Abstract

In this paper, we successfully transmit 8 × 520 Gb/s pre-equalized DFT-spread PDM-16QAM orthogonal frequency-division multiplexing (OFDM) signal over 840 km SMF with BER under 2.4 × 10−2. We discuss how to obtain accurate tranceivers’ response during pre-equalization for DFT-spread OFDM with coherent detection and we find conventional OFDM symbols training sequences (TSs) outperform DFT-spread OFDM symbols TSs in obtaining channel response for pre-equalization and equalization. Additionally, the optimal IFFT/FFT size is explored for the pre-equalized DFT-spread PDM-16QAM-OFDM transmission systems. It is the first time to realize 400 Gb/s/λ net rate OFDM signal transmission.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
LDPC-coded DFT-Spread DMT signal transmission employing probabilistic shaping 16/32QAM for optical interconnection

Xinxing Wu, Dongdong Zou, Ze Dong, Xue Zhao, Yifan Chen, and Fan Li
Opt. Express 27(7) 9821-9828 (2019)

Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser

Fan Li, Jianjun Yu, Yuan Fang, Ze Dong, Xinying Li, and Lin Chen
Opt. Express 22(7) 8742-8748 (2014)

Transmission and reception of Quad-Carrier QPSK-OFDM signal with blind equalization and overhead-free operation

Fan Li, Junwen Zhang, Zizheng Cao, Jianjun Yu, Xinying Li, Lin Chen, Yan Xia, and Yufei Chen
Opt. Express 21(25) 30999-31005 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, S. Chandrasekhar, B. Zhu, P. Winzer, A. Gnauck, and D. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-Grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2010).
    [Crossref]
  2. B. Zhu, S. Chandrasekhar, X. Liu, and D. W. Peckham, “Transmission performance of a 485-Gb/s CO-OFDM superchannel with PDM-16QAM subcarriers over ULAF and SSMF-based links,” IEEE Photonics Technol. Lett. 23(19), 1400–1402 (2011).
    [Crossref]
  3. S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2 b/s/Hz spectral efficiency over 1,000 km of SSMF,” J. Lightwave Technol. 27(3), 177–188 (2009).
    [Crossref]
  4. M.-F. Huang, S. Zhang, E. Mateo, D. Qian, F. Yaman, T. Inoue, Y. Inada, and T. Wang, “EDFA-only WDM 4200-km transmission of OFDM-16QAM and 32QAM,” IEEE Photonics Technol. Lett. 24(17), 1466–1468 (2012).
    [Crossref]
  5. Y. Fang, L. Liu, C. Wong, S. Zhang, T. Wang, G. Liu, and X. Xu, “Silicon IQ modulator based 480km 80×453.2Gb/s PDM-eOFDM transmission on 50GHz grid with SSMF and EDFA-only link,” in OFC 2015, paper M3G.5.
  6. S. Zhang, Y. Zhang, M.-F. Huang, F. Yaman, E. Mateo, D. Qian, L. Xu, Y. Shao, and I. Djordjevic, “Transoceanic transmission of 40×117.6 Gb/s PDM-OFDM-16QAM over hybrid large-core/ultralow-loss fiber,” J. Lightwave Technol. 31(4), 498–505 (2013).
    [Crossref]
  7. F. Li, X. Li, and J. Yu, “Performance Comparison of DFT-Spread and Pre-Equalization for 8 × 244.2-Gb/s PDM-16QAM-OFDM,” J. Lightwave Technol. 33(1), 227–233 (2015).
    [Crossref]
  8. D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7Tb/s (370×294Gb/s) PDM-128QAM-OFDM transmission over 3×55km SSMF using pilot-based phase noise mitigation,” in OFC 2011, paper PDPB5.
  9. T. Omiya, K. Toyoda, M. Yoshida, and M. Nakazawa, “400 Gbit/s frequency-division-multiplexed and polarization-multiplexed 256 QAM-OFDM transmission over 400 km with a spectral efficiency of 14 bit/s/Hz,” in OFC 2012, paper OM2A.7.
  10. D. Qian, E. Ip, M.-F. Huang, M.-J. Li, and T. Wang, “698.5-Gb/s PDM- 2048QAM Transmission over 3km Multicore Fiber,” in Proc. 39th ECOC (2013), Paper Th.1.C.5.
  11. C. Xie, B. Zhu, and E. Burrows, “Transmission Performance of 256-Gb/s PDM-16QAM With Different Amplification Schemes and Channel Spacings,” J. Lightwave Technol. 32(13), 2324–2331 (2014).
    [Crossref]
  12. J. Zhang and H. C. Chien, “A Novel Adaptive Digital Pre-equalization Scheme for Bandwidth limited Optical Coherent system with DAC for Signal Generation,” in OFC 2014, paper W3K.4.
  13. Z. Dong, H. C. Chien, Z. Jia, and X. Li, “Joint Digital Preequalization for Spectrally Efficient Super Nyquist-WDM Signal,” J. Lightwave Technol. 31(20), 3237–3242 (2013).
    [Crossref]
  14. F. Li, Z. Cao, J. Zhang, X. Li, and J. Yu, “Transmission of 8×520 Gb/s Signal Based on Single Band/λ PDM-16QAM-OFDM on a 75-GHz Grid,” in Optical Fiber Communication Conference 2016, paper Tu3A.3.
  15. D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC Convolutional Codes using Layered Decoding Algorithm for High Speed Coherent Optical Transmission,” in OFC 2012, paper OW1H.4.
  16. W.-R. Peng, T. Tsuritani, and I. Morita, “Simple Carrier Recovery Approach for RF-Pilot-Assisted PDM-CO-OFDM Systems,” J. Lightwave Technol. 31(15), 2555–2564 (2013).
    [Crossref]
  17. F. Li, X. Li, J. Yu, and L. Chen, “Optimization of training sequence for DFT-spread DMT signal in optical access network with direct detection utilizing DML,” Opt. Express 22(19), 22962–22967 (2014).
    [Crossref] [PubMed]
  18. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref] [PubMed]
  19. S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol. 26(1), 6–15 (2008).
    [Crossref]

2015 (1)

2014 (2)

2013 (3)

2012 (1)

M.-F. Huang, S. Zhang, E. Mateo, D. Qian, F. Yaman, T. Inoue, Y. Inada, and T. Wang, “EDFA-only WDM 4200-km transmission of OFDM-16QAM and 32QAM,” IEEE Photonics Technol. Lett. 24(17), 1466–1468 (2012).
[Crossref]

2011 (1)

B. Zhu, S. Chandrasekhar, X. Liu, and D. W. Peckham, “Transmission performance of a 485-Gb/s CO-OFDM superchannel with PDM-16QAM subcarriers over ULAF and SSMF-based links,” IEEE Photonics Technol. Lett. 23(19), 1400–1402 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (2)

Burrows, E.

Chandrasekhar, S.

B. Zhu, S. Chandrasekhar, X. Liu, and D. W. Peckham, “Transmission performance of a 485-Gb/s CO-OFDM superchannel with PDM-16QAM subcarriers over ULAF and SSMF-based links,” IEEE Photonics Technol. Lett. 23(19), 1400–1402 (2011).
[Crossref]

X. Liu, S. Chandrasekhar, B. Zhu, P. Winzer, A. Gnauck, and D. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-Grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2010).
[Crossref]

Chen, L.

Chien, H. C.

Djordjevic, I.

Dong, Z.

Gnauck, A.

Huang, M.-F.

S. Zhang, Y. Zhang, M.-F. Huang, F. Yaman, E. Mateo, D. Qian, L. Xu, Y. Shao, and I. Djordjevic, “Transoceanic transmission of 40×117.6 Gb/s PDM-OFDM-16QAM over hybrid large-core/ultralow-loss fiber,” J. Lightwave Technol. 31(4), 498–505 (2013).
[Crossref]

M.-F. Huang, S. Zhang, E. Mateo, D. Qian, F. Yaman, T. Inoue, Y. Inada, and T. Wang, “EDFA-only WDM 4200-km transmission of OFDM-16QAM and 32QAM,” IEEE Photonics Technol. Lett. 24(17), 1466–1468 (2012).
[Crossref]

Inada, Y.

M.-F. Huang, S. Zhang, E. Mateo, D. Qian, F. Yaman, T. Inoue, Y. Inada, and T. Wang, “EDFA-only WDM 4200-km transmission of OFDM-16QAM and 32QAM,” IEEE Photonics Technol. Lett. 24(17), 1466–1468 (2012).
[Crossref]

Inoue, T.

M.-F. Huang, S. Zhang, E. Mateo, D. Qian, F. Yaman, T. Inoue, Y. Inada, and T. Wang, “EDFA-only WDM 4200-km transmission of OFDM-16QAM and 32QAM,” IEEE Photonics Technol. Lett. 24(17), 1466–1468 (2012).
[Crossref]

Jansen, S. L.

Jia, Z.

Li, F.

Li, X.

Liu, X.

B. Zhu, S. Chandrasekhar, X. Liu, and D. W. Peckham, “Transmission performance of a 485-Gb/s CO-OFDM superchannel with PDM-16QAM subcarriers over ULAF and SSMF-based links,” IEEE Photonics Technol. Lett. 23(19), 1400–1402 (2011).
[Crossref]

X. Liu, S. Chandrasekhar, B. Zhu, P. Winzer, A. Gnauck, and D. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-Grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2010).
[Crossref]

Mateo, E.

S. Zhang, Y. Zhang, M.-F. Huang, F. Yaman, E. Mateo, D. Qian, L. Xu, Y. Shao, and I. Djordjevic, “Transoceanic transmission of 40×117.6 Gb/s PDM-OFDM-16QAM over hybrid large-core/ultralow-loss fiber,” J. Lightwave Technol. 31(4), 498–505 (2013).
[Crossref]

M.-F. Huang, S. Zhang, E. Mateo, D. Qian, F. Yaman, T. Inoue, Y. Inada, and T. Wang, “EDFA-only WDM 4200-km transmission of OFDM-16QAM and 32QAM,” IEEE Photonics Technol. Lett. 24(17), 1466–1468 (2012).
[Crossref]

Morita, I.

Peckham, D.

Peckham, D. W.

B. Zhu, S. Chandrasekhar, X. Liu, and D. W. Peckham, “Transmission performance of a 485-Gb/s CO-OFDM superchannel with PDM-16QAM subcarriers over ULAF and SSMF-based links,” IEEE Photonics Technol. Lett. 23(19), 1400–1402 (2011).
[Crossref]

Peng, W.-R.

Qian, D.

S. Zhang, Y. Zhang, M.-F. Huang, F. Yaman, E. Mateo, D. Qian, L. Xu, Y. Shao, and I. Djordjevic, “Transoceanic transmission of 40×117.6 Gb/s PDM-OFDM-16QAM over hybrid large-core/ultralow-loss fiber,” J. Lightwave Technol. 31(4), 498–505 (2013).
[Crossref]

M.-F. Huang, S. Zhang, E. Mateo, D. Qian, F. Yaman, T. Inoue, Y. Inada, and T. Wang, “EDFA-only WDM 4200-km transmission of OFDM-16QAM and 32QAM,” IEEE Photonics Technol. Lett. 24(17), 1466–1468 (2012).
[Crossref]

Savory, S. J.

Schenk, T. C. W.

Shao, Y.

Takeda, N.

Tanaka, H.

Tsuritani, T.

Wang, T.

M.-F. Huang, S. Zhang, E. Mateo, D. Qian, F. Yaman, T. Inoue, Y. Inada, and T. Wang, “EDFA-only WDM 4200-km transmission of OFDM-16QAM and 32QAM,” IEEE Photonics Technol. Lett. 24(17), 1466–1468 (2012).
[Crossref]

Winzer, P.

Xie, C.

Xu, L.

Yaman, F.

S. Zhang, Y. Zhang, M.-F. Huang, F. Yaman, E. Mateo, D. Qian, L. Xu, Y. Shao, and I. Djordjevic, “Transoceanic transmission of 40×117.6 Gb/s PDM-OFDM-16QAM over hybrid large-core/ultralow-loss fiber,” J. Lightwave Technol. 31(4), 498–505 (2013).
[Crossref]

M.-F. Huang, S. Zhang, E. Mateo, D. Qian, F. Yaman, T. Inoue, Y. Inada, and T. Wang, “EDFA-only WDM 4200-km transmission of OFDM-16QAM and 32QAM,” IEEE Photonics Technol. Lett. 24(17), 1466–1468 (2012).
[Crossref]

Yu, J.

Zhang, S.

S. Zhang, Y. Zhang, M.-F. Huang, F. Yaman, E. Mateo, D. Qian, L. Xu, Y. Shao, and I. Djordjevic, “Transoceanic transmission of 40×117.6 Gb/s PDM-OFDM-16QAM over hybrid large-core/ultralow-loss fiber,” J. Lightwave Technol. 31(4), 498–505 (2013).
[Crossref]

M.-F. Huang, S. Zhang, E. Mateo, D. Qian, F. Yaman, T. Inoue, Y. Inada, and T. Wang, “EDFA-only WDM 4200-km transmission of OFDM-16QAM and 32QAM,” IEEE Photonics Technol. Lett. 24(17), 1466–1468 (2012).
[Crossref]

Zhang, Y.

Zhu, B.

IEEE Photonics Technol. Lett. (2)

M.-F. Huang, S. Zhang, E. Mateo, D. Qian, F. Yaman, T. Inoue, Y. Inada, and T. Wang, “EDFA-only WDM 4200-km transmission of OFDM-16QAM and 32QAM,” IEEE Photonics Technol. Lett. 24(17), 1466–1468 (2012).
[Crossref]

B. Zhu, S. Chandrasekhar, X. Liu, and D. W. Peckham, “Transmission performance of a 485-Gb/s CO-OFDM superchannel with PDM-16QAM subcarriers over ULAF and SSMF-based links,” IEEE Photonics Technol. Lett. 23(19), 1400–1402 (2011).
[Crossref]

J. Lightwave Technol. (8)

S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol. 26(1), 6–15 (2008).
[Crossref]

S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2 b/s/Hz spectral efficiency over 1,000 km of SSMF,” J. Lightwave Technol. 27(3), 177–188 (2009).
[Crossref]

X. Liu, S. Chandrasekhar, B. Zhu, P. Winzer, A. Gnauck, and D. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-Grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2010).
[Crossref]

S. Zhang, Y. Zhang, M.-F. Huang, F. Yaman, E. Mateo, D. Qian, L. Xu, Y. Shao, and I. Djordjevic, “Transoceanic transmission of 40×117.6 Gb/s PDM-OFDM-16QAM over hybrid large-core/ultralow-loss fiber,” J. Lightwave Technol. 31(4), 498–505 (2013).
[Crossref]

W.-R. Peng, T. Tsuritani, and I. Morita, “Simple Carrier Recovery Approach for RF-Pilot-Assisted PDM-CO-OFDM Systems,” J. Lightwave Technol. 31(15), 2555–2564 (2013).
[Crossref]

Z. Dong, H. C. Chien, Z. Jia, and X. Li, “Joint Digital Preequalization for Spectrally Efficient Super Nyquist-WDM Signal,” J. Lightwave Technol. 31(20), 3237–3242 (2013).
[Crossref]

C. Xie, B. Zhu, and E. Burrows, “Transmission Performance of 256-Gb/s PDM-16QAM With Different Amplification Schemes and Channel Spacings,” J. Lightwave Technol. 32(13), 2324–2331 (2014).
[Crossref]

F. Li, X. Li, and J. Yu, “Performance Comparison of DFT-Spread and Pre-Equalization for 8 × 244.2-Gb/s PDM-16QAM-OFDM,” J. Lightwave Technol. 33(1), 227–233 (2015).
[Crossref]

Opt. Express (2)

Other (7)

J. Zhang and H. C. Chien, “A Novel Adaptive Digital Pre-equalization Scheme for Bandwidth limited Optical Coherent system with DAC for Signal Generation,” in OFC 2014, paper W3K.4.

F. Li, Z. Cao, J. Zhang, X. Li, and J. Yu, “Transmission of 8×520 Gb/s Signal Based on Single Band/λ PDM-16QAM-OFDM on a 75-GHz Grid,” in Optical Fiber Communication Conference 2016, paper Tu3A.3.

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC Convolutional Codes using Layered Decoding Algorithm for High Speed Coherent Optical Transmission,” in OFC 2012, paper OW1H.4.

Y. Fang, L. Liu, C. Wong, S. Zhang, T. Wang, G. Liu, and X. Xu, “Silicon IQ modulator based 480km 80×453.2Gb/s PDM-eOFDM transmission on 50GHz grid with SSMF and EDFA-only link,” in OFC 2015, paper M3G.5.

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7Tb/s (370×294Gb/s) PDM-128QAM-OFDM transmission over 3×55km SSMF using pilot-based phase noise mitigation,” in OFC 2011, paper PDPB5.

T. Omiya, K. Toyoda, M. Yoshida, and M. Nakazawa, “400 Gbit/s frequency-division-multiplexed and polarization-multiplexed 256 QAM-OFDM transmission over 400 km with a spectral efficiency of 14 bit/s/Hz,” in OFC 2012, paper OM2A.7.

D. Qian, E. Ip, M.-F. Huang, M.-J. Li, and T. Wang, “698.5-Gb/s PDM- 2048QAM Transmission over 3km Multicore Fiber,” in Proc. 39th ECOC (2013), Paper Th.1.C.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Principle diagram of pre-equalization for 65 GHz DFT-spread 16QAM-OFDM. Inset: (a) amplitude and (b) phase of transceiver’s response estimated with TS without additional IFFT/FFT for DFT-spread, (c) amplitude and (d) phase of transceiver’s response estimated with TS with additional IFFT/FFT for DFT-spread, (e) pre-equalization coefficients.
Fig. 2
Fig. 2 Experimental setup. (ECL: external cavity laser; DAC: digital to analog convertor; PM-OC: polarization maintaining optical coupler; Pol. MUX: polarization multiplexer; OC: optical coupler; ATT: attenuator; TOF: tunable optical filter; ADC: analog to digital convertor; SW: switch). Insets: (a) optical spectra (0.1 nm) of 65 GHz 16QAM-OFDM without and with pre-equalization, 65GHz 16QAM-OFDM electrical spectra: (b) without and (c) with pre-equalization.
Fig. 3
Fig. 3 BER versus (a) OSNR for single pol. OFDM and (b) IFFT/FFT size M for OFDM signal
Fig. 4
Fig. 4 (a) Optical spectrum in WDM case and (b) BER versus OSNR of Ch. 6 in WDM.
Fig. 5
Fig. 5 BER versus (a) input power (Ch. 6) and (b) transmission distance; (c) BERs of all channels after 840-km SMF.

Metrics