] [PubMed]

C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 3084–3086 (2012).
[Crossref] [PubMed]

M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16(7), 502–504 (1991).
[Crossref] [PubMed]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
[Crossref] [PubMed]

T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28(11), 947–949 (2003).
[Crossref] [PubMed]

J. Kim, J. Chen, Z. Zhang, F. N. C. Wong, F. X. Kärtner, F. Loehl, and H. Schlarb, “Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator,” Opt. Lett. 32(9), 1044–1046 (2007).
[Crossref] [PubMed]

T. K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C. H. Nam, and J. Kim, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Opt. Lett. 36(22), 4443–4445 (2011).
[Crossref] [PubMed]

M. E. Fermann, M. Hofer, F. Haberl, A. J. Schmidt, and L. Turi, “Additive-pulse-compression mode locking of a neodymium fiber laser,” Opt. Lett. 16(4), 244–246 (1991).
[Crossref] [PubMed]

J. Szczepanek, T. M. Kardaś, M. Michalska, C. Radzewicz, and Y. Stepanenko, “Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror,” Opt. Lett. 40(15), 3500–3503 (2015).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Other (1)

I. Hartl, L. Dong, M. E. Fermann, T. R. Schibli, A. Onae, F.-L. Hong, H. Inaba, K. Minoshima, and H. Matsumoto, “Long-term carrier envelope phase locking of a PM fiber frequency comb source,” Optical Fiber Communication Conference (OSA, 2005), paper OFJ2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) (left) Schematic of an oscillator with two loops and (right) cavity loss dependent on nonlinear phase offset. Black line and dotted black line show the cavity loss with and without the phase bias. (b) (left) Schematic of an oscillator with NALM and linear arm and (right) cavity loss dependent on nonlinear phase offset. Black line and dotted black line show the cavity loss with and without the phase bias.
Fig. 2
Fig. 2 (a) Schematic of the oscillator. EOM, electro-optic modulator; PZT, piezo transducer; EDFA, erbium-doped fiber amplifier; TEC, temperature controller. (b) Optical spectra from output 1 (red) and output 2 (blue).
Fig. 3
Fig. 3 (a) The schematic of comb setup. (b) In-loop RF spectrum of free-running fceo with 100 kHz RBW. (c) In-loop RF spectrum of phase locked fceo with 3 kHz RBW. (d) In-loop PSD and integrated phase noise of phase locked fceo. (e) In-loop RF spectrum of phase locked fbeat with 3 kHz RBW. (f) In-loop PSD and integrated phase noise of phase locked fbeat. (g) Frequency of phase locked fceo. (h) Frequency of phase locked fbeat.
Fig. 4
Fig. 4 (a) The schematic of measurement setup for BOC. (b) Jitter PSD for the laser (red) and theoretical estimation (black) and integrated timing jitter (blue).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L ( f ) = 0.53 θ h ν P a v g ( f r e p τ p ) 2 l t o t a l 1 ( 2 π f ) 2

Metrics