Abstract

For the first time, we demonstrate the possibility to switch between three distinct pulse regimes in a dissipative dispersion-managed (DM) fibre laser by solely controlling the gain saturation energy. Nonlinear Schrödinger equation based simulations show the transitions between hyper-Gaussian similaritons, parabolic similaritons, and dissipative solitons in the same laser cavity. It is also shown that such transitions exist in a wide dispersion range from all-normal to slightly net-normal dispersion. This work demonstrates that besides dispersion and filter managements gain saturation energy can be a new degree of freedom to manage pulse regimes in DM fibre lasers, which offers flexibility in designing ultrafast fibre lasers. Also, the result indicates that in contrast to conservative soliton lasers whose intensity profiles are unique, dissipative DM lasers show diversity in pulse shapes. The findings not only give a better understanding of pulse shaping mechanisms in mode-locked lasers, but also provide insight into dissipative systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral filtering effect on mode-locking regimes transition: similariton-dissipative soliton fiber laser

Zhiqiang Wang, Li Zhan, Xiao Fang, and Hao Luo
J. Opt. Soc. Am. B 34(11) 2325-2333 (2017)

On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations

Thomas Schreiber, Bülend Ortaç, Jens Limpert, and Andreas Tünnermann
Opt. Express 15(13) 8252-8262 (2007)

References

  • View by:
  • |
  • |
  • |

  1. V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
    [Crossref]
  2. K. Tamura, H. Haus, and E. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
    [Crossref]
  3. N. Akhmediev and V. V. Afanasjev, “Novel arbitrary-amplitude soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. Lett. 75(12), 2320–2323 (1995).
    [Crossref] [PubMed]
  4. J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Direct generation of 128-fs Gaussian pulses from a compensation-free fiber laser using dual mode-locking mechanisms,” Opt. Commun. 285(5), 731–733 (2012).
    [Crossref]
  5. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [Crossref] [PubMed]
  6. H. Haus, E. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
    [Crossref]
  7. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
    [Crossref] [PubMed]
  8. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
    [Crossref] [PubMed]
  9. W. H. Renninger, A. Chong, and F. W. Wise, “Amplifier similaritons in a dispersion-mapped fiber laser [Invited],” Opt. Express 19(23), 22496–22501 (2011).
    [Crossref] [PubMed]
  10. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213901 (2004).
    [Crossref] [PubMed]
  11. W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
    [Crossref] [PubMed]
  12. V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Parabolic and hyper-Gaussian similaritons in fiber amplifiers and lasers with gain saturation,” Opt. Express 20(8), 8741–8754 (2012).
    [Crossref] [PubMed]
  13. B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
    [Crossref]
  14. J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
    [Crossref]
  15. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15(13), 8252–8262 (2007).
    [Crossref] [PubMed]
  16. http://www.fiberdesk.com
  17. A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206(1-3), 171–177 (2002).
    [Crossref]
  18. H. Haus, K. Tamura, L. Nelson, and E. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
    [Crossref]
  19. A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, “Dynamics of parabolic pulses in an ultrafast fiber laser,” Opt. Lett. 31(18), 2734–2736 (2006).
    [Crossref] [PubMed]
  20. A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “Normal dispersive ultrafast fiber oscillators,” IEEE J. Sel. Top. Quantum Electron. 15(1), 170–181 (2009).
    [Crossref]
  21. C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express 18(8), 8680–8687 (2010).
    [Crossref] [PubMed]
  22. A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, “Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution,” Opt. Express 20(13), 14213–14220 (2012).
    [Crossref] [PubMed]
  23. J. Peng, L. Zhan, Z. Gu, K. Qian, X. Hu, S. Luo, and Q. Shen, “Direct generation of 4.6-nJ 78.9-fs dissipative solitons in an all-fiber net-normal-dispersion Er-doped laser,” IEEE Photonics Technol. Lett. 24(2), 98–100 (2012).
    [Crossref]
  24. S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521(4), 135–203 (2012).
    [Crossref]

2012 (7)

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Direct generation of 128-fs Gaussian pulses from a compensation-free fiber laser using dual mode-locking mechanisms,” Opt. Commun. 285(5), 731–733 (2012).
[Crossref]

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Parabolic and hyper-Gaussian similaritons in fiber amplifiers and lasers with gain saturation,” Opt. Express 20(8), 8741–8754 (2012).
[Crossref] [PubMed]

A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, “Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution,” Opt. Express 20(13), 14213–14220 (2012).
[Crossref] [PubMed]

J. Peng, L. Zhan, Z. Gu, K. Qian, X. Hu, S. Luo, and Q. Shen, “Direct generation of 4.6-nJ 78.9-fs dissipative solitons in an all-fiber net-normal-dispersion Er-doped laser,” IEEE Photonics Technol. Lett. 24(2), 98–100 (2012).
[Crossref]

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521(4), 135–203 (2012).
[Crossref]

2011 (1)

2010 (3)

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express 18(8), 8680–8687 (2010).
[Crossref] [PubMed]

2009 (1)

A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “Normal dispersive ultrafast fiber oscillators,” IEEE J. Sel. Top. Quantum Electron. 15(1), 170–181 (2009).
[Crossref]

2007 (1)

2006 (2)

2004 (1)

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213901 (2004).
[Crossref] [PubMed]

2002 (1)

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206(1-3), 171–177 (2002).
[Crossref]

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

1995 (2)

H. Haus, K. Tamura, L. Nelson, and E. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

N. Akhmediev and V. V. Afanasjev, “Novel arbitrary-amplitude soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. Lett. 75(12), 2320–2323 (1995).
[Crossref] [PubMed]

1994 (1)

H. Haus, E. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

1992 (2)

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

K. Tamura, H. Haus, and E. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[Crossref]

Afanasjev, V. V.

N. Akhmediev and V. V. Afanasjev, “Novel arbitrary-amplitude soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. Lett. 75(12), 2320–2323 (1995).
[Crossref] [PubMed]

Aguergaray, C.

Akhmediev, N.

N. Akhmediev and V. V. Afanasjev, “Novel arbitrary-amplitude soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. Lett. 75(12), 2320–2323 (1995).
[Crossref] [PubMed]

Bale, B. G.

Buckley, J.

Buckley, J. R.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213901 (2004).
[Crossref] [PubMed]

Burgoyne, B.

Chong, A.

Clark, W. G.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213901 (2004).
[Crossref] [PubMed]

Dantus, M.

Dudley, J. M.

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206(1-3), 171–177 (2002).
[Crossref]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Fedoruk, M. P.

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521(4), 135–203 (2012).
[Crossref]

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Godbout, N.

Gu, Z.

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Direct generation of 128-fs Gaussian pulses from a compensation-free fiber laser using dual mode-locking mechanisms,” Opt. Commun. 285(5), 731–733 (2012).
[Crossref]

J. Peng, L. Zhan, Z. Gu, K. Qian, X. Hu, S. Luo, and Q. Shen, “Direct generation of 4.6-nJ 78.9-fs dissipative solitons in an all-fiber net-normal-dispersion Er-doped laser,” IEEE Photonics Technol. Lett. 24(2), 98–100 (2012).
[Crossref]

Harvey, J. D.

V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Parabolic and hyper-Gaussian similaritons in fiber amplifiers and lasers with gain saturation,” Opt. Express 20(8), 8741–8754 (2012).
[Crossref] [PubMed]

C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express 18(8), 8680–8687 (2010).
[Crossref] [PubMed]

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206(1-3), 171–177 (2002).
[Crossref]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Haus, H.

H. Haus, K. Tamura, L. Nelson, and E. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

H. Haus, E. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

K. Tamura, H. Haus, and E. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[Crossref]

Hu, X.

J. Peng, L. Zhan, Z. Gu, K. Qian, X. Hu, S. Luo, and Q. Shen, “Direct generation of 4.6-nJ 78.9-fs dissipative solitons in an all-fiber net-normal-dispersion Er-doped laser,” IEEE Photonics Technol. Lett. 24(2), 98–100 (2012).
[Crossref]

Ilday, F. O.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213901 (2004).
[Crossref] [PubMed]

Ippen, E.

H. Haus, K. Tamura, L. Nelson, and E. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

H. Haus, E. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

K. Tamura, H. Haus, and E. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[Crossref]

Kracht, D.

A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “Normal dispersive ultrafast fiber oscillators,” IEEE J. Sel. Top. Quantum Electron. 15(1), 170–181 (2009).
[Crossref]

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, “Dynamics of parabolic pulses in an ultrafast fiber laser,” Opt. Lett. 31(18), 2734–2736 (2006).
[Crossref] [PubMed]

Kruglov, V.

Kruglov, V. I.

V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Parabolic and hyper-Gaussian similaritons in fiber amplifiers and lasers with gain saturation,” Opt. Express 20(8), 8741–8754 (2012).
[Crossref] [PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Kruhlak, R. J.

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206(1-3), 171–177 (2002).
[Crossref]

Lacroix, S.

Limpert, J.

Liu, H.

Luo, S.

J. Peng, L. Zhan, Z. Gu, K. Qian, X. Hu, S. Luo, and Q. Shen, “Direct generation of 4.6-nJ 78.9-fs dissipative solitons in an all-fiber net-normal-dispersion Er-doped laser,” IEEE Photonics Technol. Lett. 24(2), 98–100 (2012).
[Crossref]

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Direct generation of 128-fs Gaussian pulses from a compensation-free fiber laser using dual mode-locking mechanisms,” Opt. Commun. 285(5), 731–733 (2012).
[Crossref]

Matsas, V.

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Méchin, D.

Morgner, U.

A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “Normal dispersive ultrafast fiber oscillators,” IEEE J. Sel. Top. Quantum Electron. 15(1), 170–181 (2009).
[Crossref]

Nelson, L.

H. Haus, K. Tamura, L. Nelson, and E. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

Newson, T.

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Nie, B.

Oktem, B.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Ortaç, B.

Payne, D.

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Peacock, A. C.

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206(1-3), 171–177 (2002).
[Crossref]

Peng, J.

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Direct generation of 128-fs Gaussian pulses from a compensation-free fiber laser using dual mode-locking mechanisms,” Opt. Commun. 285(5), 731–733 (2012).
[Crossref]

J. Peng, L. Zhan, Z. Gu, K. Qian, X. Hu, S. Luo, and Q. Shen, “Direct generation of 4.6-nJ 78.9-fs dissipative solitons in an all-fiber net-normal-dispersion Er-doped laser,” IEEE Photonics Technol. Lett. 24(2), 98–100 (2012).
[Crossref]

Prochnow, O.

Qian, K.

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Direct generation of 128-fs Gaussian pulses from a compensation-free fiber laser using dual mode-locking mechanisms,” Opt. Commun. 285(5), 731–733 (2012).
[Crossref]

J. Peng, L. Zhan, Z. Gu, K. Qian, X. Hu, S. Luo, and Q. Shen, “Direct generation of 4.6-nJ 78.9-fs dissipative solitons in an all-fiber net-normal-dispersion Er-doped laser,” IEEE Photonics Technol. Lett. 24(2), 98–100 (2012).
[Crossref]

Renninger, W.

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, “Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution,” Opt. Express 20(13), 14213–14220 (2012).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Amplifier similaritons in a dispersion-mapped fiber laser [Invited],” Opt. Express 19(23), 22496–22501 (2011).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

Richardson, D.

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Ruehl, A.

A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “Normal dispersive ultrafast fiber oscillators,” IEEE J. Sel. Top. Quantum Electron. 15(1), 170–181 (2009).
[Crossref]

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, “Dynamics of parabolic pulses in an ultrafast fiber laser,” Opt. Lett. 31(18), 2734–2736 (2006).
[Crossref] [PubMed]

Schreiber, T.

Shen, Q.

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Direct generation of 128-fs Gaussian pulses from a compensation-free fiber laser using dual mode-locking mechanisms,” Opt. Commun. 285(5), 731–733 (2012).
[Crossref]

J. Peng, L. Zhan, Z. Gu, K. Qian, X. Hu, S. Luo, and Q. Shen, “Direct generation of 4.6-nJ 78.9-fs dissipative solitons in an all-fiber net-normal-dispersion Er-doped laser,” IEEE Photonics Technol. Lett. 24(2), 98–100 (2012).
[Crossref]

Tamura, K.

H. Haus, K. Tamura, L. Nelson, and E. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

H. Haus, E. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

K. Tamura, H. Haus, and E. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[Crossref]

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Tünnermann, A.

Turitsyn, S. K.

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521(4), 135–203 (2012).
[Crossref]

Ulgudur, C.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Wabnitz, S.

Wandt, D.

A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “Normal dispersive ultrafast fiber oscillators,” IEEE J. Sel. Top. Quantum Electron. 15(1), 170–181 (2009).
[Crossref]

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, “Dynamics of parabolic pulses in an ultrafast fiber laser,” Opt. Lett. 31(18), 2734–2736 (2006).
[Crossref] [PubMed]

Wise, F.

Wise, F. W.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, “Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution,” Opt. Express 20(13), 14213–14220 (2012).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Amplifier similaritons in a dispersion-mapped fiber laser [Invited],” Opt. Express 19(23), 22496–22501 (2011).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213901 (2004).
[Crossref] [PubMed]

Zhan, L.

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Direct generation of 128-fs Gaussian pulses from a compensation-free fiber laser using dual mode-locking mechanisms,” Opt. Commun. 285(5), 731–733 (2012).
[Crossref]

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

J. Peng, L. Zhan, Z. Gu, K. Qian, X. Hu, S. Luo, and Q. Shen, “Direct generation of 4.6-nJ 78.9-fs dissipative solitons in an all-fiber net-normal-dispersion Er-doped laser,” IEEE Photonics Technol. Lett. 24(2), 98–100 (2012).
[Crossref]

Electron. Lett. (2)

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

K. Tamura, H. Haus, and E. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[Crossref]

IEEE J. Quantum Electron. (2)

H. Haus, E. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

H. Haus, K. Tamura, L. Nelson, and E. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “Normal dispersive ultrafast fiber oscillators,” IEEE J. Sel. Top. Quantum Electron. 15(1), 170–181 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Peng, L. Zhan, Z. Gu, K. Qian, X. Hu, S. Luo, and Q. Shen, “Direct generation of 4.6-nJ 78.9-fs dissipative solitons in an all-fiber net-normal-dispersion Er-doped laser,” IEEE Photonics Technol. Lett. 24(2), 98–100 (2012).
[Crossref]

Nat. Photonics (1)

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Opt. Commun. (2)

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Direct generation of 128-fs Gaussian pulses from a compensation-free fiber laser using dual mode-locking mechanisms,” Opt. Commun. 285(5), 731–733 (2012).
[Crossref]

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206(1-3), 171–177 (2002).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rep. (1)

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521(4), 135–203 (2012).
[Crossref]

Phys. Rev. A (2)

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213901 (2004).
[Crossref] [PubMed]

N. Akhmediev and V. V. Afanasjev, “Novel arbitrary-amplitude soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. Lett. 75(12), 2320–2323 (1995).
[Crossref] [PubMed]

Other (1)

http://www.fiberdesk.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the dissipative DM fibre laser.
Fig. 2
Fig. 2 (a) The temporal profile of the HG similariton obtained in simulation (red solid) with hyper-Gaussian (green dashed), and Gaussian (blue solid) fitting and the pulse chirp (black solid) with linear fitting (pink dashed); (b) the spectrum of HG similariton (black solid) and Gaussian fitting (red dashed).
Fig. 3
Fig. 3 Evolution of the pulse duration (black) and spectral bandwidth (blue) of HG similariton (a), parabolic similariton (b) and DS (c).
Fig. 4
Fig. 4 (a) The temporal profile of the parabolic similariton obtained in simulation (red solid) with parabolic fitting (green solid), and the pulse chirp (black solid) with linear fitting (pink dashed); (b) its spectrum.
Fig. 5
Fig. 5 (a) The spectrum of DS; (b) its temporal intensity (black) and Gaussian fitting (red).
Fig. 6
Fig. 6 Pulse kurtosis (black circles) and the corresponding gain saturation energy (blue triangle) under net dispersion variation.

Tables (1)

Tables Icon

Table 1 The pulse parameters obtained and the gain saturation energy needed to access different pulse regimes under different gain profiles

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z = 1 2 ( 2 ) 2 A τ 2 +iγ | A | 2 A+gA

Metrics