Abstract

In recent years, there have been a series of proposals to exploit the orbital angular momentum (OAM) of light for astronomical applications. The OAM of light potentially represents a new way in which to probe the universe. The study of this property of light entails the development of new instrumentation and problems which must be addressed. One of the key issues is whether we can overcome the loss of the information carried by OAM due to atmospheric turbulence. We experimentally analyze the effect of atmospheric turbulence on the OAM content of a signal over a range of realistic turbulence strengths typical for astronomical observations. With an adaptive optics system we are able to recover up to 89% power in an initial non-zero OAM mode ( = 1) at low turbulence strengths (0.30″ FWHM seeing). However, for poorer seeing conditions (1.1″ FWHM seeing), the amount of power recovered is significantly lower (5%), showing that for the terrestrial detection of astronomical OAM, a careful design of the adaptive optics system is needed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser tomography adaptive optics: a performance study

Eric Tatulli and A. N. Ramaprakash
J. Opt. Soc. Am. A 30(12) 2482-2501 (2013)

Adaptive Optics: introduction to the feature issue

Julian Christou, Brent L. Ellerbroek, Thierry Fusco, and Donald T. Miller
Appl. Opt. 49(31) AO1-AO2 (2010)

Optimizing Rayleigh laser guide star range-gate depth during initial loop closing

T. J. Morris and R. W. Wilson
Opt. Lett. 32(14) 2004-2006 (2007)

References

  • View by:
  • |
  • |
  • |

  1. M. Harwit, “Photon orbital angular momentum in astrophysics,” Astrophys. J. 597(2), 1266–1270 (2003).
    [Crossref]
  2. F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Physics 7(3), 195–197 (2011).
    [Crossref]
  3. M. Lavery, F. Speirits, S. Barnett, and M. Padgett, “Detection of a spinning object using lights orbital angular momentum,” Science 341(6145), 537–540 (2013).
    [Crossref] [PubMed]
  4. D. Hetharia, M. P. van Exter, and W. Löffler, “Spatial coherence and the orbital angular momentum of light in astronomy,” Phys. Rev. A 90(6), 063801 (2014).
    [Crossref]
  5. G. Berkhout and M. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101(10), 100801 (2008).
    [Crossref] [PubMed]
  6. M. Malik, M. OSullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding,” Opt. Express 20(12), 13195–13200 (2012).
    [Crossref] [PubMed]
  7. Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38(20), 4062–4065 (2013).
    [Crossref] [PubMed]
  8. M. Hart, “Recent advances in astronomical adaptive optics,” Appl. Opt. 49(16), D17–D29 (2010).
    [Crossref] [PubMed]
  9. B. Rodenburg, M. Mirhosseini, M. Malik, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16(3), 033020 (2014).
    [Crossref]
  10. Y. Ren, G. Xie, H. Huang, C. Bao, Y. Yan, N. Ahmed, M. P. J. Lavery, B. I. Erkmen, S. Dolinar, M. Tur, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence,” Opt. Lett. 39(10), 2845–2848 (2014).
    [Crossref] [PubMed]
  11. Y. Ren, G. Xie, H. Hauang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. A. Neifield, R. W. Boyd, J. H. Shapiro, and A. E. Wilner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
    [Crossref]
  12. Y. Ren, G. Xie, H. Huang, L. Li, N. Ahmed, Y. Yan, M. P. J. Lavery, R. Bock, M. Tur, M. A. Neifield, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Turbulence compensation of an orbital angular momentum and polarization-multiplexed link using a data-carrying beacon on a separate wavelength,” Opt. Lett. 40(10), 2249–2252 (2015).
    [Crossref] [PubMed]
  13. P. Wizinowich and et al., “The Keck W. M. observatory laser guide star adaptive optics system: overview,” Pub. Astronomical Soc. Pacific 118(840), 297–309 (2006).
    [Crossref]
  14. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992).
    [Crossref] [PubMed]
  15. S. Ebstein, “Pseudo-random phase plates,” in International Symposium on Optical Science and Technology (ISOP2002), pp. 150–155.
  16. G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010).
    [Crossref]
  17. R. K. Tyson and B. W. Frazier, Field Guide to Adaptive Optics, 2nd ed. (SPIE, 2012).
    [Crossref]
  18. R. K. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC, 2010).
    [Crossref]
  19. V. N. Mahajan, “Strehl ratio for primary aberrations in terms of their aberration variance,” J. Opt. Soc. Am. 73(6), 860–861 (1983).
    [Crossref]
  20. F. Roddier, Adaptive Optics in Astronomy, (Cambridge University, 1999).
    [Crossref]
  21. R. Neo, S. Tan, X. Zambrana-Puyalto, S. Leon-Saval, J. Bland-Hawthorn, and G. Molina-Terriza, “Correcting vortex splitting in higher order vortex beams,” Opt. Express 22(8), 9920–9931 (2014).
    [Crossref] [PubMed]
  22. N. Uribe-Patarroyo, A. Alvarez-Herrero, and T. Belenguer, “A comprehensive approach to deal with instrumental optical aberrations effects in high-accuracy photon’s orbital angular momentum spectrum measurements,” Opt. Express 18(20), 21111–21120 (2010).
    [Crossref] [PubMed]

2015 (1)

2014 (5)

2013 (2)

2012 (1)

2011 (1)

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Physics 7(3), 195–197 (2011).
[Crossref]

2010 (3)

2008 (1)

G. Berkhout and M. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101(10), 100801 (2008).
[Crossref] [PubMed]

2006 (1)

P. Wizinowich and et al., “The Keck W. M. observatory laser guide star adaptive optics system: overview,” Pub. Astronomical Soc. Pacific 118(840), 297–309 (2006).
[Crossref]

2003 (1)

M. Harwit, “Photon orbital angular momentum in astrophysics,” Astrophys. J. 597(2), 1266–1270 (2003).
[Crossref]

1992 (1)

1983 (1)

Ahmed, N.

Alvarez-Herrero, A.

Anzolin, G.

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Physics 7(3), 195–197 (2011).
[Crossref]

Bao, C.

Barnett, S.

M. Lavery, F. Speirits, S. Barnett, and M. Padgett, “Detection of a spinning object using lights orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Beijersbergen, M.

G. Berkhout and M. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101(10), 100801 (2008).
[Crossref] [PubMed]

Beijersbergen, M. W.

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref]

Belenguer, T.

Berkhout, G.

G. Berkhout and M. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101(10), 100801 (2008).
[Crossref] [PubMed]

Berkhout, G. C. G.

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref]

Bland-Hawthorn, J.

Bock, R.

Boyd, R. W.

Y. Ren, G. Xie, H. Huang, L. Li, N. Ahmed, Y. Yan, M. P. J. Lavery, R. Bock, M. Tur, M. A. Neifield, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Turbulence compensation of an orbital angular momentum and polarization-multiplexed link using a data-carrying beacon on a separate wavelength,” Opt. Lett. 40(10), 2249–2252 (2015).
[Crossref] [PubMed]

Y. Ren, G. Xie, H. Hauang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. A. Neifield, R. W. Boyd, J. H. Shapiro, and A. E. Wilner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
[Crossref]

Y. Ren, G. Xie, H. Huang, C. Bao, Y. Yan, N. Ahmed, M. P. J. Lavery, B. I. Erkmen, S. Dolinar, M. Tur, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence,” Opt. Lett. 39(10), 2845–2848 (2014).
[Crossref] [PubMed]

B. Rodenburg, M. Mirhosseini, M. Malik, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16(3), 033020 (2014).
[Crossref]

Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38(20), 4062–4065 (2013).
[Crossref] [PubMed]

M. Malik, M. OSullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding,” Opt. Express 20(12), 13195–13200 (2012).
[Crossref] [PubMed]

Chandrasekaran, N.

Courtial, J.

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref]

Dolinar, S.

Ebstein, S.

S. Ebstein, “Pseudo-random phase plates,” in International Symposium on Optical Science and Technology (ISOP2002), pp. 150–155.

Erkmen, B. I.

Frazier, B. W.

R. K. Tyson and B. W. Frazier, Field Guide to Adaptive Optics, 2nd ed. (SPIE, 2012).
[Crossref]

Hart, M.

Harwit, M.

M. Harwit, “Photon orbital angular momentum in astrophysics,” Astrophys. J. 597(2), 1266–1270 (2003).
[Crossref]

Hauang, H.

Heckenberg, N. R.

Hetharia, D.

D. Hetharia, M. P. van Exter, and W. Löffler, “Spatial coherence and the orbital angular momentum of light in astronomy,” Phys. Rev. A 90(6), 063801 (2014).
[Crossref]

Huang, H.

Lavery, M.

M. Lavery, F. Speirits, S. Barnett, and M. Padgett, “Detection of a spinning object using lights orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Lavery, M. P. J.

Y. Ren, G. Xie, H. Huang, L. Li, N. Ahmed, Y. Yan, M. P. J. Lavery, R. Bock, M. Tur, M. A. Neifield, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Turbulence compensation of an orbital angular momentum and polarization-multiplexed link using a data-carrying beacon on a separate wavelength,” Opt. Lett. 40(10), 2249–2252 (2015).
[Crossref] [PubMed]

Y. Ren, G. Xie, H. Huang, C. Bao, Y. Yan, N. Ahmed, M. P. J. Lavery, B. I. Erkmen, S. Dolinar, M. Tur, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence,” Opt. Lett. 39(10), 2845–2848 (2014).
[Crossref] [PubMed]

Y. Ren, G. Xie, H. Hauang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. A. Neifield, R. W. Boyd, J. H. Shapiro, and A. E. Wilner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
[Crossref]

Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38(20), 4062–4065 (2013).
[Crossref] [PubMed]

M. Malik, M. OSullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding,” Opt. Express 20(12), 13195–13200 (2012).
[Crossref] [PubMed]

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref]

Leach, J.

Leon-Saval, S.

Li, L.

Löffler, W.

D. Hetharia, M. P. van Exter, and W. Löffler, “Spatial coherence and the orbital angular momentum of light in astronomy,” Phys. Rev. A 90(6), 063801 (2014).
[Crossref]

Mahajan, V. N.

Maher, L.

B. Rodenburg, M. Mirhosseini, M. Malik, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16(3), 033020 (2014).
[Crossref]

Malik, M.

B. Rodenburg, M. Mirhosseini, M. Malik, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16(3), 033020 (2014).
[Crossref]

M. Malik, M. OSullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding,” Opt. Express 20(12), 13195–13200 (2012).
[Crossref] [PubMed]

McDuff, R.

Mirhosseini, M.

B. Rodenburg, M. Mirhosseini, M. Malik, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16(3), 033020 (2014).
[Crossref]

M. Malik, M. OSullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding,” Opt. Express 20(12), 13195–13200 (2012).
[Crossref] [PubMed]

Molina-Terriza, G.

R. Neo, S. Tan, X. Zambrana-Puyalto, S. Leon-Saval, J. Bland-Hawthorn, and G. Molina-Terriza, “Correcting vortex splitting in higher order vortex beams,” Opt. Express 22(8), 9920–9931 (2014).
[Crossref] [PubMed]

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Physics 7(3), 195–197 (2011).
[Crossref]

Neifeld, M.

Neifield, M. A.

Neo, R.

OSullivan, M.

Padgett, M.

M. Lavery, F. Speirits, S. Barnett, and M. Padgett, “Detection of a spinning object using lights orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Padgett, M. J.

Ren, Y.

Roddier, F.

F. Roddier, Adaptive Optics in Astronomy, (Cambridge University, 1999).
[Crossref]

Rodenburg, B.

B. Rodenburg, M. Mirhosseini, M. Malik, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16(3), 033020 (2014).
[Crossref]

M. Malik, M. OSullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding,” Opt. Express 20(12), 13195–13200 (2012).
[Crossref] [PubMed]

Shapiro, J. H.

Smith, C. P.

Speirits, F.

M. Lavery, F. Speirits, S. Barnett, and M. Padgett, “Detection of a spinning object using lights orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Steinhoff, N. K.

Tamburini, F.

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Physics 7(3), 195–197 (2011).
[Crossref]

Tan, S.

Thidé, B.

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Physics 7(3), 195–197 (2011).
[Crossref]

Tur, M.

Tyler, G. A.

B. Rodenburg, M. Mirhosseini, M. Malik, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16(3), 033020 (2014).
[Crossref]

Tyson, R. K.

R. K. Tyson and B. W. Frazier, Field Guide to Adaptive Optics, 2nd ed. (SPIE, 2012).
[Crossref]

R. K. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC, 2010).
[Crossref]

Uribe-Patarroyo, N.

van Exter, M. P.

D. Hetharia, M. P. van Exter, and W. Löffler, “Spatial coherence and the orbital angular momentum of light in astronomy,” Phys. Rev. A 90(6), 063801 (2014).
[Crossref]

White, A. G.

Willner, A. E.

Wilner, A. E.

Wizinowich, P.

P. Wizinowich and et al., “The Keck W. M. observatory laser guide star adaptive optics system: overview,” Pub. Astronomical Soc. Pacific 118(840), 297–309 (2006).
[Crossref]

Xie, G.

Yan, Y.

Yanakas, M.

B. Rodenburg, M. Mirhosseini, M. Malik, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16(3), 033020 (2014).
[Crossref]

Zambrana-Puyalto, X.

Appl. Opt. (1)

Astrophys. J. (1)

M. Harwit, “Photon orbital angular momentum in astrophysics,” Astrophys. J. 597(2), 1266–1270 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Physics (1)

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Physics 7(3), 195–197 (2011).
[Crossref]

New J. Phys. (1)

B. Rodenburg, M. Mirhosseini, M. Malik, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16(3), 033020 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Optica (1)

Phys. Rev. A (1)

D. Hetharia, M. P. van Exter, and W. Löffler, “Spatial coherence and the orbital angular momentum of light in astronomy,” Phys. Rev. A 90(6), 063801 (2014).
[Crossref]

Phys. Rev. Lett. (2)

G. Berkhout and M. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101(10), 100801 (2008).
[Crossref] [PubMed]

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref]

Pub. Astronomical Soc. Pacific (1)

P. Wizinowich and et al., “The Keck W. M. observatory laser guide star adaptive optics system: overview,” Pub. Astronomical Soc. Pacific 118(840), 297–309 (2006).
[Crossref]

Science (1)

M. Lavery, F. Speirits, S. Barnett, and M. Padgett, “Detection of a spinning object using lights orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Other (4)

R. K. Tyson and B. W. Frazier, Field Guide to Adaptive Optics, 2nd ed. (SPIE, 2012).
[Crossref]

R. K. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC, 2010).
[Crossref]

S. Ebstein, “Pseudo-random phase plates,” in International Symposium on Optical Science and Technology (ISOP2002), pp. 150–155.

F. Roddier, Adaptive Optics in Astronomy, (Cambridge University, 1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of experimental setup. HWP = Half waveplate, QWP = Quarter wave-plate, SH-WFS = Shack-Hartmann Wavefront Sensor. Red, green and blue dotted outlines separate OAM source, AO system and OAM detector respectively.
Fig. 2
Fig. 2 Images of = 1 beam after propagation through a simulated turbulence with the AO loop open (top row) and closed (bottom row) in the presence of varying turbulence strengths.
Fig. 3
Fig. 3 Images of = 0 beam after propagation through a simulated turbulence with the AO loop open (top row) and closed (bottom row) in the presence of varying turbulence strengths.
Fig. 4
Fig. 4 Output for an = 0 (red) and = 1 (blue) mode from OAM modesorter for (a) no turbulence, (b) turbulence with AO loop closed, and (c) turbulence with AO loop open. For each image (a)–(c) the horizontal axis is OAM number and the vertical axis is log(r). Bottom row (e)–(f) are 1D OAM spectra obtained by integrating images (a)–(c) respectively, along the log(r) axis.
Fig. 5
Fig. 5 Average power recovered for = 1 as a function of simulated windspeed with (blue dots) and without (red crosses) AO. Blue solid lines denotes a numerical fit to the closed loop data. The fit parameters are given by y1. Red solid lines indicate an average of the 〈s0〉 values for open loop operation given by y 2 ¯. All D/r0 values correspond to a wavelength of 635 nm.
Fig. 6
Fig. 6s0〉 as a function of both windspeed and D/r0. The surface was generated by fitting the experimental 〈s0〉’s as a function of windspeed and then fitting over the curves a second time as a function of D/r0.

Tables (2)

Tables Icon

Table 1 Beam diameters and corresponding D/r0 and seeing conditions investigated.

Tables Icon

Table 2 Different simulated windspeeds for each D/r0 used in experiment.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

s 0 = I m e a s I c a l i b r a t i o n
s 0 = s 0 t u r b + s 0 A O
s 0 = s 0 t u r b
s 0 A O = exp ( σ 2 )
= exp ( σ s p a t i a l 2 σ t e m p o r a l 2 )
σ s p a t i a l 2 A × r 0 5 3
σ t e m p o r a l 2 B × ( r 0 ) × v 5 3
s 0 = s 0 t u r b + exp ( A r 0 5 3 B ( r 0 ) v 5 3 )

Metrics