Abstract

We present an ultrawide angle catadioptric lens with a field of view (FOV) of 360° × 270° and F/# of 2.5. The lens consists of two optical configurations: the center configuration is all-refractive and has a FOV of ± 50° and the catadioptric configuration covers the remaining FOV. The MTF at 119lp/mm of the rear FOV (90° to 135°) can be improved by 0.15 via applying an annularly stitched aspherical surface (ASAS) to the rear surface of the catadioptric element. The developed lens presents smaller marginal distortions and higher relative illuminations compared with traditional panoramic lenses. A proof-of-concept prototype producing acceptable image quality is developed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical description and design method with annularly stitched aspheric surface

De-Wen Cheng, Xue-Jiao Chen, Chen Xu, Yuan Hu, and Yong-Tian Wang
Appl. Opt. 54(34) 10154-10162 (2015)

Hybrid lens design for ultrawide-angle imaging with a high Strehl ratio in a folded system

Yu-Shan Chang, Long Hsu, and Kuang-Lung Huang
Appl. Opt. 57(19) 5514-5522 (2018)

Designs for high performance PAL-based imaging systems

Dong Hui, Mei Zhang, Zheng Geng, Yunfang Zhang, Jingyuan Duan, Ancun Shi, Li Hui, Qing Fang, and Yuliang Liu
Appl. Opt. 51(21) 5310-5317 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. Nagahara and Y. Yagi, “Lensless imaging for wide field of view,” Opt. Express 54(2), 25114 (2015).
  2. S. Thibault and J.-C. Artonne, “Panomorph lenses: A Low Cost Solution for Panoramic Surveillance,” Proc. SPIE 6203, 62030S (2006).
    [Crossref]
  3. Google, “self-driving-car,” http://www.google.com/about/careers/lifeatgoogle/self-driving-car-test-steve-mahan.html .
  4. K. H. Heng, W.-D. Zhong, T. H. Cheng, N. Liu, and Y. He, “Beam divergence changing mechanism for short-range inter-unmanned aerial vehicle optical communications,” Appl. Opt. 48(8), 1565–1572 (2009).
    [Crossref] [PubMed]
  5. H. Koyasu, J. Miura, and Y. Shirai, “Mobile robot navigation in dynamic environments using omnidirectional stereo,” in Proceedings of IEEE Conference on Robotics & Automation (IEEE, 2003), pp. 893–898.
    [Crossref]
  6. J. Zeil, M. I. Hofmann, and J. S. Chahl, “Catchment areas of panoramic snapshots in outdoor scenes,” J. Opt. Soc. Am. A 20(3), 450–469 (2003).
    [Crossref] [PubMed]
  7. C. Gong, D. Cheng, C. Xu, and Y. Wang, “Design of a novel panoramic lens without central blindness,” Proc. SPIE 9618, 961816 (2015).
    [Crossref]
  8. Y. Shimizu, “Wide angle fisheye lens,” U.S. Patent 3737214 (June 5, 1973).
  9. C. B. Martin, “Design issues of a hyper-field fisheye lens,” Proc. SPIE 5524, 84–92 (2004).
    [Crossref]
  10. Z. Huang, J. Bai, and X. Y. Hou, “Design of panoramic stereo imaging with single optical system,” Opt. Express 20(6), 6085–6096 (2012).
    [Crossref] [PubMed]
  11. C. Pernechele, “Hyper-hemispheric and bifocal panoramic lenses,” Proc. SPIE 8896, 889603 (2013).
    [Crossref]
  12. W. Stürzl, D. Soccol, J. Zeil, N. Boeddeker, and M. V. Srinivasan, “Rugged, obstruction-free, mirror-lens combination for panoramic imaging,” Appl. Opt. 47(32), 6070–6078 (2008).
    [Crossref] [PubMed]
  13. G.-I. Kweon, K. T. Kim, G. H. Kim, and H. S. Kim, “Folded catadioptric panoramic lens with an equidistance projection scheme,” Appl. Opt. 44(14), 2759–2767 (2005).
    [Crossref] [PubMed]
  14. T. Ma, J. Yu, P. Liang, and C. Wang, “Design of a freeform varifocal panoramic optical system with specified annular center of field of view,” Opt. Express 19(5), 3843–3853 (2011).
    [Crossref] [PubMed]
  15. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
    [Crossref] [PubMed]
  16. W. Song, D. Cheng, Y. Liu, and Y. Wang, “Free-form illumination of a refractive surface using multiple-faceted refractors,” Appl. Opt. 54(28), E1–E7 (2015).
    [Crossref] [PubMed]
  17. D. Cheng, X. Chen, C. Xu, Y. Hu, and Y. Wang, “Optical description and design method with annularly stitched aspheric surface,” Appl. Opt. 54(34), 10154-10162 (2015).

2015 (4)

H. Nagahara and Y. Yagi, “Lensless imaging for wide field of view,” Opt. Express 54(2), 25114 (2015).

C. Gong, D. Cheng, C. Xu, and Y. Wang, “Design of a novel panoramic lens without central blindness,” Proc. SPIE 9618, 961816 (2015).
[Crossref]

W. Song, D. Cheng, Y. Liu, and Y. Wang, “Free-form illumination of a refractive surface using multiple-faceted refractors,” Appl. Opt. 54(28), E1–E7 (2015).
[Crossref] [PubMed]

D. Cheng, X. Chen, C. Xu, Y. Hu, and Y. Wang, “Optical description and design method with annularly stitched aspheric surface,” Appl. Opt. 54(34), 10154-10162 (2015).

2013 (1)

C. Pernechele, “Hyper-hemispheric and bifocal panoramic lenses,” Proc. SPIE 8896, 889603 (2013).
[Crossref]

2012 (1)

2011 (1)

2009 (2)

2008 (1)

2006 (1)

S. Thibault and J.-C. Artonne, “Panomorph lenses: A Low Cost Solution for Panoramic Surveillance,” Proc. SPIE 6203, 62030S (2006).
[Crossref]

2005 (1)

2004 (1)

C. B. Martin, “Design issues of a hyper-field fisheye lens,” Proc. SPIE 5524, 84–92 (2004).
[Crossref]

2003 (1)

Artonne, J.-C.

S. Thibault and J.-C. Artonne, “Panomorph lenses: A Low Cost Solution for Panoramic Surveillance,” Proc. SPIE 6203, 62030S (2006).
[Crossref]

Bai, J.

Boeddeker, N.

Chahl, J. S.

Chen, X.

Cheng, D.

Cheng, T. H.

Gong, C.

C. Gong, D. Cheng, C. Xu, and Y. Wang, “Design of a novel panoramic lens without central blindness,” Proc. SPIE 9618, 961816 (2015).
[Crossref]

He, Y.

Heng, K. H.

Hofmann, M. I.

Hou, X. Y.

Hu, Y.

Hua, H.

Huang, Z.

Kim, G. H.

Kim, H. S.

Kim, K. T.

Koyasu, H.

H. Koyasu, J. Miura, and Y. Shirai, “Mobile robot navigation in dynamic environments using omnidirectional stereo,” in Proceedings of IEEE Conference on Robotics & Automation (IEEE, 2003), pp. 893–898.
[Crossref]

Kweon, G.-I.

Liang, P.

Liu, N.

Liu, Y.

Ma, T.

Martin, C. B.

C. B. Martin, “Design issues of a hyper-field fisheye lens,” Proc. SPIE 5524, 84–92 (2004).
[Crossref]

Miura, J.

H. Koyasu, J. Miura, and Y. Shirai, “Mobile robot navigation in dynamic environments using omnidirectional stereo,” in Proceedings of IEEE Conference on Robotics & Automation (IEEE, 2003), pp. 893–898.
[Crossref]

Nagahara, H.

H. Nagahara and Y. Yagi, “Lensless imaging for wide field of view,” Opt. Express 54(2), 25114 (2015).

Pernechele, C.

C. Pernechele, “Hyper-hemispheric and bifocal panoramic lenses,” Proc. SPIE 8896, 889603 (2013).
[Crossref]

Shirai, Y.

H. Koyasu, J. Miura, and Y. Shirai, “Mobile robot navigation in dynamic environments using omnidirectional stereo,” in Proceedings of IEEE Conference on Robotics & Automation (IEEE, 2003), pp. 893–898.
[Crossref]

Soccol, D.

Song, W.

Srinivasan, M. V.

Stürzl, W.

Talha, M. M.

Thibault, S.

S. Thibault and J.-C. Artonne, “Panomorph lenses: A Low Cost Solution for Panoramic Surveillance,” Proc. SPIE 6203, 62030S (2006).
[Crossref]

Wang, C.

Wang, Y.

Xu, C.

C. Gong, D. Cheng, C. Xu, and Y. Wang, “Design of a novel panoramic lens without central blindness,” Proc. SPIE 9618, 961816 (2015).
[Crossref]

D. Cheng, X. Chen, C. Xu, Y. Hu, and Y. Wang, “Optical description and design method with annularly stitched aspheric surface,” Appl. Opt. 54(34), 10154-10162 (2015).

Yagi, Y.

H. Nagahara and Y. Yagi, “Lensless imaging for wide field of view,” Opt. Express 54(2), 25114 (2015).

Yu, J.

Zeil, J.

Zhong, W.-D.

Appl. Opt. (6)

J. Opt. Soc. Am. A (1)

Opt. Express (3)

Proc. SPIE (4)

S. Thibault and J.-C. Artonne, “Panomorph lenses: A Low Cost Solution for Panoramic Surveillance,” Proc. SPIE 6203, 62030S (2006).
[Crossref]

C. Gong, D. Cheng, C. Xu, and Y. Wang, “Design of a novel panoramic lens without central blindness,” Proc. SPIE 9618, 961816 (2015).
[Crossref]

C. Pernechele, “Hyper-hemispheric and bifocal panoramic lenses,” Proc. SPIE 8896, 889603 (2013).
[Crossref]

C. B. Martin, “Design issues of a hyper-field fisheye lens,” Proc. SPIE 5524, 84–92 (2004).
[Crossref]

Other (3)

H. Koyasu, J. Miura, and Y. Shirai, “Mobile robot navigation in dynamic environments using omnidirectional stereo,” in Proceedings of IEEE Conference on Robotics & Automation (IEEE, 2003), pp. 893–898.
[Crossref]

Y. Shimizu, “Wide angle fisheye lens,” U.S. Patent 3737214 (June 5, 1973).

Google, “self-driving-car,” http://www.google.com/about/careers/lifeatgoogle/self-driving-car-test-steve-mahan.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram illustrating the FOV of (a) a typical PAL (b) the new system
Fig. 2
Fig. 2 The optical layout of (a) the ultrawide angle catadioptric lens (b) the center configuration and (c) the catadioptric configuration.
Fig. 3
Fig. 3 (a) Rays overlap at the embedded area and (b) the solution to rays overlap issue.
Fig. 4
Fig. 4 Catadioptric lens with an ASAS.
Fig. 5
Fig. 5 MTF graphs of the catadioptric lens (a) without ASAS (b) with ASAS and (c) after fitting ASAS to an aspheric surface. And from top to bottom, the first row represents center configuration with the semi FOV from 0° to 50°, the second row represents side view from 50° to 90°, and the third row represents rear view with the semi FOV from 90° to 135°.
Fig. 6
Fig. 6 The average MTF curves for three forms of the ultrawide angle catadioptric lens
Fig. 7
Fig. 7 f-θ distortion curves for the catadioptric lens of (a) center configuration and (b) catadioptric configuration .
Fig. 8
Fig. 8 Relative illumination across the whole FOV.
Fig. 9
Fig. 9 Cumulative possibility estimates MTF plots of the tolerance analysis at the sampled fields for the ultrawide angle lens optimized for best nominal performance, (a) center configuration and (b) catadioptric configuration.
Fig. 10
Fig. 10 The mechanical structure of this system.
Fig. 11
Fig. 11 (a) the catadioptric lens; (b) the successive lenses; (c) the experimental setup; (d) the captured image.

Tables (4)

Tables Icon

Table 1 Specifications of some existing ultrawide angle designs

Tables Icon

Table 2 Major specifications of the ultrawide angle catadioptric lens

Tables Icon

Table 3 Specifications of the CMOS Sensor for the ultrawide angle catadioptric lens

Tables Icon

Table 4 Tabulation of Precision Optical Fabrication Tolerances

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

{ y P b1 y P t1 >0 y P b2 y P t4 >0 ,
{ 0.5< z P b1 z P t1 <0.5 0.5< z P b2 z P t4 <0.5 1.0<( z P t4 z P t1 )( z P b2 z P b1 )<1.0 ,
{ 0.4< z P t3 z P t2 <0.6 4< z P b2 z P b1 <6 0.5< z P t2 z P t1 <2 2< z P t4 z P t3 <4 .
z(r)={ c 1 r 2 1+ 1( 1+ k 1 ) c 1 2 r 2 + a 1 r 4 + b 1 r 6 +, 0<r< r 1 c 2 r 2 1+ 1( 1+ k 2 ) c 2 2 r 2 + a 2 r 4 + b 2 r 6 ++Δ z 1 , r 1 <r< r 2 c 3 r 2 1+ 1( 1+ k 3 ) c 3 2 r 2 + a 3 r 4 + b 3 r 6 ++Δ z 2 , r 2 <r , Δ z 1 =( c 1 r 1 2 1+ 1( 1+ k 1 ) c 1 2 r 1 2 + a 1 r 1 4 + b 1 r 1 6 + ) ( c 2 r 1 2 1+ 1( 1+ k 2 ) c 2 2 r 1 2 + a 2 r 1 4 + b 2 r 1 6 + ).
@zeros1= SAG1 SAG2 Z2 + Z1; @zeros2= DER1 DER2; @zeros1= 0; @zeros2= 0.

Metrics