Abstract

We experimentally reporton optical binding of many glass particles in air that levitate in a single optical beam. A diversity of particle sizes and shapes interact at long range in a single Gaussian beam. Our system dynamics span from oscillatory to random and dimensionality ranges from 1 to 3D. The low loss for the center of mass motion of the beads could allow this system to serve as a standard many body testbed, similar to what is done today with atoms, but at the mesoscopic scale.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

Jeremy Moore, Leopoldo L. Martin, Shai Maayani, Kyu Hyun Kim, Hengky Chandrahalim, Matt Eichenfield, Inocencio R. Martin, and Tal Carmon, "Regular oscillations and random motion of glass microspheres levitated by a single optical beam in air: publisher’s note," Opt. Express 24, 4349-4349 (2016)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-24-4-4349

4 February 2016: A correction was made to the acknowledgments.


OSA Recommended Articles
Optical binding in white light

Shai Maayani, Leopoldo L. Martin, and Tal Carmon
Opt. Lett. 40(8) 1818-1821 (2015)

Selective particle trapping and optical binding in the evanescent field of an optical nanofiber

M. C. Frawley, I. Gusachenko, V. G. Truong, M. Sergides, and S. Nic Chormaic
Opt. Express 22(13) 16322-16334 (2014)

Dynamic analysis and rotation experiment of an optical-trapped microsphere in air

Wenqiang Li, Nan Li, Yu Shen, Zhenhai Fu, Heming Su, and Huizhu Hu
Appl. Opt. 57(4) 823-828 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
    [Crossref] [PubMed]
  2. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269(5221), 198–201 (1995).
    [Crossref] [PubMed]
  3. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
    [Crossref] [PubMed]
  4. C. Cohen-Tannoudji, “Manipulating atoms with photons,” Phys. Scr. 1998(1), 33 (1998).
    [Crossref]
  5. S. Chu, “The manipulation of neutral particles,” Rev. Mod. Phys. 70(3), 685–706 (1998).
    [Crossref]
  6. W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70(3), 721–741 (1998).
    [Crossref]
  7. J. Baugh, O. Moussa, C. A. Ryan, A. Nayak, and R. Laflamme, “Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance,” Nature 438(7067), 470–473 (2005).
    [Crossref] [PubMed]
  8. D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 1005–1010 (2010).
    [Crossref] [PubMed]
  9. T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7(7), 527–530 (2011).
    [Crossref]
  10. J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109(10), 103603 (2012).
    [Crossref] [PubMed]
  11. N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14180–14185 (2013).
    [Crossref] [PubMed]
  12. T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328(5986), 1673–1675 (2010).
    [Crossref] [PubMed]
  13. S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
    [Crossref] [PubMed]
  14. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [Crossref] [PubMed]
  15. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36(15), 2883–2885 (2011).
    [Crossref] [PubMed]
  16. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  17. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
    [Crossref] [PubMed]
  18. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18(21), 1867–1869 (1993).
    [Crossref] [PubMed]
  19. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
    [Crossref] [PubMed]
  20. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, “Self-organized array of regularly spaced microbeads in a fiber-optical trap,” J. Opt. Soc. Am. B 20(7), 1568–1574 (2003).
    [Crossref]
  21. N. K. Metzger, E. M. Wright, W. Sibbett, and K. Dholakia, “Visualization of optical binding of microparticles using a femtosecond fiber optical trap,” Opt. Express 14(8), 3677–3687 (2006).
    [Crossref] [PubMed]
  22. W. T. Irvine, M. J. Bowick, and P. M. Chaikin, “Fractionalization of interstitials in curved colloidal crystals,” Nat. Mater. 11(11), 948–951 (2012).
    [Crossref] [PubMed]
  23. M. Guillon, O. Moine, and B. Stout, “Longitudinal optical binding of high optical contrast microdroplets in air,” Phys. Rev. Lett. 96(14), 143902 (2006).
    [Crossref] [PubMed]
  24. A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, O. F. Petrov, V. M. Torchinskii, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, “Ordered structures in a nonideal dusty glow-discharge plasma,” J. Exp. Theor. Phys. 85(6), 1110–1118 (1997).
    [Crossref]
  25. W. T. Juan, Z. H. Huang, J. W. Hsu, Y. J. Lai, and I. Lin, “Observation of dust Coulomb clusters in a plasma trap,” Phys. Rev. E 58(6), R6947–R6950 (1998).
    [Crossref]
  26. T. M. Grzegorczyk, B. A. Kemp, and J. A. Kong, “Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field,” J. Opt. Soc. Am. A 23(9), 2324–2330 (2006).
    [Crossref] [PubMed]
  27. K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
    [Crossref]
  28. J. Ng, Z. Lin, C. Chan, and P. Sheng, “Photonic clusters formed by dielectric microspheres: Numerical simulations,” Phys. Rev. B 72(8), 085130 (2005).
    [Crossref]
  29. A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187(4181), 1073–1075 (1975).
    [Crossref] [PubMed]
  30. D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
    [Crossref] [PubMed]
  31. P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality: an explanation of the 1/f noise,” Phys. Rev. Lett. 59(4), 381–384 (1987).
    [Crossref] [PubMed]
  32. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
    [Crossref] [PubMed]
  33. M. D. Summers, J. P. Reid, and D. McGloin, “Optical guiding of aerosol droplets,” Opt. Express 14(14), 6373–6380 (2006).
    [Crossref] [PubMed]
  34. M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
    [Crossref] [PubMed]
  35. T. A. Nieminen, V. L. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
    [Crossref]
  36. T. Beatus, R. H. Bar-Ziv, and T. Tlusty, “The physics of 2D microfluidic droplet ensembles,” Phys. Rep. 516(3), 103–145 (2012).
    [Crossref]
  37. D. W. Sesko, T. Walker, and C. E. Wieman, “Behavior of neutral atoms in a spontaneous force trap,” J. Opt. Soc. Am. B 8(5), 946–958 (1991).
    [Crossref]
  38. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
    [Crossref] [PubMed]
  39. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
    [Crossref] [PubMed]
  40. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram and nanometer scale photonic crystal opto-mechanical cavity,” arXiv preprint arXiv:08122953 (2008).

2013 (1)

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14180–14185 (2013).
[Crossref] [PubMed]

2012 (4)

W. T. Irvine, M. J. Bowick, and P. M. Chaikin, “Fractionalization of interstitials in curved colloidal crystals,” Nat. Mater. 11(11), 948–951 (2012).
[Crossref] [PubMed]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109(10), 103603 (2012).
[Crossref] [PubMed]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

T. Beatus, R. H. Bar-Ziv, and T. Tlusty, “The physics of 2D microfluidic droplet ensembles,” Phys. Rep. 516(3), 103–145 (2012).
[Crossref]

2011 (2)

2010 (3)

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 1005–1010 (2010).
[Crossref] [PubMed]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328(5986), 1673–1675 (2010).
[Crossref] [PubMed]

K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[Crossref]

2008 (1)

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

2007 (1)

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]

2006 (4)

2005 (3)

J. Baugh, O. Moussa, C. A. Ryan, A. Nayak, and R. Laflamme, “Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance,” Nature 438(7067), 470–473 (2005).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

J. Ng, Z. Lin, C. Chan, and P. Sheng, “Photonic clusters formed by dielectric microspheres: Numerical simulations,” Phys. Rev. B 72(8), 085130 (2005).
[Crossref]

2003 (1)

2002 (1)

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
[Crossref] [PubMed]

2000 (1)

D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
[Crossref] [PubMed]

1998 (4)

W. T. Juan, Z. H. Huang, J. W. Hsu, Y. J. Lai, and I. Lin, “Observation of dust Coulomb clusters in a plasma trap,” Phys. Rev. E 58(6), R6947–R6950 (1998).
[Crossref]

C. Cohen-Tannoudji, “Manipulating atoms with photons,” Phys. Scr. 1998(1), 33 (1998).
[Crossref]

S. Chu, “The manipulation of neutral particles,” Rev. Mod. Phys. 70(3), 685–706 (1998).
[Crossref]

W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70(3), 721–741 (1998).
[Crossref]

1997 (2)

A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, O. F. Petrov, V. M. Torchinskii, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, “Ordered structures in a nonideal dusty glow-discharge plasma,” J. Exp. Theor. Phys. 85(6), 1110–1118 (1997).
[Crossref]

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref] [PubMed]

1995 (2)

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref] [PubMed]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269(5221), 198–201 (1995).
[Crossref] [PubMed]

1994 (1)

1993 (1)

1991 (1)

1990 (1)

S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

1989 (1)

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[Crossref] [PubMed]

1987 (1)

P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality: an explanation of the 1/f noise,” Phys. Rev. Lett. 59(4), 381–384 (1987).
[Crossref] [PubMed]

1986 (2)

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref] [PubMed]

1975 (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187(4181), 1073–1075 (1975).
[Crossref] [PubMed]

Anderson, M. H.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269(5221), 198–201 (1995).
[Crossref] [PubMed]

Andrews, M. R.

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187(4181), 1073–1075 (1975).
[Crossref] [PubMed]

Aspelmeyer, M.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14180–14185 (2013).
[Crossref] [PubMed]

Bak, P.

P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality: an explanation of the 1/f noise,” Phys. Rev. Lett. 59(4), 381–384 (1987).
[Crossref] [PubMed]

Barnard, A.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

Bar-Ziv, R. H.

T. Beatus, R. H. Bar-Ziv, and T. Tlusty, “The physics of 2D microfluidic droplet ensembles,” Phys. Rep. 516(3), 103–145 (2012).
[Crossref]

Baugh, J.

J. Baugh, O. Moussa, C. A. Ryan, A. Nayak, and R. Laflamme, “Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance,” Nature 438(7067), 470–473 (2005).
[Crossref] [PubMed]

Beatus, T.

T. Beatus, R. H. Bar-Ziv, and T. Tlusty, “The physics of 2D microfluidic droplet ensembles,” Phys. Rep. 516(3), 103–145 (2012).
[Crossref]

Bernet, S.

Bjorkholm, J. E.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref] [PubMed]

Blaser, F.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14180–14185 (2013).
[Crossref] [PubMed]

Block, S. M.

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
[Crossref] [PubMed]

S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Bowick, M. J.

W. T. Irvine, M. J. Bowick, and P. M. Chaikin, “Fractionalization of interstitials in curved colloidal crystals,” Nat. Mater. 11(11), 948–951 (2012).
[Crossref] [PubMed]

Branczyk, A. M.

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]

Burns, M. M.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[Crossref] [PubMed]

Cable, A.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref] [PubMed]

Carmon, T.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

Carruthers, A. E.

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
[Crossref] [PubMed]

Chaikin, P. M.

W. T. Irvine, M. J. Bowick, and P. M. Chaikin, “Fractionalization of interstitials in curved colloidal crystals,” Nat. Mater. 11(11), 948–951 (2012).
[Crossref] [PubMed]

Chan, C.

J. Ng, Z. Lin, C. Chan, and P. Sheng, “Photonic clusters formed by dielectric microspheres: Numerical simulations,” Phys. Rev. B 72(8), 085130 (2005).
[Crossref]

Chang, D. E.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 1005–1010 (2010).
[Crossref] [PubMed]

Chen, Z.

Christodoulides, D. N.

Chu, S.

S. Chu, “The manipulation of neutral particles,” Rev. Mod. Phys. 70(3), 685–706 (1998).
[Crossref]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

Cohen-Tannoudji, C.

C. Cohen-Tannoudji, “Manipulating atoms with photons,” Phys. Scr. 1998(1), 33 (1998).
[Crossref]

Constable, A.

Cornell, E. A.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269(5221), 198–201 (1995).
[Crossref] [PubMed]

Davis, K. B.

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref] [PubMed]

Delic, U.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14180–14185 (2013).
[Crossref] [PubMed]

Deutsch, B.

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109(10), 103603 (2012).
[Crossref] [PubMed]

Dholakia, K.

K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[Crossref]

N. K. Metzger, E. M. Wright, W. Sibbett, and K. Dholakia, “Visualization of optical binding of microparticles using a femtosecond fiber optical trap,” Opt. Express 14(8), 3677–3687 (2006).
[Crossref] [PubMed]

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
[Crossref] [PubMed]

Durfee, D. S.

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref] [PubMed]

Dziedzic, J. M.

Efremidis, N. K.

Ensher, J. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269(5221), 198–201 (1995).
[Crossref] [PubMed]

Enzer, D. G.

D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
[Crossref] [PubMed]

Fortov, V. E.

A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, O. F. Petrov, V. M. Torchinskii, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, “Ordered structures in a nonideal dusty glow-discharge plasma,” J. Exp. Theor. Phys. 85(6), 1110–1118 (1997).
[Crossref]

Fournier, J. M.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[Crossref] [PubMed]

Frick, M.

Gieseler, J.

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109(10), 103603 (2012).
[Crossref] [PubMed]

Girvin, S. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

Goldstein, L. S.

S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Golovchenko, J. A.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[Crossref] [PubMed]

Gomez, J. J.

D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
[Crossref] [PubMed]

Grass, D.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14180–14185 (2013).
[Crossref] [PubMed]

Grzegorczyk, T. M.

Guillon, M.

M. Guillon, O. Moine, and B. Stout, “Longitudinal optical binding of high optical contrast microdroplets in air,” Phys. Rev. Lett. 96(14), 143902 (2006).
[Crossref] [PubMed]

Gulley, M. S.

D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
[Crossref] [PubMed]

Harris, J. G. E.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

Heckenberg, N. R.

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]

Holzscheiter, M. H.

D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
[Crossref] [PubMed]

Hsu, J. W.

W. T. Juan, Z. H. Huang, J. W. Hsu, Y. J. Lai, and I. Lin, “Observation of dust Coulomb clusters in a plasma trap,” Phys. Rev. E 58(6), R6947–R6950 (1998).
[Crossref]

Huang, Z. H.

W. T. Juan, Z. H. Huang, J. W. Hsu, Y. J. Lai, and I. Lin, “Observation of dust Coulomb clusters in a plasma trap,” Phys. Rev. E 58(6), R6947–R6950 (1998).
[Crossref]

Hughes, R. J.

D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
[Crossref] [PubMed]

Irvine, W. T.

W. T. Irvine, M. J. Bowick, and P. M. Chaikin, “Fractionalization of interstitials in curved colloidal crystals,” Nat. Mater. 11(11), 948–951 (2012).
[Crossref] [PubMed]

James, D. F.

D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
[Crossref] [PubMed]

Jayich, A. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

Juan, W. T.

W. T. Juan, Z. H. Huang, J. W. Hsu, Y. J. Lai, and I. Lin, “Observation of dust Coulomb clusters in a plasma trap,” Phys. Rev. E 58(6), R6947–R6950 (1998).
[Crossref]

Kaltenbaek, R.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14180–14185 (2013).
[Crossref] [PubMed]

Kemp, B. A.

Ketterle, W.

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref] [PubMed]

Kheifets, S.

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7(7), 527–530 (2011).
[Crossref]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328(5986), 1673–1675 (2010).
[Crossref] [PubMed]

Khrapak, A. G.

A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, O. F. Petrov, V. M. Torchinskii, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, “Ordered structures in a nonideal dusty glow-discharge plasma,” J. Exp. Theor. Phys. 85(6), 1110–1118 (1997).
[Crossref]

Khrapak, S. A.

A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, O. F. Petrov, V. M. Torchinskii, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, “Ordered structures in a nonideal dusty glow-discharge plasma,” J. Exp. Theor. Phys. 85(6), 1110–1118 (1997).
[Crossref]

Kiesel, N.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14180–14185 (2013).
[Crossref] [PubMed]

Kim, J.

Kimble, H. J.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 1005–1010 (2010).
[Crossref] [PubMed]

Kippenberg, T. J.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

Knöner, G.

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]

Kong, J. A.

Kurn, D. M.

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref] [PubMed]

Kwiat, P. G.

D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
[Crossref] [PubMed]

Laflamme, R.

J. Baugh, O. Moussa, C. A. Ryan, A. Nayak, and R. Laflamme, “Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance,” Nature 438(7067), 470–473 (2005).
[Crossref] [PubMed]

Lai, Y. J.

W. T. Juan, Z. H. Huang, J. W. Hsu, Y. J. Lai, and I. Lin, “Observation of dust Coulomb clusters in a plasma trap,” Phys. Rev. E 58(6), R6947–R6950 (1998).
[Crossref]

Lamoreaux, S. K.

D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
[Crossref] [PubMed]

Li, T.

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7(7), 527–530 (2011).
[Crossref]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328(5986), 1673–1675 (2010).
[Crossref] [PubMed]

Lin, I.

W. T. Juan, Z. H. Huang, J. W. Hsu, Y. J. Lai, and I. Lin, “Observation of dust Coulomb clusters in a plasma trap,” Phys. Rev. E 58(6), R6947–R6950 (1998).
[Crossref]

Lin, Z.

J. Ng, Z. Lin, C. Chan, and P. Sheng, “Photonic clusters formed by dielectric microspheres: Numerical simulations,” Phys. Rev. B 72(8), 085130 (2005).
[Crossref]

Lipaev, A. M.

A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, O. F. Petrov, V. M. Torchinskii, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, “Ordered structures in a nonideal dusty glow-discharge plasma,” J. Exp. Theor. Phys. 85(6), 1110–1118 (1997).
[Crossref]

Lipson, M.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

Loke, V. L.

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]

Manipatruni, S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

Marquardt, F.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

Matthews, M. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269(5221), 198–201 (1995).
[Crossref] [PubMed]

McEuen, P.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

McGloin, D.

Medellin, D.

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328(5986), 1673–1675 (2010).
[Crossref] [PubMed]

Mervis, J.

Metzger, N. K.

Mewes, M.-O.

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref] [PubMed]

Mills, M. S.

Moine, O.

M. Guillon, O. Moine, and B. Stout, “Longitudinal optical binding of high optical contrast microdroplets in air,” Phys. Rev. Lett. 96(14), 143902 (2006).
[Crossref] [PubMed]

Molotkov, V. I.

A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, O. F. Petrov, V. M. Torchinskii, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, “Ordered structures in a nonideal dusty glow-discharge plasma,” J. Exp. Theor. Phys. 85(6), 1110–1118 (1997).
[Crossref]

Moussa, O.

J. Baugh, O. Moussa, C. A. Ryan, A. Nayak, and R. Laflamme, “Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance,” Nature 438(7067), 470–473 (2005).
[Crossref] [PubMed]

Nayak, A.

J. Baugh, O. Moussa, C. A. Ryan, A. Nayak, and R. Laflamme, “Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance,” Nature 438(7067), 470–473 (2005).
[Crossref] [PubMed]

Nefedov, A. P.

A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, O. F. Petrov, V. M. Torchinskii, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, “Ordered structures in a nonideal dusty glow-discharge plasma,” J. Exp. Theor. Phys. 85(6), 1110–1118 (1997).
[Crossref]

Ng, J.

J. Ng, Z. Lin, C. Chan, and P. Sheng, “Photonic clusters formed by dielectric microspheres: Numerical simulations,” Phys. Rev. B 72(8), 085130 (2005).
[Crossref]

Nieminen, T. A.

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]

Novotny, L.

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109(10), 103603 (2012).
[Crossref] [PubMed]

Painter, O.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 1005–1010 (2010).
[Crossref] [PubMed]

Papp, S. B.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 1005–1010 (2010).
[Crossref] [PubMed]

Peterson, C. G.

D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
[Crossref] [PubMed]

Petrov, O. F.

A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, O. F. Petrov, V. M. Torchinskii, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, “Ordered structures in a nonideal dusty glow-discharge plasma,” J. Exp. Theor. Phys. 85(6), 1110–1118 (1997).
[Crossref]

Phillips, W. D.

W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70(3), 721–741 (1998).
[Crossref]

Prakash, J.

Prentiss, M.

Quidant, R.

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109(10), 103603 (2012).
[Crossref] [PubMed]

Raizen, M. G.

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7(7), 527–530 (2011).
[Crossref]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328(5986), 1673–1675 (2010).
[Crossref] [PubMed]

Regal, C. A.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 1005–1010 (2010).
[Crossref] [PubMed]

Reid, J. P.

Ritsch-Marte, M.

Rokhsari, H.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]

Ryan, C. A.

J. Baugh, O. Moussa, C. A. Ryan, A. Nayak, and R. Laflamme, “Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance,” Nature 438(7067), 470–473 (2005).
[Crossref] [PubMed]

Sandberg, V. D.

D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
[Crossref] [PubMed]

Schauer, M. M.

D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
[Crossref] [PubMed]

Schnapp, B. J.

S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Sesko, D. W.

Sheng, P.

J. Ng, Z. Lin, C. Chan, and P. Sheng, “Photonic clusters formed by dielectric microspheres: Numerical simulations,” Phys. Rev. B 72(8), 085130 (2005).
[Crossref]

Sibbett, W.

Singer, W.

Stilgoe, A. B.

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]

Stout, B.

M. Guillon, O. Moine, and B. Stout, “Longitudinal optical binding of high optical contrast microdroplets in air,” Phys. Rev. Lett. 96(14), 143902 (2006).
[Crossref] [PubMed]

Summers, M. D.

Svoboda, K.

Tang, C.

P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality: an explanation of the 1/f noise,” Phys. Rev. Lett. 59(4), 381–384 (1987).
[Crossref] [PubMed]

Tatarkova, S. A.

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
[Crossref] [PubMed]

Thompson, J. D.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

Tlusty, T.

T. Beatus, R. H. Bar-Ziv, and T. Tlusty, “The physics of 2D microfluidic droplet ensembles,” Phys. Rep. 516(3), 103–145 (2012).
[Crossref]

Torchinskii, V. M.

A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, O. F. Petrov, V. M. Torchinskii, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, “Ordered structures in a nonideal dusty glow-discharge plasma,” J. Exp. Theor. Phys. 85(6), 1110–1118 (1997).
[Crossref]

Tupa, D.

D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
[Crossref] [PubMed]

Vahala, K. J.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

van Druten, N. J.

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref] [PubMed]

Walker, T.

White, A. G.

D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
[Crossref] [PubMed]

Wiederhecker, G. S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

Wieman, C. E.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269(5221), 198–201 (1995).
[Crossref] [PubMed]

D. W. Sesko, T. Walker, and C. E. Wieman, “Behavior of neutral atoms in a spontaneous force trap,” J. Opt. Soc. Am. B 8(5), 946–958 (1991).
[Crossref]

Wiesenfeld, K.

P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality: an explanation of the 1/f noise,” Phys. Rev. Lett. 59(4), 381–384 (1987).
[Crossref] [PubMed]

Wilson, D. J.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 1005–1010 (2010).
[Crossref] [PubMed]

Wright, E. M.

Yang, L.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

Ye, J.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 1005–1010 (2010).
[Crossref] [PubMed]

Zarinetchi, F.

Zemánek, P.

K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[Crossref]

Zhang, M.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

Zhang, P.

Zhang, Z.

Zoller, P.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 1005–1010 (2010).
[Crossref] [PubMed]

Zwickl, B. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

J. Exp. Theor. Phys. (1)

A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, O. F. Petrov, V. M. Torchinskii, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, “Ordered structures in a nonideal dusty glow-discharge plasma,” J. Exp. Theor. Phys. 85(6), 1110–1118 (1997).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nat. Mater. (1)

W. T. Irvine, M. J. Bowick, and P. M. Chaikin, “Fractionalization of interstitials in curved colloidal crystals,” Nat. Mater. 11(11), 948–951 (2012).
[Crossref] [PubMed]

Nat. Phys. (1)

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7(7), 527–530 (2011).
[Crossref]

Nature (3)

S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

J. Baugh, O. Moussa, C. A. Ryan, A. Nayak, and R. Laflamme, “Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance,” Nature 438(7067), 470–473 (2005).
[Crossref] [PubMed]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rep. (1)

T. Beatus, R. H. Bar-Ziv, and T. Tlusty, “The physics of 2D microfluidic droplet ensembles,” Phys. Rep. 516(3), 103–145 (2012).
[Crossref]

Phys. Rev. B (1)

J. Ng, Z. Lin, C. Chan, and P. Sheng, “Photonic clusters formed by dielectric microspheres: Numerical simulations,” Phys. Rev. B 72(8), 085130 (2005).
[Crossref]

Phys. Rev. E (1)

W. T. Juan, Z. H. Huang, J. W. Hsu, Y. J. Lai, and I. Lin, “Observation of dust Coulomb clusters in a plasma trap,” Phys. Rev. E 58(6), R6947–R6950 (1998).
[Crossref]

Phys. Rev. Lett. (10)

M. Guillon, O. Moine, and B. Stout, “Longitudinal optical binding of high optical contrast microdroplets in air,” Phys. Rev. Lett. 96(14), 143902 (2006).
[Crossref] [PubMed]

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
[Crossref] [PubMed]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, “Observation of power-Law scaling for phase transitions in linear trapped ion crystals,” Phys. Rev. Lett. 85(12), 2466–2469 (2000).
[Crossref] [PubMed]

P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality: an explanation of the 1/f noise,” Phys. Rev. Lett. 59(4), 381–384 (1987).
[Crossref] [PubMed]

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[Crossref] [PubMed]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109(10), 103603 (2012).
[Crossref] [PubMed]

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

Phys. Scr. (1)

C. Cohen-Tannoudji, “Manipulating atoms with photons,” Phys. Scr. 1998(1), 33 (1998).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (3)

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 1005–1010 (2010).
[Crossref] [PubMed]

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14180–14185 (2013).
[Crossref] [PubMed]

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref] [PubMed]

Rev. Mod. Phys. (3)

K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[Crossref]

S. Chu, “The manipulation of neutral particles,” Rev. Mod. Phys. 70(3), 685–706 (1998).
[Crossref]

W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70(3), 721–741 (1998).
[Crossref]

Science (3)

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269(5221), 198–201 (1995).
[Crossref] [PubMed]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328(5986), 1673–1675 (2010).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187(4181), 1073–1075 (1975).
[Crossref] [PubMed]

Other (1)

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram and nanometer scale photonic crystal opto-mechanical cavity,” arXiv preprint arXiv:08122953 (2008).

Supplementary Material (5)

NameDescription
» Visualization 1: MP4 (3459 KB)      Clustering of microspheres #1
» Visualization 2: MP4 (1589 KB)      Clustering of microspheres #2
» Visualization 3: MP4 (760 KB)      Oscillating microspheres
» Visualization 4: MP4 (1297 KB)      Disordered motion of trapped particles
» Visualization 5: MP4 (1297 KB)      Dynamic simulation of trapped particles

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup: silica microspheres are suspended above a single Gaussian beam and give rise to many microspheres trapped near the beam focus.
Fig. 2
Fig. 2 Clustering of many particles as side viewed for 7 µm silica spheres suspended in air. (a) The number of particles grows from 1 to 11 as they keep falling (see Visualization 1). (b) Zooming-in reveals that multi-sized and multi-shaped particles can also optically bind. Red scattering is from a low-power probe beam (see Visualization 2). Scale bar is 50 µm in all images and beam waist is about 1 sphere diameter. With 11 particles the particle group center of mass was 240 µm above the beam waist.
Fig. 3
Fig. 3 Dynamics of oscillating microspheres in an optical Gaussian trap (beam waist 0.8 microsphere diameters). Two 7 µm silica microspheres (a) photographed over one half-period of oscillation (see Visualization 3) (b) partial time domain plot of the vertical separation (red) of the objects where changing the sign represents that the two particles were switching positions, and the vertical position of the center-of-mass of the two spheres (blue) (c) histogram of particle positions over 100 s of oscillation, showing two preferred spacings, and (d) Fourier transform of vertical separation data, oscillation is approximately 3 Hz. Non-periodic dynamics: (e) Time evolution of the trajectories for five trapped objects in a beam of waist 0.8 diameters. The particles initially move in small, random orbits near their original positions, but over time exchange places to form new configurations, eventually covering almost completely and area of 40 µm × 450 µm (see Visualization 4).
Fig. 4
Fig. 4 Experimental results and modeling of (a) Silica microspheres, diameter 25 µm, 1D confined to a Gaussian beam trap (waist 0.8 microsphere diameters). Adding objects creates new intensity maxima, resulting in potential wells for trapping additional objects. (b) One spherical and two non-spherical objects in a weakly focused Gaussian beam (waist 4 microsphere diameters) trap where the structure turns 3D. (c) Long-range interaction of trapped particles. A 10 µm motion of a trapped particle results in a similar sized movement of the potential well at a distance of 4 diameters, or 18 wavelengths. (d) Dynamic simulation of trapped particles in an NA = 0.1 and 0.5 W, Gaussian beam where particle diameters from top to bottom are 5.6, 5.6, 7, 10.5 and 10.5 µm (see Visualization 5), as in the above experiment (Fig. 3.e).

Metrics