Abstract

Pair creation by spontaneous parametric down-conversion (SPDC) has become a reliable source for single-photon states, used in many kinds of quantum information experiments and applications. In order to be spectrally pure, the two photons within a generated pair should be as frequency-uncorrelated as possible. For this purpose most experiments use narrow bandpass filters, having to put up with a drastic decrease in count rates. This article elaborates (theoretically and by numerical evaluation) the alternative method to engineer a setup such that the SPDC-generated quantum states are intrinsically pure. Using pulsed pump lasers and periodically poled crystals this approach makes bandpass filtering obsolete and allows for significantly higher output intensities and therefore count rates in the detectors. After numerically scanning all common wavelength regimes, polarisation configurations and three different non-linear crystals, we present a broad variety of setups which allow for an implementation of this method.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion

Fumihiro Kaneda, Karina Garay-Palmett, Alfred B. U’Ren, and Paul G. Kwiat
Opt. Express 24(10) 10733-10747 (2016)

Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths

N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, and R. T. Thew
Opt. Express 22(14) 17246-17253 (2014)

Engineering of near-IR photon pairs to be factorable in space-time and entangled in polarization

Kevin Zielnicki, Karina Garay-Palmett, Radhika Dirks, Alfred B. U’Ren, and Paul G. Kwiat
Opt. Express 23(6) 7894-7907 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
    [Crossref] [PubMed]
  2. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
    [Crossref]
  3. A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” http://arxiv.org/abs/quant-ph/0611019 .
  4. J. H. Eberly, “Schmidt analysis of pure-state entanglement,” Laser Phys. 16, 921–926 (2006).
    [Crossref]
  5. R. B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
    [Crossref] [PubMed]
  6. P. G. Evans, J. Schaake, R. S. Bennink, W. P. Grice, and T. S. Humble, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” http://arxiv.org/abs/1009.1609 .
  7. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
    [Crossref] [PubMed]
  8. K. Edamatsu, R. Shimizu, W. Ueno, R. B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform. 8, 19–26 (2011).
    [Crossref]
  9. M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A 86, 010302 (2012).
    [Crossref]
  10. R. B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
    [Crossref]
  11. R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
    [Crossref] [PubMed]
  12. S. Wollmann, M. Weston, H. M. Chrzanowski, S. Slussarenko, and G. Pryde, “High heralding efficiency single photon source at telecom wavelength,” in Proceedings of European Quantum Electronics Conference (European Physical Society, 2015), EB-3.2-wed.
  13. A. Smith, “SNLO,” http://www.as-photonics.com/snlo .
  14. M. V. Pack, D. J. Armstrong, and A. V. Smith, “Measurement of the χ(2) tensors of KTiOPO4, KTiOAsO4, RbTiOPO4, and RbTiOAsO4 crystals,” Appl. Opt. 43, 3319–3323 (2004).
    [Crossref] [PubMed]

2014 (1)

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

2013 (2)

R. B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[Crossref]

R. B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[Crossref] [PubMed]

2012 (1)

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A 86, 010302 (2012).
[Crossref]

2011 (2)

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

K. Edamatsu, R. Shimizu, W. Ueno, R. B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform. 8, 19–26 (2011).
[Crossref]

2008 (1)

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

2006 (1)

J. H. Eberly, “Schmidt analysis of pure-state entanglement,” Laser Phys. 16, 921–926 (2006).
[Crossref]

2004 (1)

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
[Crossref] [PubMed]

Armstrong, D. J.

Benichi, H.

R. B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[Crossref] [PubMed]

R. B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[Crossref]

Christ, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

Chrzanowski, H. M.

S. Wollmann, M. Weston, H. M. Chrzanowski, S. Slussarenko, and G. Pryde, “High heralding efficiency single photon source at telecom wavelength,” in Proceedings of European Quantum Electronics Conference (European Physical Society, 2015), EB-3.2-wed.

Eberly, J. H.

J. H. Eberly, “Schmidt analysis of pure-state entanglement,” Laser Phys. 16, 921–926 (2006).
[Crossref]

Eckstein, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

Edamatsu, K.

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A 86, 010302 (2012).
[Crossref]

K. Edamatsu, R. Shimizu, W. Ueno, R. B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform. 8, 19–26 (2011).
[Crossref]

Fujiwara, M.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

R. B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
[Crossref] [PubMed]

Izumi, S.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

Jin, R. B.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

R. B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[Crossref]

R. B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[Crossref] [PubMed]

K. Edamatsu, R. Shimizu, W. Ueno, R. B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform. 8, 19–26 (2011).
[Crossref]

Kaneda, F.

K. Edamatsu, R. Shimizu, W. Ueno, R. B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform. 8, 19–26 (2011).
[Crossref]

Kosaka, H.

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A 86, 010302 (2012).
[Crossref]

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
[Crossref] [PubMed]

Miki, S.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

R. B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[Crossref]

Mitsumori, Y.

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A 86, 010302 (2012).
[Crossref]

Morohashi, I.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

Mosley, P. J.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

Nagano, S.

K. Edamatsu, R. Shimizu, W. Ueno, R. B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform. 8, 19–26 (2011).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
[Crossref] [PubMed]

Pack, M. V.

Pryde, G.

S. Wollmann, M. Weston, H. M. Chrzanowski, S. Slussarenko, and G. Pryde, “High heralding efficiency single photon source at telecom wavelength,” in Proceedings of European Quantum Electronics Conference (European Physical Society, 2015), EB-3.2-wed.

Sakamoto, T.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

Sasaki, M

Sasaki, M.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

R. B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[Crossref]

Shimizu, R.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

R. B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[Crossref]

R. B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[Crossref] [PubMed]

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A 86, 010302 (2012).
[Crossref]

K. Edamatsu, R. Shimizu, W. Ueno, R. B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform. 8, 19–26 (2011).
[Crossref]

Silberhorn, C.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

Slussarenko, S.

S. Wollmann, M. Weston, H. M. Chrzanowski, S. Slussarenko, and G. Pryde, “High heralding efficiency single photon source at telecom wavelength,” in Proceedings of European Quantum Electronics Conference (European Physical Society, 2015), EB-3.2-wed.

Smith, A. V.

Smith, B. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

Suizu, K.

K. Edamatsu, R. Shimizu, W. Ueno, R. B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform. 8, 19–26 (2011).
[Crossref]

Suzuki, H.

K. Edamatsu, R. Shimizu, W. Ueno, R. B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform. 8, 19–26 (2011).
[Crossref]

Syouji, A.

K. Edamatsu, R. Shimizu, W. Ueno, R. B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform. 8, 19–26 (2011).
[Crossref]

Takeoka, M.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

Terai, H.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

R. B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[Crossref]

Ueno, W.

K. Edamatsu, R. Shimizu, W. Ueno, R. B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform. 8, 19–26 (2011).
[Crossref]

Wakui, K.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

R. B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[Crossref]

R. B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[Crossref] [PubMed]

Walmsley, I. A.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

Wang, Z.

R. B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[Crossref]

Weston, M.

S. Wollmann, M. Weston, H. M. Chrzanowski, S. Slussarenko, and G. Pryde, “High heralding efficiency single photon source at telecom wavelength,” in Proceedings of European Quantum Electronics Conference (European Physical Society, 2015), EB-3.2-wed.

Whang, Z.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

Wollmann, S.

S. Wollmann, M. Weston, H. M. Chrzanowski, S. Slussarenko, and G. Pryde, “High heralding efficiency single photon source at telecom wavelength,” in Proceedings of European Quantum Electronics Conference (European Physical Society, 2015), EB-3.2-wed.

Yabuno, M.

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A 86, 010302 (2012).
[Crossref]

K. Edamatsu, R. Shimizu, W. Ueno, R. B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform. 8, 19–26 (2011).
[Crossref]

Yamashita, T.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

R. B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[Crossref]

Appl. Opt. (1)

Laser Phys. (1)

J. H. Eberly, “Schmidt analysis of pure-state entanglement,” Laser Phys. 16, 921–926 (2006).
[Crossref]

New J. Phys. (1)

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

Opt. Express (1)

Phys. Rev. A (2)

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A 86, 010302 (2012).
[Crossref]

R. B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[Crossref]

Phys. Rev. Lett. (2)

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
[Crossref] [PubMed]

Prog. Inform. (1)

K. Edamatsu, R. Shimizu, W. Ueno, R. B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform. 8, 19–26 (2011).
[Crossref]

Sci. Rep. (1)

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

Other (4)

S. Wollmann, M. Weston, H. M. Chrzanowski, S. Slussarenko, and G. Pryde, “High heralding efficiency single photon source at telecom wavelength,” in Proceedings of European Quantum Electronics Conference (European Physical Society, 2015), EB-3.2-wed.

A. Smith, “SNLO,” http://www.as-photonics.com/snlo .

P. G. Evans, J. Schaake, R. S. Bennink, W. P. Grice, and T. S. Humble, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” http://arxiv.org/abs/1009.1609 .

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” http://arxiv.org/abs/quant-ph/0611019 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Sketch of the basic approach. Most experiments use narrow bandpass filters (a) to remove correlations in the joint spectral intensity, therefore omitting a significant amount of generated photons (grey area). Alternatively one can design the experimental setup such that the daughter spectra are intrinsically uncorrelated (b), hence no filters have to be used and no photons are discarded.

Fig. 2
Fig. 2

Graphical representation of the joint spectral intensity in four different configurations. In the case of coinciding centre wavelengths (λs = λi) Figs. (a), (b) and (d) each represent spectrally indistinguishable signal and idler radiation. However, Figs. (a) and (b) depict cases where signal and idler wavelengths are highly (anti-) correlated, resulting in a purity of P ∼ 0.1. The plots on the bottom each illustrate a frequency-uncorrelated down-conversion (P ∼ 1), where signal and idler carry (c) different and (d) same bandwidth respectively (as indicated by the white curves).

Fig. 3
Fig. 3

Signal wavelength versus pump wavelength λp (left) and crystal periodicity Λ (right) for type 0 SPDC in (a) ppKTP, (b) ppLN and (c) ppLT. All plots exclusively display configurations which allow for an uncorrelated joint spectral intensity. Each coloured line corresponds to a certain pump wavelength λp and depicts the range of signal wavelength over which an intrinsic purity of more than 0.99 can be achieved by mutual matching of pump spectrum and crystal length. Note that all depicted data corresponds to a crystal temperature of 50 °C and is slightly modified with varying temperature.

Fig. 4
Fig. 4

Setups for intrinsically pure state generation in ppLN, SPDC type I eo + o and effective non-linearity deff = d31 ∼ 2.8pmV−1. The down-conversion 750nm → 1200nm + 2000nm is closer investigated in Fig. 5 as an exemplary illustration of how pulse duration and crystal length have to be mutually matched for high purity.

Fig. 5
Fig. 5

Illustration of the spectral purity P with respect to pulse duration τ and crystal length L in the case of a type I down-conversion from 750nm to 1200nm and 2000nm in ppLN.

Fig. 6
Fig. 6

Signal wavelength versus pump wavelength λp (left) and crystal periodicity Λ (right) for type II SPDC in (a) ppKTP and (b) ppLN at T = 50°C. Again, only setups which allow for intrinsically pure signal and idler states are displayed. The gray line in the left plots represents spectrally symmetric down-conversions. For ppKTP there is a range of pump and signal wavelengths for which the periodicity approaches infinity (as indicated schematically by the convergent lines after the axis break). This property enables spectrally pure output generation without periodic poling (displayed in Fig. 7). Moreover, Fig. (a) illustrates that ppKTP allows for pure degenerate output states with signal and idler in the telecom band. Fig. (b) indicates that ppLN allows for a priori uncorrelated spectra only with signal and idler in the mid-infrared regime.

Fig. 7
Fig. 7

Illustration of setups for type II SPDC (oo + e) which allow for phase-matched and intrinsically pure states in bulk—not periodically poled—KTP (deff ∼ 3.9pmV−1 [14]). The JSI of three setups is depicted via insets as examples. The down-conversion 650nm → 1011nm + 1820.36nm is closer investigated in Fig. 9(b).

Fig. 8
Fig. 8

Pure quantum-state generation by frequency-degenerate type II SPDC ppKTP. The black curve depicts the Hong-Ou-Mandel visibility between signal and idler of one source. The red curves illustrate how signal and idler bandwidths change relatively to each other with respect to λp (here in arbitrary units since the numeral values of Δλs/i depend on the respective pulse- and crystal lengths). Although pure states can be generated within the full plotted range, signal and idler are fully spectrally indistinguishable only at the down-conversion 791nm → 2 × 1582nm, as indicated by the intersection of the red curves.

Fig. 9
Fig. 9

Tailoring spectrally uncorrelated output states by mutual matching of pulse duration τ and crystal length L. The graphs illustrate three examples of type II SPDC: Fig. (a) represents frequency-degenerate SPDC with 791 nm pump in ppKTP (similar plot for 1755 nm pump in ppLN); Fig. (b) represents type II down-conversion 650nm → 1011nm + 1820.36nm in bulk KTP. Note from the insets how the output spectra get narrower with increasing crystal- and pulse length.

Tables (1)

Tables Icon

Table 1 Effective non-linearity coefficients for all polarisation configurations and three kinds of periodically poled crystals. In all cases a collinear propagation along the crystal’s x-axis is assumed. The letter o denotes polarisation along the ordinary (the y-) axis while e denotes polarisation along the extraordinary (the z-) axis. Note that all numerical values in the table are to be understood as approximation since they vary slightly with the involved wavelengths and the material’s doping. The values are taken from the software SNLO v63, developed by AS-Photonics, LLC [13].

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

| Ψ = 𝒩 ˜ d eff L 0 0 μ ( ω s + ω i ) ψ ( ω s , ω i ) a s a i d ω s d ω i | 0 ,
ψ ( ω s , ω i ) = e i Δ k L / 2 sinc ( Δ k L 2 )
Δ k = 2 π ( n p λ p k ^ p n s λ s k ^ s n i λ i k ^ i ) ,
Δ k = 2 π ( n p λ p n s λ s n i λ i m Λ ) ,
V = P A + P B ρ A ρ B 2 2 .
V = P .
V = P ρ s ρ i 2 2 ,
ρ = j p j | Ψ j Ψ j |
P = Tr ( ρ 2 ) = j p j 2 .
ρ A = Tr B ρ A B , ρ B = Tr A ρ A B .
| Ψ A B = j λ j | α j A | β j B .
Tr B ρ A B = l β l | ρ A B | β l = l β l | ( j k λ j λ k | α j α k | | β j β k | ) | β l = l j k λ j λ k | α j α k | β l | β j β k | β l = l j k λ j λ k | α j α k | δ l j δ k l = j λ j | α j α j | = ρ A .
P A = P B = Tr ( ρ A 2 ) = Tr ( ρ B 2 ) = j λ j 2 .
| Ψ = | α | β
f ( ω s , ω i ) = μ ( ω s + ω i ) ψ ( ω s , ω i ) ,
| Ψ = 𝒩 0 0 f ( ω s , ω i ) a s a i d ω s d ω i | 0 .
| Ψ = 𝒩 0 f s ( ω s ) a s d ω s 0 f i ( ω i ) a i d ω i | 0 .
| Ψ = j λ j | s j | i j ,
| Ψ = m n f ( ω s , m , ω i , n ) | s ˜ m | i ˜ n .
f ( ω s , m , ω i , n ) = s ˜ m | | i ˜ n = i ˜ n | | s ˜ m .
= n i n | ρ | i n = ρ s .
= m s m | ρ | s m = ρ i .
| Ψ = m n m n s ˜ m | | i ˜ n .
= U D V ,
U m j = d j U m j ,
V n j = d j V n j = d j ( V ) j n ,
| Ψ = m n ( U D V ) m n | s ˜ m | i ˜ n = j m n U m j D i j ( V ) j n | s ˜ m | i ˜ n = j d j ( m U m j | s ˜ m ) ( m ( V ) j n | i ˜ n ) .
| s j = m U m j | s ˜ m ,
| i j = n ( V ) j n | i ˜ n ,

Metrics