Abstract

A miniaturized methane (CH4) sensor based on nondispersive infrared absorption is realized in MEMS technology. A high level of functional integration is achieved by using the resonance cavity of a linear variable optical filter (LVOF) also as a gas absorption cell. For effective detection of methane at λ = 3.39 µm, an absorption path length of at least 5 mm is required. Miniaturization therefore necessitates the use of highly reflective mirrors and operation at the 15th-order mode with a resonator cavity length of 25.4 µm. The conventional description of the LVOF in terms of the Fabry-Perot resonator is inadequate for analyzing the optical performance at such demanding boundary conditions. We demonstrate that an approach employing the Fizeau resonator is more appropriate. Furthermore, the design and fabrication in a CMOS-compatible microfabrication technology are described and operation as a methane sensor is demonstrated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter

Arvin Emadi, Huaiwen Wu, Ger de Graaf, and Reinoud Wolffenbuttel
Opt. Express 20(1) 489-507 (2012)

Linear variable optical filter-based ultraviolet microspectrometer

Arvin Emadi, Huaiwen Wu, Ger de Graaf, Peter Enoksson, Jose Higino Correia, and Reinoud Wolffenbuttel
Appl. Opt. 51(19) 4308-4315 (2012)

CMOS-compatible mid-IR metamaterial absorbers for out-of-band suppression in optical MEMS

Mohammadamir Ghaderi, Ehsan Karimi Shahmarvandi, and Reinoud F. Wolffenbuttel
Opt. Mater. Express 8(7) 1696-1707 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
    [Crossref]
  2. R. A. Crocombe, “Miniature Optical Spectrometers: There’s Plenty of Room at the Bottom. Part I: Background and Mid-Infrared Spectrometers,” Spectroscopy (Springf.) 23(1), 38–56 (2008).
  3. J. H. Jerman, D. J. Clift, and S. R. Mallinson, “A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support,” Sensor. Actuat. A-Phys. 29(2), 151–158 (1991).
  4. S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47(34), 6442–6447 (2008).
    [Crossref] [PubMed]
  5. S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express 15(6), 3581–3588 (2007).
    [Crossref] [PubMed]
  6. N. Pelin Ayerden, U. Aygun, S. T. S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53(31), 7267–7272 (2014).
    [Crossref] [PubMed]
  7. J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “Bulk-micromachined tunable Fabry–Perot microinterferometer for the visible spectral range,” Sensor. Actuat. A-Phys. 76(1–3), 191–196 (1999).
  8. J. Mohr, B. Anderer, and W. Ehrfeld, “Fabrication of a planar grating spectrograph by deep-etch lithography with synchrotron radiation,” Sensor. Actuat. A-Phys. 27(1), 571–575 (1991).
  9. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
    [Crossref]
  10. S. Thiele and R. Salzer, “Optical Spectroscopy,” in Handbook of Spectroscopy (Wiley, 2003), pp. 441–468.
  11. S. Gersen, M. van Essen, G. van Dijk, and H. Levinsky, “Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures,” Combust. Flame 161(10), 2729–2737 (2014).
    [Crossref]
  12. R. Wolffenbuttel, Silicon sensors and Circuits: On-chip Compatibility (Springer Science & Business Media, 1996).
  13. S. E. Stein, “Infrared Spectra,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P. J. Linstrom and W. G. Mallard (National Institute of Standards and Technology, 2015).
  14. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, and J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35(21), 4026–4032 (1996).
    [Crossref] [PubMed]
  15. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40(3), 321–326 (2001).
    [Crossref] [PubMed]
  16. C. Massie, G. Stewart, G. McGregor, and J. R. Gilchrist, “Design of a portable optical sensor for methane gas detection,” Sensor. Actuat. Biol. Chem. 113(2), 830–836 (2006).
  17. N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro-Nanolith. MEM 7(2), 021004 (2008).
  18. S. Haisheng, L. Changzheng, C. Xuyuan, C. Ranbin, and Z. Qiang, “Silicon-Based Micro-Machined Infrared Emitters With a Micro-Bridge and a Self-Heating Membrane Structure,” IEEE Photonic. Tech. L. 25(11), 1014–1016 (2013).
    [Crossref]
  19. J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10(2), 353–362 (2010).
    [Crossref]
  20. W. Konz, J. Hildenbrand, M. Bauersfeld, S. Hartwig, A. Lambrecht, V. Lehmann, and J. Wollenstein, “Micromachined IR-source with excellent blackbody like behaviour (Invited Paper),” Proc. SPIE 5836, 540–548 (2005).
    [Crossref]
  21. J. Antila, A. Miranto, J. Mäkynen, M. Laamanen, A. Rissanen, M. Blomberg, H. Saari, and J. Malinen, “MEMS and piezo actuator-based Fabry-Perot interferometer technologies and applications at VTT,” Proc. SPIE 7680, 76800U (2010).
    [Crossref]
  22. J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sensor. Actuat. A-Phys. 82(1–3), 191–197 (2000).
  23. A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
    [Crossref] [PubMed]
  24. M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. de Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
    [Crossref]
  25. K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11(12), 2033–2043 (1993).
    [Crossref]
  26. J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely Tunable MEMS-Based Fabry-Perot Filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
    [Crossref]
  27. J. S. Patel, “Electrically tunable ferroelectric liquid-crystal Fabry-Perot filter,” Opt. Lett. 17(6), 456–458 (1992).
    [Crossref] [PubMed]
  28. R. Rubio, J. Santander, J. Fonollosa, L. Fonseca, I. Gràcia, C. Cané, M. Moreno, and S. Marco, “Exploration of the metrological performance of a gas detector based on an array of unspecific infrared filters,” Sensor. Actuat. Biol. Chem. 116(1–2), 183–191 (2006).
  29. W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
    [Crossref] [PubMed]
  30. F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays: a review,” Proc. SPIE 6836, 68360D (2007).
    [Crossref]
  31. D. F. Swinehart, “The Beer-Lambert Law,” J. Chem. Educ. 39(7), 333 (1962).
    [Crossref]
  32. D. A. Jackson, “The Spherical Fabry-Perot Interferometer as an Instrument of High Resolving Power for Use with External or with Internal Atomic Beams,” Proc. R. Soc. Lon. Ser-A 263(1314), 289–308 (1961).
    [Crossref]
  33. A. Kastler, “Atomes à I’Intérieur d’un Interféromètre Perot-Fabry,” Appl. Opt. 1(1), 17–24 (1962).
    [Crossref]
  34. G. Hernandez, “Fabry-Perot with an absorbing etalon cavity,” Appl. Opt. 24(18), 3062–3067 (1985).
    [Crossref] [PubMed]
  35. A. E. Siegman, Lasers (University Science Books, 1986).
  36. E. D. Palik, H. Boukari, and R. W. Gammon, “Experimental study of the effect of surface defects on the finesse and contrast of a Fabry-Perot interferometer,” Appl. Opt. 35(1), 38–50 (1996).
    [Crossref] [PubMed]
  37. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7 ed. (Cambridge University, 1999).
  38. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  39. R. Bünnagel, H. A. Oehring, and K. Steiner, “Fizeau Interferometer for Measuring the Flatness of Optical Surfaces,” Appl. Opt. 7(2), 331–335 (1968).
    [Crossref] [PubMed]
  40. J. Brossel, “Multiple-beam localized fringes: Part I.-Intensity distribution and localization,” Proc. Phys. Soc. 59(2), 224–234 (1947).
    [Crossref]
  41. M. A. Rob, “Limitation of a wedged etalon for high-resolution linewidth measurements,” Opt. Lett. 15(11), 604–606 (1990).
    [Crossref] [PubMed]
  42. T. T. Kajava, H. M. Lauranto, and R. R. E. Salomaa, “Fizeau interferometer in spectral measurements,” J. Opt. Soc. Am. B 10(11), 1980–1989 (1993).
    [Crossref]
  43. P. Langenbeck, “Fizeau interferometer-fringe sharpening,” Appl. Opt. 9(9), 2053–2058 (1970).
    [Crossref] [PubMed]
  44. Y. H. Meyer, “Fringe shape with an interferential wedge,” J. Opt. Soc. Am. 71(10), 1255–1263 (1981).
    [Crossref]
  45. J. R. Rogers, “Fringe shifts in multiple-beam Fizeau interferometry,” J. Opt. Soc. Am. 72(5), 638–643 (1982).
    [Crossref]
  46. R. R. McLeod and T. Honda, “Improving the spectral resolution of wedged etalons and linear variable filters with incidence angle,” Opt. Lett. 30(19), 2647–2649 (2005).
    [Crossref] [PubMed]
  47. C. R. Pidgeon and S. D. Smith, “Resolving Power of Multilayer Filters in Nonparallel Light,” J. Opt. Soc. Am. 54(12), 1459–1464 (1964).
    [Crossref]
  48. M. L. Baker and V. L. Yen, “Effects of the Variation of Angle of Incidence and Temperature on Infrared Filter Characteristics,” Appl. Opt. 6(8), 1343–1351 (1967).
    [Crossref] [PubMed]
  49. J. Altmann, R. Baumgart, and C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20(6), 995–999 (1981).
    [Crossref] [PubMed]
  50. M. Malak, F. Marty, N. Pavy, Y. A. Peter, L. Ai-Qun, and T. Bourouina, “Cylindrical Surfaces Enable Wavelength-Selective Extinction and Sub-0.2 nm Linewidth in 250 μm-Gap Silicon Fabry-Perot Cavities,” J. Microelectromech. Syst. 21(1), 171–180 (2012).
    [Crossref]
  51. H. A. Macleod, Thin-film Optical Filters (CRC Press, 2010).
  52. R. Santbergen, A. H. M. Smets, and M. Zeman, “Optical model for multilayer structures with coherent, partly coherent and incoherent layers,” Opt. Express 21(S2), A262–A267 (2013).
    [Crossref] [PubMed]
  53. Z. Knittl, Optics of Thin Films: An Optical Multilayer Theory (Wiley, 1976).
  54. M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
    [Crossref]
  55. A. Piegari, J. Bulir, and A. Krasilnikova Sytchkova, “Variable narrow-band transmission filters for spectrometry from space. 2. Fabrication process,” Appl. Opt. 47(13), C151–C156 (2008).
    [Crossref] [PubMed]
  56. A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, and R. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
    [Crossref]
  57. D. D. Arslanov, M. P. P. Castro, N. A. Creemers, A. H. Neerincx, M. Spunei, J. Mandon, S. M. Cristescu, P. Merkus, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of hydrogen cyanide for biomedical applications,” J. Biomed. Opt. 18(10), 107002 (2013).
    [Crossref] [PubMed]

2014 (4)

N. Pelin Ayerden, U. Aygun, S. T. S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53(31), 7267–7272 (2014).
[Crossref] [PubMed]

S. Gersen, M. van Essen, G. van Dijk, and H. Levinsky, “Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures,” Combust. Flame 161(10), 2729–2737 (2014).
[Crossref]

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. de Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
[Crossref] [PubMed]

2013 (4)

S. Haisheng, L. Changzheng, C. Xuyuan, C. Ranbin, and Z. Qiang, “Silicon-Based Micro-Machined Infrared Emitters With a Micro-Bridge and a Self-Heating Membrane Structure,” IEEE Photonic. Tech. L. 25(11), 1014–1016 (2013).
[Crossref]

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

R. Santbergen, A. H. M. Smets, and M. Zeman, “Optical model for multilayer structures with coherent, partly coherent and incoherent layers,” Opt. Express 21(S2), A262–A267 (2013).
[Crossref] [PubMed]

D. D. Arslanov, M. P. P. Castro, N. A. Creemers, A. H. Neerincx, M. Spunei, J. Mandon, S. M. Cristescu, P. Merkus, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of hydrogen cyanide for biomedical applications,” J. Biomed. Opt. 18(10), 107002 (2013).
[Crossref] [PubMed]

2012 (2)

M. Malak, F. Marty, N. Pavy, Y. A. Peter, L. Ai-Qun, and T. Bourouina, “Cylindrical Surfaces Enable Wavelength-Selective Extinction and Sub-0.2 nm Linewidth in 250 μm-Gap Silicon Fabry-Perot Cavities,” J. Microelectromech. Syst. 21(1), 171–180 (2012).
[Crossref]

A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
[Crossref] [PubMed]

2010 (2)

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

J. Antila, A. Miranto, J. Mäkynen, M. Laamanen, A. Rissanen, M. Blomberg, H. Saari, and J. Malinen, “MEMS and piezo actuator-based Fabry-Perot interferometer technologies and applications at VTT,” Proc. SPIE 7680, 76800U (2010).
[Crossref]

2009 (2)

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely Tunable MEMS-Based Fabry-Perot Filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, and R. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[Crossref]

2008 (4)

A. Piegari, J. Bulir, and A. Krasilnikova Sytchkova, “Variable narrow-band transmission filters for spectrometry from space. 2. Fabrication process,” Appl. Opt. 47(13), C151–C156 (2008).
[Crossref] [PubMed]

N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro-Nanolith. MEM 7(2), 021004 (2008).

R. A. Crocombe, “Miniature Optical Spectrometers: There’s Plenty of Room at the Bottom. Part I: Background and Mid-Infrared Spectrometers,” Spectroscopy (Springf.) 23(1), 38–56 (2008).

S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47(34), 6442–6447 (2008).
[Crossref] [PubMed]

2007 (2)

S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express 15(6), 3581–3588 (2007).
[Crossref] [PubMed]

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays: a review,” Proc. SPIE 6836, 68360D (2007).
[Crossref]

2006 (2)

R. Rubio, J. Santander, J. Fonollosa, L. Fonseca, I. Gràcia, C. Cané, M. Moreno, and S. Marco, “Exploration of the metrological performance of a gas detector based on an array of unspecific infrared filters,” Sensor. Actuat. Biol. Chem. 116(1–2), 183–191 (2006).

C. Massie, G. Stewart, G. McGregor, and J. R. Gilchrist, “Design of a portable optical sensor for methane gas detection,” Sensor. Actuat. Biol. Chem. 113(2), 830–836 (2006).

2005 (3)

W. Konz, J. Hildenbrand, M. Bauersfeld, S. Hartwig, A. Lambrecht, V. Lehmann, and J. Wollenstein, “Micromachined IR-source with excellent blackbody like behaviour (Invited Paper),” Proc. SPIE 5836, 540–548 (2005).
[Crossref]

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

R. R. McLeod and T. Honda, “Improving the spectral resolution of wedged etalons and linear variable filters with incidence angle,” Opt. Lett. 30(19), 2647–2649 (2005).
[Crossref] [PubMed]

2003 (1)

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

2001 (1)

2000 (1)

J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sensor. Actuat. A-Phys. 82(1–3), 191–197 (2000).

1999 (1)

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “Bulk-micromachined tunable Fabry–Perot microinterferometer for the visible spectral range,” Sensor. Actuat. A-Phys. 76(1–3), 191–196 (1999).

1998 (1)

1996 (2)

1993 (2)

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11(12), 2033–2043 (1993).
[Crossref]

T. T. Kajava, H. M. Lauranto, and R. R. E. Salomaa, “Fizeau interferometer in spectral measurements,” J. Opt. Soc. Am. B 10(11), 1980–1989 (1993).
[Crossref]

1992 (1)

1991 (2)

J. Mohr, B. Anderer, and W. Ehrfeld, “Fabrication of a planar grating spectrograph by deep-etch lithography with synchrotron radiation,” Sensor. Actuat. A-Phys. 27(1), 571–575 (1991).

J. H. Jerman, D. J. Clift, and S. R. Mallinson, “A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support,” Sensor. Actuat. A-Phys. 29(2), 151–158 (1991).

1990 (1)

1985 (1)

1982 (1)

1981 (2)

1970 (1)

1968 (1)

1967 (1)

1964 (1)

1962 (2)

1947 (1)

J. Brossel, “Multiple-beam localized fringes: Part I.-Intensity distribution and localization,” Proc. Phys. Soc. 59(2), 224–234 (1947).
[Crossref]

Ai-Qun, L.

M. Malak, F. Marty, N. Pavy, Y. A. Peter, L. Ai-Qun, and T. Bourouina, “Cylindrical Surfaces Enable Wavelength-Selective Extinction and Sub-0.2 nm Linewidth in 250 μm-Gap Silicon Fabry-Perot Cavities,” J. Microelectromech. Syst. 21(1), 171–180 (2012).
[Crossref]

Altmann, J.

Anderer, B.

J. Mohr, B. Anderer, and W. Ehrfeld, “Fabrication of a planar grating spectrograph by deep-etch lithography with synchrotron radiation,” Sensor. Actuat. A-Phys. 27(1), 571–575 (1991).

Antila, J.

J. Antila, A. Miranto, J. Mäkynen, M. Laamanen, A. Rissanen, M. Blomberg, H. Saari, and J. Malinen, “MEMS and piezo actuator-based Fabry-Perot interferometer technologies and applications at VTT,” Proc. SPIE 7680, 76800U (2010).
[Crossref]

Arslanov, D. D.

D. D. Arslanov, M. P. P. Castro, N. A. Creemers, A. H. Neerincx, M. Spunei, J. Mandon, S. M. Cristescu, P. Merkus, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of hydrogen cyanide for biomedical applications,” J. Biomed. Opt. 18(10), 107002 (2013).
[Crossref] [PubMed]

Ayerden, N. P.

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. de Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

Aygun, U.

Baer, D. S.

Baillargeon, J. N.

Baker, M. L.

Bartek, M.

J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sensor. Actuat. A-Phys. 82(1–3), 191–197 (2000).

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “Bulk-micromachined tunable Fabry–Perot microinterferometer for the visible spectral range,” Sensor. Actuat. A-Phys. 76(1–3), 191–196 (1999).

Bauersfeld, M.

W. Konz, J. Hildenbrand, M. Bauersfeld, S. Hartwig, A. Lambrecht, V. Lehmann, and J. Wollenstein, “Micromachined IR-source with excellent blackbody like behaviour (Invited Paper),” Proc. SPIE 5836, 540–548 (2005).
[Crossref]

Baumgart, R.

Blomberg, M.

J. Antila, A. Miranto, J. Mäkynen, M. Laamanen, A. Rissanen, M. Blomberg, H. Saari, and J. Malinen, “MEMS and piezo actuator-based Fabry-Perot interferometer technologies and applications at VTT,” Proc. SPIE 7680, 76800U (2010).
[Crossref]

Boukari, H.

Bourouina, T.

M. Malak, F. Marty, N. Pavy, Y. A. Peter, L. Ai-Qun, and T. Bourouina, “Cylindrical Surfaces Enable Wavelength-Selective Extinction and Sub-0.2 nm Linewidth in 250 μm-Gap Silicon Fabry-Perot Cavities,” J. Microelectromech. Syst. 21(1), 171–180 (2012).
[Crossref]

Bozler, C.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Brossel, J.

J. Brossel, “Multiple-beam localized fringes: Part I.-Intensity distribution and localization,” Proc. Phys. Soc. 59(2), 224–234 (1947).
[Crossref]

Bulir, J.

Bünnagel, R.

Can, B.

Cané, C.

R. Rubio, J. Santander, J. Fonollosa, L. Fonseca, I. Gràcia, C. Cané, M. Moreno, and S. Marco, “Exploration of the metrological performance of a gas detector based on an array of unspecific infrared filters,” Sensor. Actuat. Biol. Chem. 116(1–2), 183–191 (2006).

Capasso, F.

Castro, M. P. P.

D. D. Arslanov, M. P. P. Castro, N. A. Creemers, A. H. Neerincx, M. Spunei, J. Mandon, S. M. Cristescu, P. Merkus, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of hydrogen cyanide for biomedical applications,” J. Biomed. Opt. 18(10), 107002 (2013).
[Crossref] [PubMed]

Changzheng, L.

S. Haisheng, L. Changzheng, C. Xuyuan, C. Ranbin, and Z. Qiang, “Silicon-Based Micro-Machined Infrared Emitters With a Micro-Bridge and a Self-Heating Membrane Structure,” IEEE Photonic. Tech. L. 25(11), 1014–1016 (2013).
[Crossref]

Chen, H.

Chen, L.

Chen, X.

Cho, A. Y.

Chou, S. I.

Clift, D. J.

J. H. Jerman, D. J. Clift, and S. R. Mallinson, “A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support,” Sensor. Actuat. A-Phys. 29(2), 151–158 (1991).

Correia, J. H.

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. de Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sensor. Actuat. A-Phys. 82(1–3), 191–197 (2000).

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “Bulk-micromachined tunable Fabry–Perot microinterferometer for the visible spectral range,” Sensor. Actuat. A-Phys. 76(1–3), 191–196 (1999).

Creemers, N. A.

D. D. Arslanov, M. P. P. Castro, N. A. Creemers, A. H. Neerincx, M. Spunei, J. Mandon, S. M. Cristescu, P. Merkus, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of hydrogen cyanide for biomedical applications,” J. Biomed. Opt. 18(10), 107002 (2013).
[Crossref] [PubMed]

Cristescu, S. M.

D. D. Arslanov, M. P. P. Castro, N. A. Creemers, A. H. Neerincx, M. Spunei, J. Mandon, S. M. Cristescu, P. Merkus, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of hydrogen cyanide for biomedical applications,” J. Biomed. Opt. 18(10), 107002 (2013).
[Crossref] [PubMed]

Crocombe, R. A.

R. A. Crocombe, “Miniature Optical Spectrometers: There’s Plenty of Room at the Bottom. Part I: Background and Mid-Infrared Spectrometers,” Spectroscopy (Springf.) 23(1), 38–56 (2008).

de Graaf, G.

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. de Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
[Crossref] [PubMed]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, and R. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[Crossref]

S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47(34), 6442–6447 (2008).
[Crossref] [PubMed]

J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sensor. Actuat. A-Phys. 82(1–3), 191–197 (2000).

Dell, J. M.

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely Tunable MEMS-Based Fabry-Perot Filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

Ding, R.

Djurišic, A. B.

Ebermann, M.

N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro-Nanolith. MEM 7(2), 021004 (2008).

Ebert, M.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

Ehrfeld, W.

J. Mohr, B. Anderer, and W. Ehrfeld, “Fabrication of a planar grating spectrograph by deep-etch lithography with synchrotron radiation,” Sensor. Actuat. A-Phys. 27(1), 571–575 (1991).

Elazar, J. M.

Emadi, A.

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. de Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
[Crossref] [PubMed]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, and R. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[Crossref]

S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47(34), 6442–6447 (2008).
[Crossref] [PubMed]

S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express 15(6), 3581–3588 (2007).
[Crossref] [PubMed]

Enoksson, P.

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. de Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

Faraone, L.

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely Tunable MEMS-Based Fabry-Perot Filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

Fijol, J.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Fike, E.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Flesch, G. J.

Fonollosa, J.

R. Rubio, J. Santander, J. Fonollosa, L. Fonseca, I. Gràcia, C. Cané, M. Moreno, and S. Marco, “Exploration of the metrological performance of a gas detector based on an array of unspecific infrared filters,” Sensor. Actuat. Biol. Chem. 116(1–2), 183–191 (2006).

Fonseca, L.

R. Rubio, J. Santander, J. Fonollosa, L. Fonseca, I. Gràcia, C. Cané, M. Moreno, and S. Marco, “Exploration of the metrological performance of a gas detector based on an array of unspecific infrared filters,” Sensor. Actuat. Biol. Chem. 116(1–2), 183–191 (2006).

Frish, M.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Fritze, M.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Gammon, R. W.

Gersen, S.

S. Gersen, M. van Essen, G. van Dijk, and H. Levinsky, “Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures,” Combust. Flame 161(10), 2729–2737 (2014).
[Crossref]

Ghaderi, M.

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. de Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

Gilchrist, J. R.

C. Massie, G. Stewart, G. McGregor, and J. R. Gilchrist, “Design of a portable optical sensor for methane gas detection,” Sensor. Actuat. Biol. Chem. 113(2), 830–836 (2006).

Gmachl, C.

Grabarnik, S.

Gràcia, I.

R. Rubio, J. Santander, J. Fonollosa, L. Fonseca, I. Gràcia, C. Cané, M. Moreno, and S. Marco, “Exploration of the metrological performance of a gas detector based on an array of unspecific infrared filters,” Sensor. Actuat. Biol. Chem. 116(1–2), 183–191 (2006).

Haisheng, S.

S. Haisheng, L. Changzheng, C. Xuyuan, C. Ranbin, and Z. Qiang, “Silicon-Based Micro-Machined Infrared Emitters With a Micro-Bridge and a Self-Heating Membrane Structure,” IEEE Photonic. Tech. L. 25(11), 1014–1016 (2013).
[Crossref]

Hanson, R. K.

Harren, F. J. M.

D. D. Arslanov, M. P. P. Castro, N. A. Creemers, A. H. Neerincx, M. Spunei, J. Mandon, S. M. Cristescu, P. Merkus, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of hydrogen cyanide for biomedical applications,” J. Biomed. Opt. 18(10), 107002 (2013).
[Crossref] [PubMed]

Hartwig, S.

W. Konz, J. Hildenbrand, M. Bauersfeld, S. Hartwig, A. Lambrecht, V. Lehmann, and J. Wollenstein, “Micromachined IR-source with excellent blackbody like behaviour (Invited Paper),” Proc. SPIE 5836, 540–548 (2005).
[Crossref]

He, L.

Hernandez, G.

Hildenbrand, J.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

W. Konz, J. Hildenbrand, M. Bauersfeld, S. Hartwig, A. Lambrecht, V. Lehmann, and J. Wollenstein, “Micromachined IR-source with excellent blackbody like behaviour (Invited Paper),” Proc. SPIE 5836, 540–548 (2005).
[Crossref]

Hiller, K.

N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro-Nanolith. MEM 7(2), 021004 (2008).

Hirabayashi, K.

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11(12), 2033–2043 (1993).
[Crossref]

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Holmstrom, S. T. S.

Honda, T.

Hu, W.

Hutchinson, A. L.

Jacobson, S.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Jakobsen, H.

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays: a review,” Proc. SPIE 6836, 68360D (2007).
[Crossref]

Jerman, J. H.

J. H. Jerman, D. J. Clift, and S. R. Mallinson, “A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support,” Sensor. Actuat. A-Phys. 29(2), 151–158 (1991).

Kajava, T. T.

Kastler, A.

Keast, C.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Keating, A. J.

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely Tunable MEMS-Based Fabry-Perot Filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

Keating, P.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Kessler, B.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Knecht, J.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Kong, S. H.

J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sensor. Actuat. A-Phys. 82(1–3), 191–197 (2000).

Konz, W.

W. Konz, J. Hildenbrand, M. Bauersfeld, S. Hartwig, A. Lambrecht, V. Lehmann, and J. Wollenstein, “Micromachined IR-source with excellent blackbody like behaviour (Invited Paper),” Proc. SPIE 5836, 540–548 (2005).
[Crossref]

Korvink, J.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

Krasilnikova Sytchkova, A.

Kurokawa, T.

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11(12), 2033–2043 (1993).
[Crossref]

Kurth, S.

N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro-Nanolith. MEM 7(2), 021004 (2008).

Kurzinger, A.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

Laamanen, M.

J. Antila, A. Miranto, J. Mäkynen, M. Laamanen, A. Rissanen, M. Blomberg, H. Saari, and J. Malinen, “MEMS and piezo actuator-based Fabry-Perot interferometer technologies and applications at VTT,” Proc. SPIE 7680, 76800U (2010).
[Crossref]

Lambrecht, A.

W. Konz, J. Hildenbrand, M. Bauersfeld, S. Hartwig, A. Lambrecht, V. Lehmann, and J. Wollenstein, “Micromachined IR-source with excellent blackbody like behaviour (Invited Paper),” Proc. SPIE 5836, 540–548 (2005).
[Crossref]

Lamprecht, F.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

Langenbeck, P.

Lauranto, H. M.

LeBlanc, J.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Lehmann, V.

W. Konz, J. Hildenbrand, M. Bauersfeld, S. Hartwig, A. Lambrecht, V. Lehmann, and J. Wollenstein, “Micromachined IR-source with excellent blackbody like behaviour (Invited Paper),” Proc. SPIE 5836, 540–548 (2005).
[Crossref]

Levinsky, H.

S. Gersen, M. van Essen, G. van Dijk, and H. Levinsky, “Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures,” Combust. Flame 161(10), 2729–2737 (2014).
[Crossref]

Liao, L.

Loktev, M.

Lu, W.

Majewski, M. L.

Mäkynen, J.

J. Antila, A. Miranto, J. Mäkynen, M. Laamanen, A. Rissanen, M. Blomberg, H. Saari, and J. Malinen, “MEMS and piezo actuator-based Fabry-Perot interferometer technologies and applications at VTT,” Proc. SPIE 7680, 76800U (2010).
[Crossref]

Malak, M.

M. Malak, F. Marty, N. Pavy, Y. A. Peter, L. Ai-Qun, and T. Bourouina, “Cylindrical Surfaces Enable Wavelength-Selective Extinction and Sub-0.2 nm Linewidth in 250 μm-Gap Silicon Fabry-Perot Cavities,” J. Microelectromech. Syst. 21(1), 171–180 (2012).
[Crossref]

Malinen, J.

J. Antila, A. Miranto, J. Mäkynen, M. Laamanen, A. Rissanen, M. Blomberg, H. Saari, and J. Malinen, “MEMS and piezo actuator-based Fabry-Perot interferometer technologies and applications at VTT,” Proc. SPIE 7680, 76800U (2010).
[Crossref]

Mallinson, S. R.

J. H. Jerman, D. J. Clift, and S. R. Mallinson, “A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support,” Sensor. Actuat. A-Phys. 29(2), 151–158 (1991).

Mandon, J.

D. D. Arslanov, M. P. P. Castro, N. A. Creemers, A. H. Neerincx, M. Spunei, J. Mandon, S. M. Cristescu, P. Merkus, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of hydrogen cyanide for biomedical applications,” J. Biomed. Opt. 18(10), 107002 (2013).
[Crossref] [PubMed]

Manolatou, C.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Marco, S.

R. Rubio, J. Santander, J. Fonollosa, L. Fonseca, I. Gràcia, C. Cané, M. Moreno, and S. Marco, “Exploration of the metrological performance of a gas detector based on an array of unspecific infrared filters,” Sensor. Actuat. Biol. Chem. 116(1–2), 183–191 (2006).

Marty, F.

M. Malak, F. Marty, N. Pavy, Y. A. Peter, L. Ai-Qun, and T. Bourouina, “Cylindrical Surfaces Enable Wavelength-Selective Extinction and Sub-0.2 nm Linewidth in 250 μm-Gap Silicon Fabry-Perot Cavities,” J. Microelectromech. Syst. 21(1), 171–180 (2012).
[Crossref]

Massie, C.

C. Massie, G. Stewart, G. McGregor, and J. R. Gilchrist, “Design of a portable optical sensor for methane gas detection,” Sensor. Actuat. Biol. Chem. 113(2), 830–836 (2006).

May, R. D.

McGregor, G.

C. Massie, G. Stewart, G. McGregor, and J. R. Gilchrist, “Design of a portable optical sensor for methane gas detection,” Sensor. Actuat. Biol. Chem. 113(2), 830–836 (2006).

McLeod, R. R.

Merkus, P.

D. D. Arslanov, M. P. P. Castro, N. A. Creemers, A. H. Neerincx, M. Spunei, J. Mandon, S. M. Cristescu, P. Merkus, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of hydrogen cyanide for biomedical applications,” J. Biomed. Opt. 18(10), 107002 (2013).
[Crossref] [PubMed]

Meyer, Y. H.

Milne, J. S.

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely Tunable MEMS-Based Fabry-Perot Filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

Miranto, A.

J. Antila, A. Miranto, J. Mäkynen, M. Laamanen, A. Rissanen, M. Blomberg, H. Saari, and J. Malinen, “MEMS and piezo actuator-based Fabry-Perot interferometer technologies and applications at VTT,” Proc. SPIE 7680, 76800U (2010).
[Crossref]

Mohr, J.

J. Mohr, B. Anderer, and W. Ehrfeld, “Fabrication of a planar grating spectrograph by deep-etch lithography with synchrotron radiation,” Sensor. Actuat. A-Phys. 27(1), 571–575 (1991).

Moreno, M.

R. Rubio, J. Santander, J. Fonollosa, L. Fonseca, I. Gràcia, C. Cané, M. Moreno, and S. Marco, “Exploration of the metrological performance of a gas detector based on an array of unspecific infrared filters,” Sensor. Actuat. Biol. Chem. 116(1–2), 183–191 (2006).

Nagali, V.

Naumann, F.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

Neerincx, A. H.

D. D. Arslanov, M. P. P. Castro, N. A. Creemers, A. H. Neerincx, M. Spunei, J. Mandon, S. M. Cristescu, P. Merkus, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of hydrogen cyanide for biomedical applications,” J. Biomed. Opt. 18(10), 107002 (2013).
[Crossref] [PubMed]

Neumann, N.

N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro-Nanolith. MEM 7(2), 021004 (2008).

Niklaus, F.

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays: a review,” Proc. SPIE 6836, 68360D (2007).
[Crossref]

Oehring, H. A.

Olcer, S.

Palik, E. D.

Patel, J. S.

Pavy, N.

M. Malak, F. Marty, N. Pavy, Y. A. Peter, L. Ai-Qun, and T. Bourouina, “Cylindrical Surfaces Enable Wavelength-Selective Extinction and Sub-0.2 nm Linewidth in 250 μm-Gap Silicon Fabry-Perot Cavities,” J. Microelectromech. Syst. 21(1), 171–180 (2012).
[Crossref]

Pelin Ayerden, N.

Peter, C.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

Peter, Y. A.

M. Malak, F. Marty, N. Pavy, Y. A. Peter, L. Ai-Qun, and T. Bourouina, “Cylindrical Surfaces Enable Wavelength-Selective Extinction and Sub-0.2 nm Linewidth in 250 μm-Gap Silicon Fabry-Perot Cavities,” J. Microelectromech. Syst. 21(1), 171–180 (2012).
[Crossref]

Pidgeon, C. R.

Piegari, A.

Qiang, Z.

S. Haisheng, L. Changzheng, C. Xuyuan, C. Ranbin, and Z. Qiang, “Silicon-Based Micro-Machined Infrared Emitters With a Micro-Bridge and a Self-Heating Membrane Structure,” IEEE Photonic. Tech. L. 25(11), 1014–1016 (2013).
[Crossref]

Rakic, A. D.

Ranbin, C.

S. Haisheng, L. Changzheng, C. Xuyuan, C. Ranbin, and Z. Qiang, “Silicon-Based Micro-Machined Infrared Emitters With a Micro-Bridge and a Self-Heating Membrane Structure,” IEEE Photonic. Tech. L. 25(11), 1014–1016 (2013).
[Crossref]

Rissanen, A.

J. Antila, A. Miranto, J. Mäkynen, M. Laamanen, A. Rissanen, M. Blomberg, H. Saari, and J. Malinen, “MEMS and piezo actuator-based Fabry-Perot interferometer technologies and applications at VTT,” Proc. SPIE 7680, 76800U (2010).
[Crossref]

Rob, M. A.

Rogers, J. R.

Rubio, R.

R. Rubio, J. Santander, J. Fonollosa, L. Fonseca, I. Gràcia, C. Cané, M. Moreno, and S. Marco, “Exploration of the metrological performance of a gas detector based on an array of unspecific infrared filters,” Sensor. Actuat. Biol. Chem. 116(1–2), 183–191 (2006).

Saari, H.

J. Antila, A. Miranto, J. Mäkynen, M. Laamanen, A. Rissanen, M. Blomberg, H. Saari, and J. Malinen, “MEMS and piezo actuator-based Fabry-Perot interferometer technologies and applications at VTT,” Proc. SPIE 7680, 76800U (2010).
[Crossref]

Salomaa, R. R. E.

Santander, J.

R. Rubio, J. Santander, J. Fonollosa, L. Fonseca, I. Gràcia, C. Cané, M. Moreno, and S. Marco, “Exploration of the metrological performance of a gas detector based on an array of unspecific infrared filters,” Sensor. Actuat. Biol. Chem. 116(1–2), 183–191 (2006).

Santbergen, R.

Scott, D. C.

Segall, J.

Sivco, D. L.

Smets, A. H. M.

Smith, S. D.

Sokolova, E.

Spunei, M.

D. D. Arslanov, M. P. P. Castro, N. A. Creemers, A. H. Neerincx, M. Spunei, J. Mandon, S. M. Cristescu, P. Merkus, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of hydrogen cyanide for biomedical applications,” J. Biomed. Opt. 18(10), 107002 (2013).
[Crossref] [PubMed]

Stehle, J.-L.

Steiner, K.

Stewart, G.

C. Massie, G. Stewart, G. McGregor, and J. R. Gilchrist, “Design of a portable optical sensor for methane gas detection,” Sensor. Actuat. Biol. Chem. 113(2), 830–836 (2006).

Swanson, J. E.

Swinehart, D. F.

D. F. Swinehart, “The Beer-Lambert Law,” J. Chem. Educ. 39(7), 333 (1962).
[Crossref]

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Tsuda, H.

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11(12), 2033–2043 (1993).
[Crossref]

Urey, H.

van Dijk, G.

S. Gersen, M. van Essen, G. van Dijk, and H. Levinsky, “Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures,” Combust. Flame 161(10), 2729–2737 (2014).
[Crossref]

van Essen, M.

S. Gersen, M. van Essen, G. van Dijk, and H. Levinsky, “Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures,” Combust. Flame 161(10), 2729–2737 (2014).
[Crossref]

Vdovin, G.

Vieider, C.

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays: a review,” Proc. SPIE 6836, 68360D (2007).
[Crossref]

Webster, C. R.

Weitkamp, C.

Wolffenbuttel, R.

Wolffenbuttel, R. F.

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. de Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47(34), 6442–6447 (2008).
[Crossref] [PubMed]

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sensor. Actuat. A-Phys. 82(1–3), 191–197 (2000).

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “Bulk-micromachined tunable Fabry–Perot microinterferometer for the visible spectral range,” Sensor. Actuat. A-Phys. 76(1–3), 191–196 (1999).

Wollenstein, J.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

W. Konz, J. Hildenbrand, M. Bauersfeld, S. Hartwig, A. Lambrecht, V. Lehmann, and J. Wollenstein, “Micromachined IR-source with excellent blackbody like behaviour (Invited Paper),” Proc. SPIE 5836, 540–548 (2005).
[Crossref]

Woodward, W. S.

Wu, H.

Xuyuan, C.

S. Haisheng, L. Changzheng, C. Xuyuan, C. Ranbin, and Z. Qiang, “Silicon-Based Micro-Machined Infrared Emitters With a Micro-Bridge and a Self-Heating Membrane Structure,” IEEE Photonic. Tech. L. 25(11), 1014–1016 (2013).
[Crossref]

Ye, Z.

Yen, V. L.

Zeman, M.

Appl. Opt. (13)

S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47(34), 6442–6447 (2008).
[Crossref] [PubMed]

N. Pelin Ayerden, U. Aygun, S. T. S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53(31), 7267–7272 (2014).
[Crossref] [PubMed]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, and J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35(21), 4026–4032 (1996).
[Crossref] [PubMed]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40(3), 321–326 (2001).
[Crossref] [PubMed]

A. Kastler, “Atomes à I’Intérieur d’un Interféromètre Perot-Fabry,” Appl. Opt. 1(1), 17–24 (1962).
[Crossref]

G. Hernandez, “Fabry-Perot with an absorbing etalon cavity,” Appl. Opt. 24(18), 3062–3067 (1985).
[Crossref] [PubMed]

E. D. Palik, H. Boukari, and R. W. Gammon, “Experimental study of the effect of surface defects on the finesse and contrast of a Fabry-Perot interferometer,” Appl. Opt. 35(1), 38–50 (1996).
[Crossref] [PubMed]

A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[Crossref] [PubMed]

R. Bünnagel, H. A. Oehring, and K. Steiner, “Fizeau Interferometer for Measuring the Flatness of Optical Surfaces,” Appl. Opt. 7(2), 331–335 (1968).
[Crossref] [PubMed]

P. Langenbeck, “Fizeau interferometer-fringe sharpening,” Appl. Opt. 9(9), 2053–2058 (1970).
[Crossref] [PubMed]

M. L. Baker and V. L. Yen, “Effects of the Variation of Angle of Incidence and Temperature on Infrared Filter Characteristics,” Appl. Opt. 6(8), 1343–1351 (1967).
[Crossref] [PubMed]

J. Altmann, R. Baumgart, and C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20(6), 995–999 (1981).
[Crossref] [PubMed]

A. Piegari, J. Bulir, and A. Krasilnikova Sytchkova, “Variable narrow-band transmission filters for spectrometry from space. 2. Fabrication process,” Appl. Opt. 47(13), C151–C156 (2008).
[Crossref] [PubMed]

Combust. Flame (1)

S. Gersen, M. van Essen, G. van Dijk, and H. Levinsky, “Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures,” Combust. Flame 161(10), 2729–2737 (2014).
[Crossref]

IEEE Photonic. Tech. L. (1)

S. Haisheng, L. Changzheng, C. Xuyuan, C. Ranbin, and Z. Qiang, “Silicon-Based Micro-Machined Infrared Emitters With a Micro-Bridge and a Self-Heating Membrane Structure,” IEEE Photonic. Tech. L. 25(11), 1014–1016 (2013).
[Crossref]

IEEE Sens. J. (1)

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10(2), 353–362 (2010).
[Crossref]

J. Biomed. Opt. (1)

D. D. Arslanov, M. P. P. Castro, N. A. Creemers, A. H. Neerincx, M. Spunei, J. Mandon, S. M. Cristescu, P. Merkus, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of hydrogen cyanide for biomedical applications,” J. Biomed. Opt. 18(10), 107002 (2013).
[Crossref] [PubMed]

J. Chem. Educ. (1)

D. F. Swinehart, “The Beer-Lambert Law,” J. Chem. Educ. 39(7), 333 (1962).
[Crossref]

J. Lightwave Technol. (1)

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11(12), 2033–2043 (1993).
[Crossref]

J. Micro-Nanolith. MEM (1)

N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro-Nanolith. MEM 7(2), 021004 (2008).

J. Microelectromech. Syst. (2)

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely Tunable MEMS-Based Fabry-Perot Filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

M. Malak, F. Marty, N. Pavy, Y. A. Peter, L. Ai-Qun, and T. Bourouina, “Cylindrical Surfaces Enable Wavelength-Selective Extinction and Sub-0.2 nm Linewidth in 250 μm-Gap Silicon Fabry-Perot Cavities,” J. Microelectromech. Syst. 21(1), 171–180 (2012).
[Crossref]

J. Micromech. Microeng. (3)

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, and R. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[Crossref]

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. de Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Proc. Phys. Soc. (1)

J. Brossel, “Multiple-beam localized fringes: Part I.-Intensity distribution and localization,” Proc. Phys. Soc. 59(2), 224–234 (1947).
[Crossref]

Proc. SPIE (3)

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays: a review,” Proc. SPIE 6836, 68360D (2007).
[Crossref]

W. Konz, J. Hildenbrand, M. Bauersfeld, S. Hartwig, A. Lambrecht, V. Lehmann, and J. Wollenstein, “Micromachined IR-source with excellent blackbody like behaviour (Invited Paper),” Proc. SPIE 5836, 540–548 (2005).
[Crossref]

J. Antila, A. Miranto, J. Mäkynen, M. Laamanen, A. Rissanen, M. Blomberg, H. Saari, and J. Malinen, “MEMS and piezo actuator-based Fabry-Perot interferometer technologies and applications at VTT,” Proc. SPIE 7680, 76800U (2010).
[Crossref]

Sensor. Actuat. A-Phys. (4)

J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sensor. Actuat. A-Phys. 82(1–3), 191–197 (2000).

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “Bulk-micromachined tunable Fabry–Perot microinterferometer for the visible spectral range,” Sensor. Actuat. A-Phys. 76(1–3), 191–196 (1999).

J. Mohr, B. Anderer, and W. Ehrfeld, “Fabrication of a planar grating spectrograph by deep-etch lithography with synchrotron radiation,” Sensor. Actuat. A-Phys. 27(1), 571–575 (1991).

J. H. Jerman, D. J. Clift, and S. R. Mallinson, “A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support,” Sensor. Actuat. A-Phys. 29(2), 151–158 (1991).

Sensor. Actuat. Biol. Chem. (2)

R. Rubio, J. Santander, J. Fonollosa, L. Fonseca, I. Gràcia, C. Cané, M. Moreno, and S. Marco, “Exploration of the metrological performance of a gas detector based on an array of unspecific infrared filters,” Sensor. Actuat. Biol. Chem. 116(1–2), 183–191 (2006).

C. Massie, G. Stewart, G. McGregor, and J. R. Gilchrist, “Design of a portable optical sensor for methane gas detection,” Sensor. Actuat. Biol. Chem. 113(2), 830–836 (2006).

Spectroscopy (Springf.) (1)

R. A. Crocombe, “Miniature Optical Spectrometers: There’s Plenty of Room at the Bottom. Part I: Background and Mid-Infrared Spectrometers,” Spectroscopy (Springf.) 23(1), 38–56 (2008).

Other (8)

S. Thiele and R. Salzer, “Optical Spectroscopy,” in Handbook of Spectroscopy (Wiley, 2003), pp. 441–468.

R. Wolffenbuttel, Silicon sensors and Circuits: On-chip Compatibility (Springer Science & Business Media, 1996).

S. E. Stein, “Infrared Spectra,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P. J. Linstrom and W. G. Mallard (National Institute of Standards and Technology, 2015).

D. A. Jackson, “The Spherical Fabry-Perot Interferometer as an Instrument of High Resolving Power for Use with External or with Internal Atomic Beams,” Proc. R. Soc. Lon. Ser-A 263(1314), 289–308 (1961).
[Crossref]

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7 ed. (Cambridge University, 1999).

A. E. Siegman, Lasers (University Science Books, 1986).

Z. Knittl, Optics of Thin Films: An Optical Multilayer Theory (Wiley, 1976).

H. A. Macleod, Thin-film Optical Filters (CRC Press, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 Absorption coefficients of hydrocarbons calculated using typical natural gas concentrations and the NIST database at room temperature for 1 bar total pressure.
Fig. 2
Fig. 2 The components of an optical absorption based spectrometer with (a) a standard LVOF combined with a separate gas cell which requires an optical path length of at least 5 mm, and (b) a miniaturized gas cell integrated with the resonator cavity of an LVOF.
Fig. 3
Fig. 3 Fabry-Perot interferometer.
Fig. 4
Fig. 4 Multiple reflections in a Fizeau interferometer at (a) positive and (b) negative incidence angle. Optical path difference after multiple reflections in a Fizeau interferometer at (c) positive and (d) negative incidence angle.
Fig. 5
Fig. 5 Comparison of FP and Fizeau interferometers for various reflectivity values at 3390 nm: (a) 3rd order FP interferometer, (b) 3rd order Fizeau interferometer, (c) 15th order FP interferometer, and (d) 15th order Fizeau interferometer.
Fig. 6
Fig. 6 The trajectory of a beam in a wedge at different values of the angle of incidence. The light beam gets reflected 4 times off the flat mirror in each case.
Fig. 7
Fig. 7 The transmission curves for a Fizeau interferometer at different values of the angle of incidence.
Fig. 8
Fig. 8 The effect of filter-detector separation on the spectral response of a Fizeau interferometer.
Fig. 9
Fig. 9 The effect of cone angle on the spectral response of (a) FP and (b) Fizeau interferometer both operating at the 15th order with a reflectivity of R = 0.985.
Fig. 10
Fig. 10 A schematic illustration showing the cross-section and layer stack of the linear variable optical filter.
Fig. 11
Fig. 11 The reflectivity and transmissivity of FP (a, b) and Fizeau (c, d) filters in the 3.2-3.4 µm wavelength range.
Fig. 12
Fig. 12 Schematic illustration of the device assembly.
Fig. 13
Fig. 13 (a) Fabrication method for creating a tapered optical layer. (b) Microscope image of the photoresist after lithography and development.
Fig. 14
Fig. 14 Measured transmission curves at (a) normal incidence, (b) θ' > θ'opt, (c) θ' = θ'opt, and (d) θ' < θ'opt.
Fig. 15
Fig. 15 Simulated transmission curves at (a) normal incidence, (b) θ' > θ'opt, (c) θ' = θ'opt, and (d) θ' < θ'opt.
Fig. 16
Fig. 16 (a) The drawing of the optical characterization setup. (b) The actual optical characterization setup for gas measurements. The optical filter and slit are shown in detail in the inset.
Fig. 17
Fig. 17 The measured transmission response of the LVOF at 3.39 µm with methane and nitrogen in the cavity.
Fig. 18
Fig. 18 The measured transmission response of the LVOF at (a) 3.22 µm and (b) 3.27 µm wavelength with methane and nitrogen in the cavity. A mid-IR OPO laser is used as the light source.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ S p =( n ( AB+BC )nAN )( p1 ).
δ p = 2π λ 0 Δ S p = 4π λ 0 n hcos θ ( p1 )
Δ S p =n( P N p P N 1 )
δ p = 2π λ 0 Δ S p = 2π λ 0 ( x[ sin( θ +2( p1 )α )sin θ ]+z[ cos( θ +2( p1 )α )cos θ ] )
I (t) = ( A (i) ) 2 T 2 | p=1 R (p1) e i δ p | 2
FS R m = 2h m 2h m+1 = 2h m( m+1 )
FS R m = 2h m( m+1 ) = λ min m m( m+1 ) = 3200nm ( m+1 ) 200nm,

Metrics