Abstract

We report a zoom microscope objective which can achieve continuous zoom change and correct the aberrations dynamically. The objective consists of three electrowetting liquid lenses and two glass lenses. The magnification is changed by applying voltages on the three electrowetting lenses. Besides, the three electrowetting liquid lenses can play a role to correct the aberrations. A digital microscope based on the proposed objective is demonstrated. We analyzed the properties of the proposed objective. In contrast to the conventional objectives, the proposed objective can be tuned from ~7.8 × to ~13.2 × continuously. For our objective, the working distance is fixed, which means no movement parts are needed to refocus or change its magnification. Moreover, the zoom objective can be dynamically optimized for a wide range of wavelength. Using such an objective, the fabrication tolerance of the optical system is larger than that of a conventional system, which can decrease the fabrication cost. The proposed zoom microscope objective cannot only take place of the conventional objective, but also has potential application in the 3D microscopy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrathin zoom telescopic objective

Lei Li, Di Wang, Chao Liu, and Qiong-Hua Wang
Opt. Express 24(16) 18674-18684 (2016)

Electrically optofluidic zoom system with a large zoom range and high-resolution image

Lei Li, Rong-Ying Yuan, Jin-Hui Wang, and Qiong-Hua Wang
Opt. Express 25(19) 22280-22291 (2017)

Electrowetting-actuated zoom lens with spherical-interface liquid lenses

Runling Peng, Jiabi Chen, and Songlin Zhuang
J. Opt. Soc. Am. A 25(11) 2644-2650 (2008)

References

  • View by:
  • |
  • |
  • |

  1. K. Kawasaki, and Hachioji, “Microscope zoom objective lens,” United States Patent 6674582B2 (January 6, 2004).
  2. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [Crossref]
  3. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  4. C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [Crossref] [PubMed]
  5. H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
    [Crossref]
  6. Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
    [Crossref] [PubMed]
  7. L. Li, C. Liu, H. Ren, H. Deng, and Q. H. Wang, “Annular folded electrowetting liquid lens,” Opt. Lett. 40(9), 1968–1971 (2015).
    [Crossref] [PubMed]
  8. S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15(21), 14146–14154 (2007).
    [Crossref] [PubMed]
  9. R. Peng, J. Chen, C. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15(11), 6664–6669 (2007).
    [Crossref] [PubMed]
  10. S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
    [Crossref] [PubMed]
  11. A. Miks and J. Novak, “Analysis of three-element zoom lens based on refractive variable-focus lenses,” Opt. Express 19(24), 23989–23996 (2011).
    [Crossref] [PubMed]
  12. L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
    [Crossref]
  13. D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
    [Crossref]
  14. Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
    [Crossref] [PubMed]
  15. F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21(18), 21010–21026 (2013).
    [Crossref] [PubMed]
  16. J. Jiang, D. Zhang, S. Walker, C. Gu, Y. Ke, W. H. Yung, and S. C. Chen, “Fast 3-D temporal focusing microscopy using an electrically tunable lens,” Opt. Express 23(19), 24362–24368 (2015).
    [Crossref] [PubMed]
  17. G. Lan, T. F. Mauger, and G. Li, “Design of high-performance adaptive objective lens with large optical depth scanning range for ultrabroad near infrared microscopic imaging,” Biomed. Opt. Express 6(9), 3362–3377 (2015).
    [Crossref] [PubMed]
  18. L. Li, Q. H. Wang, X. Q. Xu, and D. H. Li, “Two-step method for lens system design,” Opt. Express 18(12), 13285–13300 (2010).
    [Crossref] [PubMed]
  19. www.varioptic.com .

2015 (3)

2013 (3)

2012 (1)

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
[Crossref]

2011 (2)

2010 (1)

2007 (3)

2005 (2)

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[Crossref]

2004 (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Chang, J. H.

Chen, H. S.

Chen, J.

Chen, M. S.

Chen, S. C.

Cheng, C. C.

Choi, M.

Deng, H.

Fahrbach, F. O.

Gu, C.

Helmchen, F.

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Huisken, J.

Jiang, J.

Jung, K. D.

Justis, N.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[Crossref]

Ke, Y.

Kim, W.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Lan, G.

Lee, E.

Lee, S.

Li, D. H.

Li, G.

Li, L.

Lin, H. C.

Lin, Y. H.

Liu, C.

Lo, Y. H.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[Crossref]

Mauger, T. F.

Miks, A.

Novak, J.

Peng, R.

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Reichelt, S.

Ren, H.

L. Li, C. Liu, H. Ren, H. Deng, and Q. H. Wang, “Annular folded electrowetting liquid lens,” Opt. Lett. 40(9), 1968–1971 (2015).
[Crossref] [PubMed]

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

Schmid, B.

Voigt, F. F.

Walker, S.

Wang, Q. H.

Wu, S. T.

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

Xu, X. Q.

Yeh, J. A.

Yung, W. H.

Zappe, H.

Zhang, D.

Zhang, D. Y.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[Crossref]

Zhu, C.

Zhuang, S.

Appl. Phys. Lett. (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

Biomed. Opt. Express (1)

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Opt. Commun. (1)

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[Crossref]

Opt. Eng. (1)

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
[Crossref]

Opt. Express (10)

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref] [PubMed]

F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21(18), 21010–21026 (2013).
[Crossref] [PubMed]

J. Jiang, D. Zhang, S. Walker, C. Gu, Y. Ke, W. H. Yung, and S. C. Chen, “Fast 3-D temporal focusing microscopy using an electrically tunable lens,” Opt. Express 23(19), 24362–24368 (2015).
[Crossref] [PubMed]

L. Li, Q. H. Wang, X. Q. Xu, and D. H. Li, “Two-step method for lens system design,” Opt. Express 18(12), 13285–13300 (2010).
[Crossref] [PubMed]

Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[Crossref] [PubMed]

S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15(21), 14146–14154 (2007).
[Crossref] [PubMed]

R. Peng, J. Chen, C. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15(11), 6664–6669 (2007).
[Crossref] [PubMed]

S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
[Crossref] [PubMed]

A. Miks and J. Novak, “Analysis of three-element zoom lens based on refractive variable-focus lenses,” Opt. Express 19(24), 23989–23996 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (2)

www.varioptic.com .

K. Kawasaki, and Hachioji, “Microscope zoom objective lens,” United States Patent 6674582B2 (January 6, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic cross-sectional structure of the zoom objective. (a) Structure of the zoom objective. (b) Electrowetting liquid lens.
Fig. 2
Fig. 2 Configuration of the simplified zoom objective.
Fig. 3
Fig. 3 Fabricated zoom objective. (a) Side view of the objective. (b) Bottom view of the objective. (c) Top view of the objective.
Fig. 4
Fig. 4 Focal length versus the applied voltage
Fig. 5
Fig. 5 MTF of the proposed objective for λ = 486nm. (a) f = 12mm. (b) f = 14mm. (c) f = 17mm. (d) f = 19mm.
Fig. 6
Fig. 6 MTF of the proposed objective for λ = 587nm. (a) f = 12mm. (b) f = 14mm. (c) f = 17mm. (d) f = 19mm.
Fig. 7
Fig. 7 MTF of the proposed objective for λ = 656nm. (a) f = 12mm. (b) f = 14mm. (c) f = 17mm. (d) f = 19mm.
Fig. 8
Fig. 8 Fabricated digital microscope.
Fig. 9
Fig. 9 Captured images using a resolution target. (a) Resolution target. (b) Zoom 7.8 × . (c) Zoom 8.9 × . (d) Zoom 10.1 × . (e) Zoom 11.7 × . (f) Zoom 13.2 × .
Fig. 10
Fig. 10 Comparison between the proposed objective and the conventional objective. (a) Proposed objective. (b) Conventional objective. (c) Pixels imaged by proposed objective. (d) Pixels imaged by the conventional objective.

Tables (2)

Tables Icon

Table 1 Refractive index and Abbe number of the materials we used.

Tables Icon

Table 2 Detailed parameters of the proposed objective.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

cos θ = γ 1 γ 2 γ 12 + ε 2 γ 12 d U 2 ,
1 f = ϕ = ϕ 1 + ϕ 2 + ϕ 3 d 1 ϕ 1 ϕ 2 d 1 ϕ 1 ϕ 3 d 2 ϕ 1 ϕ 3 d 2 ϕ 2 ϕ 3 + d 1 d 2 ϕ 1 ϕ 2 ϕ 3 ,
ϕ 1 = ( n 1 n 2 ) r 1 ,
ϕ 2 = ( n 1 n 2 ) r 2 ,
ϕ 3 = ( n 1 n 2 ) r 3 ,

Metrics