Abstract

We demonstrate a polarization-entangled photon-pair source obtained via a type-II non-collinear quasi-phase-matched spontaneous parametric down-conversion process with a 10-mm periodically poled KTiOPO4 crystal, which is as stable and wavelength-tunable as the well-known Sagnac configuration scheme. A brightness of 4.2 kHz/mW is detected and a concurrence of 0.975 is estimated using quantum state tomography. Without loss of entanglement and brightness, the photon-pair wavelengths are tunable through control of the crystal temperature. This improvement is achieved using the non-collinear configuration and a stable interferometric distinguishability compensator.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient heralding of polarization-entangled photons from type-0 and type-II spontaneous parametric downconversion in periodically poled KTiOPO4

Fabian Steinlechner, Marta Gilaberte, Marc Jofre, Thomas Scheidl, Juan P. Torres, Valerio Pruneri, and Rupert Ursin
J. Opt. Soc. Am. B 31(9) 2068-2076 (2014)

Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength

Rui-Bo Jin, Ryosuke Shimizu, Kentaro Wakui, Mikio Fujiwara, Taro Yamashita, Shigehito Miki, Hirotaka Terai, Zhen Wang, and Masahide Sasaki
Opt. Express 22(10) 11498-11507 (2014)

Bright source of polarization-entangled photons using a PPKTP pumped by a broadband multi-mode diode laser

Youn-Chang Jeong, Kang-Hee Hong, and Yoon-Ho Kim
Opt. Express 24(2) 1165-1174 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
    [Crossref]
  2. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
    [Crossref] [PubMed]
  3. A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lörunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
    [Crossref] [PubMed]
  4. S. Gasparoni, J.-W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
    [Crossref] [PubMed]
  5. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [Crossref] [PubMed]
  6. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
    [Crossref]
  7. G. Giorgi, G. D. Nepi, P. Mataloni, and F. D. Martini, “A high brightness parametric source of entangled photon states,” Laser Phys. 13, 350–354 (2003).
  8. Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal bell-state synthesizer,” Phys. Rev. A 67, 010301 (2003).
    [Crossref]
  9. S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
    [Crossref]
  10. K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).
    [Crossref]
  11. K. Sanaka, K. Kawahara, and T. Kuga, “New high-efficiency source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
    [Crossref] [PubMed]
  12. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
    [Crossref]
  13. M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Express 12, 3573–3580 (2004).
    [Crossref] [PubMed]
  14. H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15, 7853–7862 (2007).
    [Crossref] [PubMed]
  15. F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express 20, 9640–9649 (2012).
    [Crossref] [PubMed]
  16. M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, “Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones,” Opt. Express 13, 127–135 (2005).
    [Crossref] [PubMed]
  17. F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71, 033805 (2005).
    [Crossref]
  18. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
    [Crossref]
  19. F. Wong, J. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys. 16, 1517–1524 (2006).
    [Crossref]
  20. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
    [Crossref] [PubMed]
  21. T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
    [Crossref]
  22. F. Steinlechner, S. Ramelow, M. Jofre, M. Gilaberte, T. Jennewein, J. P. Torres, M. W. Mitchell, and V. Pruneri, “Phase-stable source of polarization-entangled photons in a linear double-pass configuration,” Opt. Express 21, 11943–11951 (2013).
    [Crossref] [PubMed]
  23. Y.-C. Jeong and Y.-H. Kim, “Ultra-bright bell state synthesizer,” in Optical Society of Korea Winter Annual Meeting (OSA, 2014), pp. 19–21.
  24. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [Crossref]
  25. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
    [Crossref]
  26. S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete tunable color entanglement,” Phys. Rev. Lett. 103, 253601 (2009).
    [Crossref]
  27. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
    [Crossref]
  28. T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
    [Crossref]
  29. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
    [Crossref] [PubMed]
  30. R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
    [Crossref] [PubMed]
  31. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [Crossref]
  32. M. Fejer, G. Magel, D. H. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [Crossref]
  33. H. Lee, H. Kim, M. Cha, and H. Moon, “Simultaneous type-0 and type-II spontaneous parametric down-conversions in a single periodically poled KTiOPO4 crystal,” Appl. Phys. B 108, 585–589 (2012).
    [Crossref]
  34. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, “Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4,” Appl. Opt. 26, 2390–2394 (1987).
    [Crossref] [PubMed]
  35. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
    [Crossref]
  36. W. Wiechmann, T. Fukui, H. Masuda, and S. Kubota, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett. 18, 1208–1210 (1993).
    [Crossref] [PubMed]
  37. K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41, 5040–5044 (2002).
    [Crossref] [PubMed]
  38. S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42, 6661–6665 (2003).
    [Crossref] [PubMed]
  39. H. Ito, H. Naito, and H. Inaba, “Generalized study on angular dependence of induced second-order nonlinear optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992–3998 (1975).
    [Crossref]
  40. The authors of [16] have claimed that the slightly elliptic ring image obtained under the noncollinear degenerate condition stems from the biaxiality of the KTP crystal. However, this is ambiguous, as elliptic ring images can be generated from uniaxial crystals (nx = ny ≠ nz). In addition, KTP is approximately uniaxial (nx ≃ ny < nz).
  41. Y.-C. Jeong, K.-H. Hong, and Y.-H. Kim, “Bright source of polarization-entangled photons using a PPKTP pumped by a broadband multi-mode diode laser,” Opt. Express 24, 1165–1174 (2016).
    [Crossref]

2016 (1)

2014 (1)

2013 (2)

T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]

F. Steinlechner, S. Ramelow, M. Jofre, M. Gilaberte, T. Jennewein, J. P. Torres, M. W. Mitchell, and V. Pruneri, “Phase-stable source of polarization-entangled photons in a linear double-pass configuration,” Opt. Express 21, 11943–11951 (2013).
[Crossref] [PubMed]

2012 (2)

2009 (1)

S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete tunable color entanglement,” Phys. Rev. Lett. 103, 253601 (2009).
[Crossref]

2008 (1)

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

F. Wong, J. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys. 16, 1517–1524 (2006).
[Crossref]

2005 (2)

M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, “Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones,” Opt. Express 13, 127–135 (2005).
[Crossref] [PubMed]

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71, 033805 (2005).
[Crossref]

2004 (4)

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[Crossref]

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Express 12, 3573–3580 (2004).
[Crossref] [PubMed]

A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lörunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[Crossref] [PubMed]

S. Gasparoni, J.-W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

2003 (3)

G. Giorgi, G. D. Nepi, P. Mataloni, and F. D. Martini, “A high brightness parametric source of entangled photon states,” Laser Phys. 13, 350–354 (2003).

Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal bell-state synthesizer,” Phys. Rev. A 67, 010301 (2003).
[Crossref]

S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42, 6661–6665 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (4)

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).
[Crossref]

K. Sanaka, K. Kawahara, and T. Kuga, “New high-efficiency source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
[Crossref] [PubMed]

1999 (1)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

1998 (1)

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[Crossref]

1997 (3)

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

1996 (1)

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

1993 (1)

1992 (1)

M. Fejer, G. Magel, D. H. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

1989 (1)

1987 (1)

1975 (1)

H. Ito, H. Naito, and H. Inaba, “Generalized study on angular dependence of induced second-order nonlinear optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992–3998 (1975).
[Crossref]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Albota, M. A.

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71, 033805 (2005).
[Crossref]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Arie, A.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Baldi, P.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Banaszek, K.

Bierlein, J. D.

Blauensteiner, B.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Böhm, H.

Bouwmeester, D.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Bussières, F.

T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]

Byer, R.

M. Fejer, G. Magel, D. H. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Byer, R. L.

Canalias, C.

Cha, M.

H. Lee, H. Kim, M. Cha, and H. Moon, “Simultaneous type-0 and type-II spontaneous parametric down-conversions in a single periodically poled KTiOPO4 crystal,” Appl. Phys. B 108, 585–589 (2012).
[Crossref]

Chekhova, M. V.

Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal bell-state synthesizer,” Phys. Rev. A 67, 010301 (2003).
[Crossref]

De Micheli, M.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

de Riedmatten, H.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Eckardt, R. C.

Eibl, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Emanueli, S.

Fan, T. Y.

Fan, Y. X.

Fedrizzi, A.

Feigelson, R. S.

Fejer, M.

M. Fejer, G. Magel, D. H. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Fiorentino, M.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, “Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones,” Opt. Express 13, 127–135 (2005).
[Crossref] [PubMed]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[Crossref]

Fragemann, A.

Fujiwara, M.

Fukui, T.

Gasparoni, S.

S. Gasparoni, J.-W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

Gilaberte, M.

Giorgi, G.

G. Giorgi, G. D. Nepi, P. Mataloni, and F. D. Martini, “A high brightness parametric source of entangled photon states,” Laser Phys. 13, 350–354 (2003).

Gisin, N.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Grice, W. P.

Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal bell-state synthesizer,” Phys. Rev. A 67, 010301 (2003).
[Crossref]

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

Herbst, T.

Hong, K.-H.

Hu, B. Q.

Huang, C. E.

Hübel, H.

Inaba, H.

H. Ito, H. Naito, and H. Inaba, “Generalized study on angular dependence of induced second-order nonlinear optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992–3998 (1975).
[Crossref]

Ito, H.

H. Ito, H. Naito, and H. Inaba, “Generalized study on angular dependence of induced second-order nonlinear optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992–3998 (1975).
[Crossref]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Jennewein, T.

Jeong, Y.-C.

Y.-C. Jeong, K.-H. Hong, and Y.-H. Kim, “Bright source of polarization-entangled photons using a PPKTP pumped by a broadband multi-mode diode laser,” Opt. Express 24, 1165–1174 (2016).
[Crossref]

Y.-C. Jeong and Y.-H. Kim, “Ultra-bright bell state synthesizer,” in Optical Society of Korea Winter Annual Meeting (OSA, 2014), pp. 19–21.

Jin, R.-B.

Jofre, M.

Jundt, D. H.

M. Fejer, G. Magel, D. H. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Karlsson, A.

Kato, K.

Kawahara, K.

K. Sanaka, K. Kawahara, and T. Kuga, “New high-efficiency source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
[Crossref] [PubMed]

Keller, T. E.

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

Kim, H.

H. Lee, H. Kim, M. Cha, and H. Moon, “Simultaneous type-0 and type-II spontaneous parametric down-conversions in a single periodically poled KTiOPO4 crystal,” Appl. Phys. B 108, 585–589 (2012).
[Crossref]

Kim, T.

F. Wong, J. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys. 16, 1517–1524 (2006).
[Crossref]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

Kim, Y.-H.

Y.-C. Jeong, K.-H. Hong, and Y.-H. Kim, “Bright source of polarization-entangled photons using a PPKTP pumped by a broadband multi-mode diode laser,” Opt. Express 24, 1165–1174 (2016).
[Crossref]

Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal bell-state synthesizer,” Phys. Rev. A 67, 010301 (2003).
[Crossref]

Y.-C. Jeong and Y.-H. Kim, “Ultra-bright bell state synthesizer,” in Optical Society of Korea Winter Annual Meeting (OSA, 2014), pp. 19–21.

König, F.

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71, 033805 (2005).
[Crossref]

Kubota, S.

Kuga, T.

K. Sanaka, K. Kawahara, and T. Kuga, “New high-efficiency source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
[Crossref] [PubMed]

Kuklewicz, C. E.

M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, “Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones,” Opt. Express 13, 127–135 (2005).
[Crossref] [PubMed]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[Crossref]

Kulik, S. P.

Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal bell-state synthesizer,” Phys. Rev. A 67, 010301 (2003).
[Crossref]

Kurtsiefer, C.

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Langford, N. K.

S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete tunable color entanglement,” Phys. Rev. Lett. 103, 253601 (2009).
[Crossref]

Laurell, F.

Lederer, T.

Lee, H.

H. Lee, H. Kim, M. Cha, and H. Moon, “Simultaneous type-0 and type-II spontaneous parametric down-conversions in a single periodically poled KTiOPO4 crystal,” Appl. Phys. B 108, 585–589 (2012).
[Crossref]

Ljunggren, D.

Lorünser, T.

Lörunser, T.

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Magel, G.

M. Fejer, G. Magel, D. H. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Marsden, P.

Martini, F. D.

G. Giorgi, G. D. Nepi, P. Mataloni, and F. D. Martini, “A high brightness parametric source of entangled photon states,” Laser Phys. 13, 350–354 (2003).

Mason, E. J.

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71, 033805 (2005).
[Crossref]

Masuda, H.

Mataloni, P.

G. Giorgi, G. D. Nepi, P. Mataloni, and F. D. Martini, “A high brightness parametric source of entangled photon states,” Laser Phys. 13, 350–354 (2003).

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Maurhardt, O.

Messin, G.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[Crossref]

Miki, S.

Mitchell, M. W.

Moon, H.

H. Lee, H. Kim, M. Cha, and H. Moon, “Simultaneous type-0 and type-II spontaneous parametric down-conversions in a single periodically poled KTiOPO4 crystal,” Appl. Phys. B 108, 585–589 (2012).
[Crossref]

Mosley, P. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Naito, H.

H. Ito, H. Naito, and H. Inaba, “Generalized study on angular dependence of induced second-order nonlinear optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992–3998 (1975).
[Crossref]

Nepi, G. D.

G. Giorgi, G. D. Nepi, P. Mataloni, and F. D. Martini, “A high brightness parametric source of entangled photon states,” Laser Phys. 13, 350–354 (2003).

Ostrowsky, D.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Pan, J.-W.

S. Gasparoni, J.-W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Peev, M.

Pelton, M.

Perez, D.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Poppe, A.

Pruneri, V.

Ramelow, S.

Rarity, J.

Ratschbacher, L.

S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete tunable color entanglement,” Phys. Rev. Lett. 103, 253601 (2009).
[Crossref]

Rubin, M. H.

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

Rudolph, T.

S. Gasparoni, J.-W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

Sanaka, K.

K. Sanaka, K. Kawahara, and T. Kuga, “New high-efficiency source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
[Crossref] [PubMed]

Sasaki, M.

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Shapiro, J.

F. Wong, J. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys. 16, 1517–1524 (2006).
[Crossref]

Shapiro, J. H.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[Crossref]

Shih, Y.

Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal bell-state synthesizer,” Phys. Rev. A 67, 010301 (2003).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Shimizu, R.

Silberhorn, C.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Slater, J. A.

T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]

Smith, B. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Steinlechner, F.

Stuart, T. E.

T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]

Suda, M.

Takaoka, E.

Tanzilli, S.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Tengner, M.

Terai, H.

Tittel, H.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Tittel, W.

T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]

Torres, J. P.

Trojek, P.

U’Ren, A. B.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).
[Crossref]

Ursin, R.

Vanherzeele, H.

Vanner, M. R.

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Wakui, K.

Walmsley, I. A.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).
[Crossref]

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

Walther, P.

S. Gasparoni, J.-W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

Wang, Z.

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Weier, H.

Weinfurter, H.

F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express 20, 9640–9649 (2012).
[Crossref] [PubMed]

A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lörunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[Crossref] [PubMed]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Wiechmann, W.

Wong, F.

F. Wong, J. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys. 16, 1517–1524 (2006).
[Crossref]

Wong, F. N. C.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71, 033805 (2005).
[Crossref]

M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, “Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones,” Opt. Express 13, 127–135 (2005).
[Crossref] [PubMed]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[Crossref]

Wootters, W. K.

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[Crossref]

Yamashita, T.

Zbinden, H.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Zeilinger, A.

S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete tunable color entanglement,” Phys. Rev. Lett. 103, 253601 (2009).
[Crossref]

H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15, 7853–7862 (2007).
[Crossref] [PubMed]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref] [PubMed]

A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lörunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[Crossref] [PubMed]

S. Gasparoni, J.-W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

H. Lee, H. Kim, M. Cha, and H. Moon, “Simultaneous type-0 and type-II spontaneous parametric down-conversions in a single periodically poled KTiOPO4 crystal,” Appl. Phys. B 108, 585–589 (2012).
[Crossref]

Electron. Lett. (1)

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Fejer, G. Magel, D. H. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

J. Appl. Phys. (1)

H. Ito, H. Naito, and H. Inaba, “Generalized study on angular dependence of induced second-order nonlinear optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992–3998 (1975).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (2)

G. Giorgi, G. D. Nepi, P. Mataloni, and F. D. Martini, “A high brightness parametric source of entangled photon states,” Laser Phys. 13, 350–354 (2003).

F. Wong, J. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys. 16, 1517–1524 (2006).
[Crossref]

Nature (1)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Opt. Express (9)

A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lörunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[Crossref] [PubMed]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref] [PubMed]

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Express 12, 3573–3580 (2004).
[Crossref] [PubMed]

H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15, 7853–7862 (2007).
[Crossref] [PubMed]

F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express 20, 9640–9649 (2012).
[Crossref] [PubMed]

M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, “Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones,” Opt. Express 13, 127–135 (2005).
[Crossref] [PubMed]

F. Steinlechner, S. Ramelow, M. Jofre, M. Gilaberte, T. Jennewein, J. P. Torres, M. W. Mitchell, and V. Pruneri, “Phase-stable source of polarization-entangled photons in a linear double-pass configuration,” Opt. Express 21, 11943–11951 (2013).
[Crossref] [PubMed]

R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
[Crossref] [PubMed]

Y.-C. Jeong, K.-H. Hong, and Y.-H. Kim, “Bright source of polarization-entangled photons using a PPKTP pumped by a broadband multi-mode diode laser,” Opt. Express 24, 1165–1174 (2016).
[Crossref]

Opt. Lett. (2)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Phys. Rev. A (9)

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal bell-state synthesizer,” Phys. Rev. A 67, 010301 (2003).
[Crossref]

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71, 033805 (2005).
[Crossref]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[Crossref]

Phys. Rev. Lett. (7)

K. Sanaka, K. Kawahara, and T. Kuga, “New high-efficiency source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
[Crossref] [PubMed]

S. Gasparoni, J.-W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[Crossref]

S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete tunable color entanglement,” Phys. Rev. Lett. 103, 253601 (2009).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Other (2)

Y.-C. Jeong and Y.-H. Kim, “Ultra-bright bell state synthesizer,” in Optical Society of Korea Winter Annual Meeting (OSA, 2014), pp. 19–21.

The authors of [16] have claimed that the slightly elliptic ring image obtained under the noncollinear degenerate condition stems from the biaxiality of the KTP crystal. However, this is ambiguous, as elliptic ring images can be generated from uniaxial crystals (nx = ny ≠ nz). In addition, KTP is approximately uniaxial (nx ≃ ny < nz).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of experimental setup. The pump is a single-longitudinal-mode cw laser with a center wavelength λp of ∼406.2 nm and a full-width at half-maximum (FWHM) bandwidth of Δν = 0.2(1) GHz. SMF: Single-mode fiber for 405 or 780 nm; QWP (HWP): Zero-order quarter (half)-wave plate for 405 or 808 nm; PBS: Broadband polarizing beam-splitter; Lens: Anti-reflection (AR)-coated plano-convex lens (focal length f = 200 mm, coating designation: A or B); PPKTP: periodically poled KTiOPO4 (Λ = 10 μm; length L = 10 mm); S: temporary image screen to measure photon rings; ODL: Optical delay line consisting of right-angled prism and x-axis translation stage; ϕ: Phase shifter consisting of sequential wave plates (QWP-HWP-QWP); LP: Broadband linear polarizer; TF: Temporally used wavelength tunable filter (FWHM of Δλ = 1.82 nm); SPCM: Single-photon counting module; FPGA: Single and coincidence counting unit.

Fig. 2
Fig. 2

Numerically calculated emission angles θ for photons emitted from PPKTP crystal exit plane for: (a) Degenerate case on xy- and xz-planes as a function of T; (b) degenerate case for several fixed T values on yz-plane; and (c) fixed T = 95°C on xy-plane as a function of photon wavelength.

Fig. 3
Fig. 3

T dependence of (a) λH and λV and (b) FWHM Δλ of H and V photons of pair generated under non-collinear condition, with spatial modes determined by degenerate condition at T = 95°C.

Fig. 4
Fig. 4

Measured photon ring images for (a) H and (b) V polarized photons with IF (IF center wavelength λIF ≃ 812 nm, FWHM = 3 nm).

Fig. 5
Fig. 5

Measured cross-section (1D) images of photon rings along y-axis for various T (48.6 – 98.6 °C) with IF (FWHM = 3 nm).

Fig. 6
Fig. 6

(a) Measured spectral distributions for photons in modes A and B obtained via TF at T = 42°C. (b) Center wavelength T dependence for photons in modes A and B. FWHM Δλ are represented by error bars. o: measured or estimated data. −: Gaussian or linear fitted lines.

Fig. 7
Fig. 7

Pump-power Pp dependence of count rates for (a) single counts of modes HA, VA, HB and VB, and (b–e) coincidence counts of modes HAHB, HAVB, VAHB and VAVB. Raw: Raw data of coincidence counts. Net: Accidental counts removed data. Fit: Linear fitted line of Net.

Fig. 8
Fig. 8

Experimental results at Pp = 0.5 mW for: (a) HOM dip (blue) and peak (red) interferences; (b) correlation functions of polarizations for four cases; and (c) real and (d) imaginary parts of reconstructed density matrix obtained via QST. For the correlation function measurements in (b), the LP from mode A (LPA) was fixed to 0° (red); 45° (green); 90° (blue); and 135° (black). Dotted lines: Sine-fitted curves.

Fig. 9
Fig. 9

Measured HOM dip and peak interferences for T = 62–102°C at Pp = 0.5 mW and t = 8 s. Peak (dip) data in red (blue) are measured based on coincidence counts of modes A and B with LPA and LPB angles set to 45° and (−)45°, respectively. To show the beat patterns clearly, lines are drawn between neighboring points.

Fig. 10
Fig. 10

HOM dip interferences of generated state, | λ A λ B A B ( | H H A B + e i ϕ | V V A B ) / 2, where ϕ = /2 and λAλB. The datapoints colored in blue, green, red, and black correspond to n = 0, 1, 2, and 3, respectively.

Tables (2)

Tables Icon

Table 1 Estimated entanglement qualities for various Pp

Tables Icon

Table 2 Entanglement qualities of generated states for various T

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| ψ A B = | H H A B + e i ϕ | V V A B 2 | λ A λ B A B ,

Metrics