Abstract

We demonstrate the frequency stabilization of a high output power, erbium silica fiber laser by utilizing a 13C2H2 (acetylene) absorption line at 1538.8 nm and a H13C14N (hydrogen cyanide) absorption line at 1549.73 nm. We introduced a novel short ring cavity configuration and pump power feedback control to suppress the intensity noise of the laser output, which is caused by the relaxation oscillation of erbium ions. As a result, we succeeded in simultaneously obtaining a stable single-frequency oscillation with an output power of over 290 mW, a linewidth of 5 kHz, and a low relative intensity noise (RIN) of −120 dB/Hz. The frequency stabilities reached 2.8 × 10−11 and 6.9 × 10−11 for an integration time of 1 s with a 13C2H2 and a H13C14N absorption line, respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An 11.6 W output, 6 kHz linewidth, single-polarization EDFA-MOPA system with a 13C2H2 frequency stabilized fiber laser

Akira Fujisaki, Shunichi Matsushita, Keisuke Kasai, Masato Yoshida, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 23(2) 1081-1087 (2015)

1.5μm, mode-hop-free full C-band wavelength tunable laser diode with a linewidth of 8 kHz and a RIN of −130 dB/Hz and its extension to the L-band

Keisuke Kasai, Masataka Nakazawa, Yasunori Tomomatsu, and Takashi Endo
Opt. Express 25(18) 22113-22124 (2017)

53-dB phase noise suppression and Hz-range linewidth emission in compact Brillouin/erbium fiber laser

Mo Chen, Chenyu Wang, Jianfei Wang, Hong Luo, and Zhou Meng
Opt. Express 25(16) 19216-19225 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
    [Crossref] [PubMed]
  2. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
    [Crossref] [PubMed]
  3. A. Araya, K. Sekiya, and Y. Shindo, “Laser-interferometric broadband seismometer for ocean borehole observations, Feasibility of giant fiber-optic gyroscopes,” in Proceedings of the Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies (2007), pp. 245–248.
  4. M. Ohtsu and E. Ikegami, “Frequency stabilization of 1.5 μm DFB laser using internal second harmonic generation and atomic 87Rb line,” Electron. Lett. 25(1), 22–23 (1989).
    [Crossref]
  5. T. Yanagawa, S. Saito, and Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45(8), 826–828 (1984).
    [Crossref]
  6. M. de Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High-frequency-stability laser at 1.5 μm using Doppler-free molecular lines,” Opt. Lett. 20(6), 572–574 (1995).
    [Crossref] [PubMed]
  7. M. Têtu, F. Ouellette, C. Latrasse, R. Larose, D. Stepanov, and M. A. Duguay, “Simple frequency tuning technique for locking a single mode erbium-doped fiber laser to the center of molecular resonances,” Electron. Lett. 30(10), 791–793 (1994).
    [Crossref]
  8. K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
    [Crossref]
  9. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
    [Crossref] [PubMed]
  10. F. Sanchez, P. L. Boudec, and P. L. Francois, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48(3), 2220–2229 (1993).
    [Crossref] [PubMed]
  11. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol. 22(1), 57–62 (2004).
    [Crossref]
  12. A. Fujisaki, S. Matsushita, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, “An 11.6 W output, 6 kHz linewidth, single-polarization EDFA-MOPA system with a 13C2H2 frequency stabilized fiber laser,” Opt. Express 23(2), 1081–1087 (2015).
    [Crossref] [PubMed]
  13. T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).
    [Crossref]
  14. S. Masuda, S. Niki, and M. Nakazawa, “Environmentally stable, simple passively mode-locked fiber ring laser using a four-port circulator,” Opt. Express 17(8), 6613–6622 (2009).
    [Crossref] [PubMed]
  15. G. A. Ball, C. Holton, G. Hull-Allen, and W. Morey, “60 mW 1.5 μm single-frequency low-noise fiber laser MOPA,” IEEE Photonics Technol. Lett. 6(2), 192–194 (1994).
    [Crossref]
  16. K. Kasai, A. Fujisaki, M. Yoshida, T. Hirooka, M. Nakazawa, and S. Masuda, “A 160 mW output, 5 kHz linewidth frequency-stabilized erbium silica fiber laser with a short cavity configuration,” in Proceedings of the Conf. on Lasers and Electro-Optics (CLEO) (2014), pp. SW1N.4.
    [Crossref]
  17. H. Sasada and K. Yamada, “Calibration lines of HCN in the 1.5-μm region,” Appl. Opt. 29(24), 3535–3547 (1990).
    [Crossref] [PubMed]
  18. J. Vanier and L. G. Bernier, “On the signal-to-noise ratio and short-term stability of passive rubidium frequency standards,” IEEE Trans. Instrum. Meas. 30(4), 277–282 (1981).
    [Crossref]
  19. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54(2), 221–230 (1966).
    [Crossref]

2015 (2)

2009 (2)

2007 (1)

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

2006 (1)

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

2004 (2)

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol. 22(1), 57–62 (2004).
[Crossref]

T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).
[Crossref]

1995 (1)

1994 (2)

M. Têtu, F. Ouellette, C. Latrasse, R. Larose, D. Stepanov, and M. A. Duguay, “Simple frequency tuning technique for locking a single mode erbium-doped fiber laser to the center of molecular resonances,” Electron. Lett. 30(10), 791–793 (1994).
[Crossref]

G. A. Ball, C. Holton, G. Hull-Allen, and W. Morey, “60 mW 1.5 μm single-frequency low-noise fiber laser MOPA,” IEEE Photonics Technol. Lett. 6(2), 192–194 (1994).
[Crossref]

1993 (1)

F. Sanchez, P. L. Boudec, and P. L. Francois, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48(3), 2220–2229 (1993).
[Crossref] [PubMed]

1990 (1)

1989 (1)

M. Ohtsu and E. Ikegami, “Frequency stabilization of 1.5 μm DFB laser using internal second harmonic generation and atomic 87Rb line,” Electron. Lett. 25(1), 22–23 (1989).
[Crossref]

1984 (1)

T. Yanagawa, S. Saito, and Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45(8), 826–828 (1984).
[Crossref]

1981 (1)

J. Vanier and L. G. Bernier, “On the signal-to-noise ratio and short-term stability of passive rubidium frequency standards,” IEEE Trans. Instrum. Meas. 30(4), 277–282 (1981).
[Crossref]

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54(2), 221–230 (1966).
[Crossref]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54(2), 221–230 (1966).
[Crossref]

Araya, A.

A. Araya, K. Sekiya, and Y. Shindo, “Laser-interferometric broadband seismometer for ocean borehole observations, Feasibility of giant fiber-optic gyroscopes,” in Proceedings of the Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies (2007), pp. 245–248.

Awaji, Y.

Ball, G. A.

G. A. Ball, C. Holton, G. Hull-Allen, and W. Morey, “60 mW 1.5 μm single-frequency low-noise fiber laser MOPA,” IEEE Photonics Technol. Lett. 6(2), 192–194 (1994).
[Crossref]

Benabid, F.

Beppu, S.

Bernier, L. G.

J. Vanier and L. G. Bernier, “On the signal-to-noise ratio and short-term stability of passive rubidium frequency standards,” IEEE Trans. Instrum. Meas. 30(4), 277–282 (1981).
[Crossref]

Boudec, P. L.

F. Sanchez, P. L. Boudec, and P. L. Francois, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48(3), 2220–2229 (1993).
[Crossref] [PubMed]

Corwin, K. L.

Couny, F.

de Labachelerie, M.

Duguay, M. A.

M. Têtu, F. Ouellette, C. Latrasse, R. Larose, D. Stepanov, and M. A. Duguay, “Simple frequency tuning technique for locking a single mode erbium-doped fiber laser to the center of molecular resonances,” Electron. Lett. 30(10), 791–793 (1994).
[Crossref]

Foreman, S. M.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Francois, P. L.

F. Sanchez, P. L. Boudec, and P. L. Francois, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48(3), 2220–2229 (1993).
[Crossref] [PubMed]

Fujisaki, A.

Geng, J.

Hirooka, T.

Holman, K. W.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Holton, C.

G. A. Ball, C. Holton, G. Hull-Allen, and W. Morey, “60 mW 1.5 μm single-frequency low-noise fiber laser MOPA,” IEEE Photonics Technol. Lett. 6(2), 192–194 (1994).
[Crossref]

Hu, Y.

Hudson, D. D.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Hull-Allen, G.

G. A. Ball, C. Holton, G. Hull-Allen, and W. Morey, “60 mW 1.5 μm single-frequency low-noise fiber laser MOPA,” IEEE Photonics Technol. Lett. 6(2), 192–194 (1994).
[Crossref]

Ikegami, E.

M. Ohtsu and E. Ikegami, “Frequency stabilization of 1.5 μm DFB laser using internal second harmonic generation and atomic 87Rb line,” Electron. Lett. 25(1), 22–23 (1989).
[Crossref]

Jiang, S.

T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).
[Crossref]

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol. 22(1), 57–62 (2004).
[Crossref]

Jones, A. M.

Jones, D. J.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Kaneda, Y.

Kasai, K.

Knabe, K.

Larose, R.

M. Têtu, F. Ouellette, C. Latrasse, R. Larose, D. Stepanov, and M. A. Duguay, “Simple frequency tuning technique for locking a single mode erbium-doped fiber laser to the center of molecular resonances,” Electron. Lett. 30(10), 791–793 (1994).
[Crossref]

Latrasse, C.

M. Têtu, F. Ouellette, C. Latrasse, R. Larose, D. Stepanov, and M. A. Duguay, “Simple frequency tuning technique for locking a single mode erbium-doped fiber laser to the center of molecular resonances,” Electron. Lett. 30(10), 791–793 (1994).
[Crossref]

Li, L.

T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).
[Crossref]

Light, P. S.

Lim, J.

Luo, T.

T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).
[Crossref]

Mafi, A.

T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).
[Crossref]

Masuda, S.

Matsushita, S.

Moloney, J.

T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).
[Crossref]

Morey, W.

G. A. Ball, C. Holton, G. Hull-Allen, and W. Morey, “60 mW 1.5 μm single-frequency low-noise fiber laser MOPA,” IEEE Photonics Technol. Lett. 6(2), 192–194 (1994).
[Crossref]

Nakagawa, K.

Nakazawa, M.

Nicholson, J. W.

Niki, S.

Ohtsu, M.

M. de Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High-frequency-stability laser at 1.5 μm using Doppler-free molecular lines,” Opt. Lett. 20(6), 572–574 (1995).
[Crossref] [PubMed]

M. Ohtsu and E. Ikegami, “Frequency stabilization of 1.5 μm DFB laser using internal second harmonic generation and atomic 87Rb line,” Electron. Lett. 25(1), 22–23 (1989).
[Crossref]

Ouellette, F.

M. Têtu, F. Ouellette, C. Latrasse, R. Larose, D. Stepanov, and M. A. Duguay, “Simple frequency tuning technique for locking a single mode erbium-doped fiber laser to the center of molecular resonances,” Electron. Lett. 30(10), 791–793 (1994).
[Crossref]

Peyghambarian, N.

T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).
[Crossref]

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol. 22(1), 57–62 (2004).
[Crossref]

Qiu, T.

T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).
[Crossref]

Saito, S.

T. Yanagawa, S. Saito, and Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45(8), 826–828 (1984).
[Crossref]

Sanchez, F.

F. Sanchez, P. L. Boudec, and P. L. Francois, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48(3), 2220–2229 (1993).
[Crossref] [PubMed]

Sasada, H.

Schülzgen, A.

T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).
[Crossref]

Sekiya, K.

A. Araya, K. Sekiya, and Y. Shindo, “Laser-interferometric broadband seismometer for ocean borehole observations, Feasibility of giant fiber-optic gyroscopes,” in Proceedings of the Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies (2007), pp. 245–248.

Shindo, Y.

A. Araya, K. Sekiya, and Y. Shindo, “Laser-interferometric broadband seismometer for ocean borehole observations, Feasibility of giant fiber-optic gyroscopes,” in Proceedings of the Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies (2007), pp. 245–248.

Spiegelberg, C.

Stepanov, D.

M. Têtu, F. Ouellette, C. Latrasse, R. Larose, D. Stepanov, and M. A. Duguay, “Simple frequency tuning technique for locking a single mode erbium-doped fiber laser to the center of molecular resonances,” Electron. Lett. 30(10), 791–793 (1994).
[Crossref]

Suzuki, A.

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Temyanko, V.

T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).
[Crossref]

Têtu, M.

M. Têtu, F. Ouellette, C. Latrasse, R. Larose, D. Stepanov, and M. A. Duguay, “Simple frequency tuning technique for locking a single mode erbium-doped fiber laser to the center of molecular resonances,” Electron. Lett. 30(10), 791–793 (1994).
[Crossref]

Thapa, R.

Tillman, K. A.

Vanier, J.

J. Vanier and L. G. Bernier, “On the signal-to-noise ratio and short-term stability of passive rubidium frequency standards,” IEEE Trans. Instrum. Meas. 30(4), 277–282 (1981).
[Crossref]

Washburn, B. R.

Wheeler, N.

Wu, S.

Yamada, K.

Yamamoto, Y.

T. Yanagawa, S. Saito, and Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45(8), 826–828 (1984).
[Crossref]

Yanagawa, T.

T. Yanagawa, S. Saito, and Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45(8), 826–828 (1984).
[Crossref]

Ye, J.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Yoshida, M.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Yanagawa, S. Saito, and Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45(8), 826–828 (1984).
[Crossref]

Electron. Lett. (2)

M. Têtu, F. Ouellette, C. Latrasse, R. Larose, D. Stepanov, and M. A. Duguay, “Simple frequency tuning technique for locking a single mode erbium-doped fiber laser to the center of molecular resonances,” Electron. Lett. 30(10), 791–793 (1994).
[Crossref]

M. Ohtsu and E. Ikegami, “Frequency stabilization of 1.5 μm DFB laser using internal second harmonic generation and atomic 87Rb line,” Electron. Lett. 25(1), 22–23 (1989).
[Crossref]

IEEE Photonics Technol. Lett. (2)

G. A. Ball, C. Holton, G. Hull-Allen, and W. Morey, “60 mW 1.5 μm single-frequency low-noise fiber laser MOPA,” IEEE Photonics Technol. Lett. 6(2), 192–194 (1994).
[Crossref]

T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

J. Vanier and L. G. Bernier, “On the signal-to-noise ratio and short-term stability of passive rubidium frequency standards,” IEEE Trans. Instrum. Meas. 30(4), 277–282 (1981).
[Crossref]

IEICE Electron. Express (1)

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (1)

F. Sanchez, P. L. Boudec, and P. L. Francois, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48(3), 2220–2229 (1993).
[Crossref] [PubMed]

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54(2), 221–230 (1966).
[Crossref]

Rev. Sci. Instrum. (1)

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Other (2)

A. Araya, K. Sekiya, and Y. Shindo, “Laser-interferometric broadband seismometer for ocean borehole observations, Feasibility of giant fiber-optic gyroscopes,” in Proceedings of the Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies (2007), pp. 245–248.

K. Kasai, A. Fujisaki, M. Yoshida, T. Hirooka, M. Nakazawa, and S. Masuda, “A 160 mW output, 5 kHz linewidth frequency-stabilized erbium silica fiber laser with a short cavity configuration,” in Proceedings of the Conf. on Lasers and Electro-Optics (CLEO) (2014), pp. SW1N.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1 (a) Configuration of high power, single-frequency EFRL, (b) reflection spectrum of installed FBG filter.
Fig. 2
Fig. 2 Control circuit of relaxation oscillation of laser output.
Fig. 3
Fig. 3 Configuration of 13C2H2 frequency-stabilized EFRL.
Fig. 4
Fig. 4 13C2H2 absorption lines observed for (a) a long span, and (b) a P(10) linear absorption line.
Fig. 5
Fig. 5 Output power as a function of pump power for different EDF lengths.
Fig. 6
Fig. 6 Optical spectrum of 13C2H2 frequency-stabilized CW EFRL (0.01 nm resolution bandwidth) with 200 and 5 nm spans, respectively.
Fig. 7
Fig. 7 Heterodyne beat spectrum between a frequency-stabilized CW EFRL and a reference laser diode.
Fig. 8
Fig. 8 13C2H2-P(10) absorption line and its 1st derivative signal obtained with the PSD.
Fig. 9
Fig. 9 Allan deviation of frequency fluctuation of 13C2H2 frequency-stabilized CW EFRL.
Fig. 10
Fig. 10 Delayed self-heterodyne spectra of 13C2H2 frequency-stabilized CW EFRL plotted on (a) linear and (b) log scale.
Fig. 11
Fig. 11 RIN spectrum of 13C2H2 frequency-stabilized CW EFRL.
Fig. 12
Fig. 12 (a) Power fluctuation (DC~5 MHz) of laser output of 13C2H2 frequency-stabilized CW EFRL, and (b) enlarged view.
Fig. 13
Fig. 13 Output power characteristics of H13C14N frequency-stabilized CW EFRL as a function of pump power.
Fig. 14
Fig. 14 Optical spectrum of H13C14N frequency-stabilized CW EFRL (0.01 nm resolution bandwidth) with 200 and 5 nm spans, respectively.
Fig. 15
Fig. 15 H13C14N absorption lines observed for a broad span (a), and a specific P(10) linear absorption line (b).
Fig. 16
Fig. 16 H13C14N-P(10) absorption line and its first derivative signal obtained with the PSD circuit.
Fig. 17
Fig. 17 Allan deviation of frequency fluctuation of H13C14N frequency-stabilized CW EFRL.
Fig. 18
Fig. 18 Delayed self-heterodyne spectra of H13C14N frequency-stabilized CW EFRL plotted on (a) linear and (b) log scale.
Fig. 19
Fig. 19 RIN spectrum of H13C14N frequency-stabilized CW EFRL.
Fig. 20
Fig. 20 (a) Output power fluctuation (DC~5 MHz) of H13C14N frequency-stabilized CW EFRL, (b) expanded view.

Metrics