Abstract

Abstract: The matrix effect of powder samples, especially for soil samples, is significant in laser-induced breakdown spectroscopy (LIBS), which affects the prediction accuracy of the element concentration. In order to reduce this effect of the soil samples in LIBS, the standard addition method (SAM) based on background removal by wavelet transform algorithm was investigated in this work. Five different kinds of certified reference soil samples (lead (Pb) concentrations were 110, 283, 552, 675, and 1141 ppm, respectively) were used to examine the accuracy of this method. The root mean square error of prediction (RMSEP) was more than 303 ppm by using the conventional calibration method. After adoption of SAM with background removal by wavelet transform algorithm, the RMSEP was reduced to 25.7 ppm. Therefore, the accuracy of the Pb element was improved significantly. The mechanism of background removal by wavelet transform algorithm based on SAM is discussed. Further study demonstrated that this method can also improve the predicted accuracy of the Cd element.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Application of a mobile laser-induced breakdown spectroscopy system to detect heavy metal elements in soil

Deshuo Meng, Nanjing Zhao, Mingjun Ma, Li Fang, Yanhong Gu, Yao Jia, Jianguo Liu, and Wenqing Liu
Appl. Opt. 56(18) 5204-5210 (2017)

Rapid field screening of soils for heavy metals with spark-induced breakdown spectroscopy

Amy J. R. Hunter, Richard T. Wainner, Lawrence G. Piper, and Steven J. Davis
Appl. Opt. 42(12) 2102-2109 (2003)

Quantitative analysis of chromium in potatoes by laser-induced breakdown spectroscopy coupled with linear multivariate calibration

Tianbing Chen, Lin Huang, Mingyin Yao, Huiqin Hu, Caihong Wang, and Muhua Liu
Appl. Opt. 54(25) 7807-7812 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. H. Zenk, “Heavy metal detoxification in higher plants--a review,” Gene 179(1), 21–30 (1996).
    [Crossref] [PubMed]
  2. D. C. Adriano, Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals (Springer-Verlag, 2001).
  3. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
    [Crossref] [PubMed]
  4. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  5. S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazletta, J. Martinb, T. Pearceb, and A. Ziglera, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta B At. Spectrosc. 56(6), 707–714 (2001).
    [Crossref]
  6. R. Noll, Laser-Induced Breakdown Spectroscopy (Springer Berlin, 2012).
  7. M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67(5), 1616–1619 (2003).
    [Crossref]
  8. M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74(1), 87–93 (2010).
    [Crossref]
  9. R. Barbini, F. Colao, R. Fantoni, A. Palucci, and F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys., A Mater. Sci. Process. 69(1), S175–S178 (1999).
    [Crossref]
  10. S. H. Chen, X. H. Ma, H. F. Zhao, and H. Lv, “Research of laser induced breakdown spectroscopy for detection of trace Cd in polluted soil,” in 22nd International Conference on Optical Fiber Sensor (ISOP, 2012), paper 8421AL.
    [Crossref]
  11. V. K. Unnikrishnan, R. Nayak, K. Aithal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Analysis of trace elements in complex matrices (soil) by laser induced breakdown spectroscopy (LIBS),” Anal. Methods 5(5), 1294–1300 (2013).
    [Crossref]
  12. F. H. Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56(6), 933–945 (2001).
    [Crossref]
  13. M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642(1-2), 12–18 (2009).
    [Crossref] [PubMed]
  14. M. E. Essington, G. V. Melnichenko, M. A. Stewart, and R. A. Hull, “Soil metals analysis using laser-induced breakdown spectroscopy (LIBS),” Soil Sci. Soc. Am. J. 73(5), 1469–1478 (2009).
    [Crossref]
  15. A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo, “Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 50(9), 1175–1181 (1996).
    [Crossref]
  16. B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): A means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24(12), 1665–1675 (2009).
    [Crossref]
  17. J. Pareja, S. López, D. Jaramillo, D. W. Hahn, and A. Molina, “Laser ablation-laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils,” Appl. Opt. 52(11), 2470–2477 (2013).
    [Crossref] [PubMed]
  18. B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta B At. Spectrosc. 62(12), 1582–1589 (2007).
    [Crossref]
  19. J. E. Haddad, M. Villot-Kadri, A. Ismaël, G. Gallou, K. Michel, D. Bruyère, V. Laperche, L. Canioni, and B. Bousquet, “Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79, 51–57 (2013).
    [Crossref]
  20. E. C. Ferreira, D. M. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B At. Spectrosc. 63(10), 1216–1220 (2008).
    [Crossref]
  21. J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385(2), 256–262 (2006).
    [Crossref] [PubMed]
  22. Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
    [Crossref]
  23. X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, “Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform,” Opt. Express 22(9), 10233–10238 (2014).
    [Crossref] [PubMed]
  24. W. Hyk and Z. Stojek, “Quantifying uncertainty of determination by standard additions and serial dilutions methods taking into account standard uncertainties in both axes,” Anal. Chem. 85(12), 5933–5939 (2013).
    [Crossref] [PubMed]
  25. C. Ma and X. Shao, “Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra,” J. Chem. Inf. Comput. Sci. 44(3), 907–911 (2004).
    [Crossref] [PubMed]
  26. X. G. Shao, A. K. M. Leung, and F. T. Chau, “Wavelet: a new trend in chemistry,” Acc. Chem. Res. 36(4), 276–283 (2003).
    [Crossref] [PubMed]
  27. C. M. Galloway, E. C. Le Ru, and P. G. Etchegoin, “An iterative algorithm for background removal in spectroscopy by wavelet transforms,” Appl. Spectrosc. 63(12), 1370–1376 (2009).
    [Crossref] [PubMed]
  28. X. G. Ma and Z. X. Zhang, “Application of wavelet transform to background correction in inductively coupled plasma atomic emission spectrometry,” Anal. Chim. Acta 485(2), 233–239 (2003).
    [Crossref]

2014 (2)

2013 (4)

W. Hyk and Z. Stojek, “Quantifying uncertainty of determination by standard additions and serial dilutions methods taking into account standard uncertainties in both axes,” Anal. Chem. 85(12), 5933–5939 (2013).
[Crossref] [PubMed]

J. Pareja, S. López, D. Jaramillo, D. W. Hahn, and A. Molina, “Laser ablation-laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils,” Appl. Opt. 52(11), 2470–2477 (2013).
[Crossref] [PubMed]

V. K. Unnikrishnan, R. Nayak, K. Aithal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Analysis of trace elements in complex matrices (soil) by laser induced breakdown spectroscopy (LIBS),” Anal. Methods 5(5), 1294–1300 (2013).
[Crossref]

J. E. Haddad, M. Villot-Kadri, A. Ismaël, G. Gallou, K. Michel, D. Bruyère, V. Laperche, L. Canioni, and B. Bousquet, “Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79, 51–57 (2013).
[Crossref]

2010 (2)

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74(1), 87–93 (2010).
[Crossref]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

2009 (4)

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642(1-2), 12–18 (2009).
[Crossref] [PubMed]

M. E. Essington, G. V. Melnichenko, M. A. Stewart, and R. A. Hull, “Soil metals analysis using laser-induced breakdown spectroscopy (LIBS),” Soil Sci. Soc. Am. J. 73(5), 1469–1478 (2009).
[Crossref]

C. M. Galloway, E. C. Le Ru, and P. G. Etchegoin, “An iterative algorithm for background removal in spectroscopy by wavelet transforms,” Appl. Spectrosc. 63(12), 1370–1376 (2009).
[Crossref] [PubMed]

B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): A means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24(12), 1665–1675 (2009).
[Crossref]

2008 (1)

E. C. Ferreira, D. M. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B At. Spectrosc. 63(10), 1216–1220 (2008).
[Crossref]

2007 (1)

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta B At. Spectrosc. 62(12), 1582–1589 (2007).
[Crossref]

2006 (1)

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385(2), 256–262 (2006).
[Crossref] [PubMed]

2004 (1)

C. Ma and X. Shao, “Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra,” J. Chem. Inf. Comput. Sci. 44(3), 907–911 (2004).
[Crossref] [PubMed]

2003 (3)

X. G. Shao, A. K. M. Leung, and F. T. Chau, “Wavelet: a new trend in chemistry,” Acc. Chem. Res. 36(4), 276–283 (2003).
[Crossref] [PubMed]

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67(5), 1616–1619 (2003).
[Crossref]

X. G. Ma and Z. X. Zhang, “Application of wavelet transform to background correction in inductively coupled plasma atomic emission spectrometry,” Anal. Chim. Acta 485(2), 233–239 (2003).
[Crossref]

2001 (2)

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazletta, J. Martinb, T. Pearceb, and A. Ziglera, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta B At. Spectrosc. 56(6), 707–714 (2001).
[Crossref]

F. H. Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56(6), 933–945 (2001).
[Crossref]

1999 (1)

R. Barbini, F. Colao, R. Fantoni, A. Palucci, and F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys., A Mater. Sci. Process. 69(1), S175–S178 (1999).
[Crossref]

1996 (2)

Aithal, K.

V. K. Unnikrishnan, R. Nayak, K. Aithal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Analysis of trace elements in complex matrices (soil) by laser induced breakdown spectroscopy (LIBS),” Anal. Methods 5(5), 1294–1300 (2013).
[Crossref]

Andre, N. O.

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74(1), 87–93 (2010).
[Crossref]

Araújo, M. C.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642(1-2), 12–18 (2009).
[Crossref] [PubMed]

Asimellis, G.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazletta, J. Martinb, T. Pearceb, and A. Ziglera, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta B At. Spectrosc. 56(6), 707–714 (2001).
[Crossref]

Barbini, R.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, and F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys., A Mater. Sci. Process. 69(1), S175–S178 (1999).
[Crossref]

Becker, C.

F. H. Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56(6), 933–945 (2001).
[Crossref]

Bousquet, B.

J. E. Haddad, M. Villot-Kadri, A. Ismaël, G. Gallou, K. Michel, D. Bruyère, V. Laperche, L. Canioni, and B. Bousquet, “Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79, 51–57 (2013).
[Crossref]

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta B At. Spectrosc. 62(12), 1582–1589 (2007).
[Crossref]

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385(2), 256–262 (2006).
[Crossref] [PubMed]

Breshears, D. D.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67(5), 1616–1619 (2003).
[Crossref]

Bromley, B.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazletta, J. Martinb, T. Pearceb, and A. Ziglera, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta B At. Spectrosc. 56(6), 707–714 (2001).
[Crossref]

Bruyère, D.

J. E. Haddad, M. Villot-Kadri, A. Ismaël, G. Gallou, K. Michel, D. Bruyère, V. Laperche, L. Canioni, and B. Bousquet, “Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79, 51–57 (2013).
[Crossref]

Canioni, L.

J. E. Haddad, M. Villot-Kadri, A. Ismaël, G. Gallou, K. Michel, D. Bruyère, V. Laperche, L. Canioni, and B. Bousquet, “Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79, 51–57 (2013).
[Crossref]

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta B At. Spectrosc. 62(12), 1582–1589 (2007).
[Crossref]

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385(2), 256–262 (2006).
[Crossref] [PubMed]

Capitelli, F.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, and F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys., A Mater. Sci. Process. 69(1), S175–S178 (1999).
[Crossref]

Chau, F. T.

X. G. Shao, A. K. M. Leung, and F. T. Chau, “Wavelet: a new trend in chemistry,” Acc. Chem. Res. 36(4), 276–283 (2003).
[Crossref] [PubMed]

Chiba, M. K.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642(1-2), 12–18 (2009).
[Crossref] [PubMed]

Coelho, R. M.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642(1-2), 12–18 (2009).
[Crossref] [PubMed]

Colao, F.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, and F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys., A Mater. Sci. Process. 69(1), S175–S178 (1999).
[Crossref]

Cortez, J.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642(1-2), 12–18 (2009).
[Crossref] [PubMed]

Cremers, D. A.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67(5), 1616–1619 (2003).
[Crossref]

A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo, “Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 50(9), 1175–1181 (1996).
[Crossref]

Da Silva, R. M.

E. C. Ferreira, D. M. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B At. Spectrosc. 63(10), 1216–1220 (2008).
[Crossref]

de Abreu, M. F.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642(1-2), 12–18 (2009).
[Crossref] [PubMed]

Ding, H. B.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Ebinger, M. H.

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74(1), 87–93 (2010).
[Crossref]

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67(5), 1616–1619 (2003).
[Crossref]

Eppler, A. S.

Essington, M. E.

M. E. Essington, G. V. Melnichenko, M. A. Stewart, and R. A. Hull, “Soil metals analysis using laser-induced breakdown spectroscopy (LIBS),” Soil Sci. Soc. Am. J. 73(5), 1469–1478 (2009).
[Crossref]

Etchegoin, P. G.

Falk, H.

F. H. Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56(6), 933–945 (2001).
[Crossref]

Fantoni, R.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, and F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys., A Mater. Sci. Process. 69(1), S175–S178 (1999).
[Crossref]

Ferreira, E. C.

E. C. Ferreira, D. M. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B At. Spectrosc. 63(10), 1216–1220 (2008).
[Crossref]

Ferreira, E. J.

E. C. Ferreira, D. M. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B At. Spectrosc. 63(10), 1216–1220 (2008).
[Crossref]

Ferris, M. J.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67(5), 1616–1619 (2003).
[Crossref]

A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo, “Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 50(9), 1175–1181 (1996).
[Crossref]

Gallou, G.

J. E. Haddad, M. Villot-Kadri, A. Ismaël, G. Gallou, K. Michel, D. Bruyère, V. Laperche, L. Canioni, and B. Bousquet, “Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79, 51–57 (2013).
[Crossref]

Galloway, C. M.

Galvão, R. K. H.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642(1-2), 12–18 (2009).
[Crossref] [PubMed]

Goddard, K. L.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67(5), 1616–1619 (2003).
[Crossref]

Guo, L. B.

Gupta, G. P.

V. K. Unnikrishnan, R. Nayak, K. Aithal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Analysis of trace elements in complex matrices (soil) by laser induced breakdown spectroscopy (LIBS),” Anal. Methods 5(5), 1294–1300 (2013).
[Crossref]

Haddad, J. E.

J. E. Haddad, M. Villot-Kadri, A. Ismaël, G. Gallou, K. Michel, D. Bruyère, V. Laperche, L. Canioni, and B. Bousquet, “Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79, 51–57 (2013).
[Crossref]

Hahn, D. W.

J. Pareja, S. López, D. Jaramillo, D. W. Hahn, and A. Molina, “Laser ablation-laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils,” Appl. Opt. 52(11), 2470–2477 (2013).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): A means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24(12), 1665–1675 (2009).
[Crossref]

Hao, Z. Q.

Harris, R. D.

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74(1), 87–93 (2010).
[Crossref]

Hazletta, R.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazletta, J. Martinb, T. Pearceb, and A. Ziglera, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta B At. Spectrosc. 56(6), 707–714 (2001).
[Crossref]

Hecho, I. L.

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385(2), 256–262 (2006).
[Crossref] [PubMed]

Hickmott, D. D.

Hou, Z. Y.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Hull, R. A.

M. E. Essington, G. V. Melnichenko, M. A. Stewart, and R. A. Hull, “Soil metals analysis using laser-induced breakdown spectroscopy (LIBS),” Soil Sci. Soc. Am. J. 73(5), 1469–1478 (2009).
[Crossref]

Hyk, W.

W. Hyk and Z. Stojek, “Quantifying uncertainty of determination by standard additions and serial dilutions methods taking into account standard uncertainties in both axes,” Anal. Chem. 85(12), 5933–5939 (2013).
[Crossref] [PubMed]

Ismaël, A.

J. E. Haddad, M. Villot-Kadri, A. Ismaël, G. Gallou, K. Michel, D. Bruyère, V. Laperche, L. Canioni, and B. Bousquet, “Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79, 51–57 (2013).
[Crossref]

Jaramillo, D.

Kartha, V. B.

V. K. Unnikrishnan, R. Nayak, K. Aithal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Analysis of trace elements in complex matrices (soil) by laser induced breakdown spectroscopy (LIBS),” Anal. Methods 5(5), 1294–1300 (2013).
[Crossref]

Kortenbruck, F. H.

F. H. Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56(6), 933–945 (2001).
[Crossref]

Koskelo, A. C.

Labbe, N.

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74(1), 87–93 (2010).
[Crossref]

Lamb, M. S.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67(5), 1616–1619 (2003).
[Crossref]

Laperche, V.

J. E. Haddad, M. Villot-Kadri, A. Ismaël, G. Gallou, K. Michel, D. Bruyère, V. Laperche, L. Canioni, and B. Bousquet, “Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79, 51–57 (2013).
[Crossref]

Le Ru, E. C.

Leung, A. K. M.

X. G. Shao, A. K. M. Leung, and F. T. Chau, “Wavelet: a new trend in chemistry,” Acc. Chem. Res. 36(4), 276–283 (2003).
[Crossref] [PubMed]

Li, X. Y.

López, S.

Lu, J. D.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Lu, Y. F.

Ma, C.

C. Ma and X. Shao, “Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra,” J. Chem. Inf. Comput. Sci. 44(3), 907–911 (2004).
[Crossref] [PubMed]

Ma, X. G.

X. G. Ma and Z. X. Zhang, “Application of wavelet transform to background correction in inductively coupled plasma atomic emission spectrometry,” Anal. Chim. Acta 485(2), 233–239 (2003).
[Crossref]

Madari, B. E.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642(1-2), 12–18 (2009).
[Crossref] [PubMed]

Martin, M. Z.

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74(1), 87–93 (2010).
[Crossref]

Martinb, J.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazletta, J. Martinb, T. Pearceb, and A. Ziglera, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta B At. Spectrosc. 56(6), 707–714 (2001).
[Crossref]

Martin-Neto, L.

E. C. Ferreira, D. M. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B At. Spectrosc. 63(10), 1216–1220 (2008).
[Crossref]

Melnichenko, G. V.

M. E. Essington, G. V. Melnichenko, M. A. Stewart, and R. A. Hull, “Soil metals analysis using laser-induced breakdown spectroscopy (LIBS),” Soil Sci. Soc. Am. J. 73(5), 1469–1478 (2009).
[Crossref]

Meyer, C. W.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67(5), 1616–1619 (2003).
[Crossref]

Michel, K.

J. E. Haddad, M. Villot-Kadri, A. Ismaël, G. Gallou, K. Michel, D. Bruyère, V. Laperche, L. Canioni, and B. Bousquet, “Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79, 51–57 (2013).
[Crossref]

Milori, D. M.

E. C. Ferreira, D. M. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B At. Spectrosc. 63(10), 1216–1220 (2008).
[Crossref]

Molina, A.

Nayak, R.

V. K. Unnikrishnan, R. Nayak, K. Aithal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Analysis of trace elements in complex matrices (soil) by laser induced breakdown spectroscopy (LIBS),” Anal. Methods 5(5), 1294–1300 (2013).
[Crossref]

Noll, R.

F. H. Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56(6), 933–945 (2001).
[Crossref]

Norfleet, M. L.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67(5), 1616–1619 (2003).
[Crossref]

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Palucci, A.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, and F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys., A Mater. Sci. Process. 69(1), S175–S178 (1999).
[Crossref]

Pareja, J.

Pasquini, C.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642(1-2), 12–18 (2009).
[Crossref] [PubMed]

Pearceb, T.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazletta, J. Martinb, T. Pearceb, and A. Ziglera, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta B At. Spectrosc. 56(6), 707–714 (2001).
[Crossref]

Pontes, M. J. C.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642(1-2), 12–18 (2009).
[Crossref] [PubMed]

Potin-Gautier, M.

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385(2), 256–262 (2006).
[Crossref] [PubMed]

Rosenwasser, S.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazletta, J. Martinb, T. Pearceb, and A. Ziglera, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta B At. Spectrosc. 56(6), 707–714 (2001).
[Crossref]

Santhosh, C.

V. K. Unnikrishnan, R. Nayak, K. Aithal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Analysis of trace elements in complex matrices (soil) by laser induced breakdown spectroscopy (LIBS),” Anal. Methods 5(5), 1294–1300 (2013).
[Crossref]

Sarger, L.

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385(2), 256–262 (2006).
[Crossref] [PubMed]

Shao, X.

C. Ma and X. Shao, “Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra,” J. Chem. Inf. Comput. Sci. 44(3), 907–911 (2004).
[Crossref] [PubMed]

Shao, X. G.

X. G. Shao, A. K. M. Leung, and F. T. Chau, “Wavelet: a new trend in chemistry,” Acc. Chem. Res. 36(4), 276–283 (2003).
[Crossref] [PubMed]

Shen, M.

Sirven, J. B.

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta B At. Spectrosc. 62(12), 1582–1589 (2007).
[Crossref]

Sirven, J.-B.

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385(2), 256–262 (2006).
[Crossref] [PubMed]

Stewart, M. A.

M. E. Essington, G. V. Melnichenko, M. A. Stewart, and R. A. Hull, “Soil metals analysis using laser-induced breakdown spectroscopy (LIBS),” Soil Sci. Soc. Am. J. 73(5), 1469–1478 (2009).
[Crossref]

Stojek, Z.

W. Hyk and Z. Stojek, “Quantifying uncertainty of determination by standard additions and serial dilutions methods taking into account standard uncertainties in both axes,” Anal. Chem. 85(12), 5933–5939 (2013).
[Crossref] [PubMed]

Suri, B. M.

V. K. Unnikrishnan, R. Nayak, K. Aithal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Analysis of trace elements in complex matrices (soil) by laser induced breakdown spectroscopy (LIBS),” Anal. Methods 5(5), 1294–1300 (2013).
[Crossref]

Tellier, S.

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385(2), 256–262 (2006).
[Crossref] [PubMed]

Unkefer, P. J.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67(5), 1616–1619 (2003).
[Crossref]

Unnikrishnan, V. K.

V. K. Unnikrishnan, R. Nayak, K. Aithal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Analysis of trace elements in complex matrices (soil) by laser induced breakdown spectroscopy (LIBS),” Anal. Methods 5(5), 1294–1300 (2013).
[Crossref]

Villot-Kadri, M.

J. E. Haddad, M. Villot-Kadri, A. Ismaël, G. Gallou, K. Michel, D. Bruyère, V. Laperche, L. Canioni, and B. Bousquet, “Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79, 51–57 (2013).
[Crossref]

Wang, Z.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Wang, Z. M.

Windom, B. C.

B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): A means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24(12), 1665–1675 (2009).
[Crossref]

Wintjens, P.

F. H. Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56(6), 933–945 (2001).
[Crossref]

Wullschleger, S. D.

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74(1), 87–93 (2010).
[Crossref]

Yuan, T. B.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Zeng, Q. D.

Zeng, X. Y.

Zenk, M. H.

M. H. Zenk, “Heavy metal detoxification in higher plants--a review,” Gene 179(1), 21–30 (1996).
[Crossref] [PubMed]

Zhang, Z. X.

X. G. Ma and Z. X. Zhang, “Application of wavelet transform to background correction in inductively coupled plasma atomic emission spectrometry,” Anal. Chim. Acta 485(2), 233–239 (2003).
[Crossref]

Zhou, W. D.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Ziglera, A.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazletta, J. Martinb, T. Pearceb, and A. Ziglera, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta B At. Spectrosc. 56(6), 707–714 (2001).
[Crossref]

Zou, X. H.

Acc. Chem. Res. (1)

X. G. Shao, A. K. M. Leung, and F. T. Chau, “Wavelet: a new trend in chemistry,” Acc. Chem. Res. 36(4), 276–283 (2003).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385(2), 256–262 (2006).
[Crossref] [PubMed]

Anal. Chem. (1)

W. Hyk and Z. Stojek, “Quantifying uncertainty of determination by standard additions and serial dilutions methods taking into account standard uncertainties in both axes,” Anal. Chem. 85(12), 5933–5939 (2013).
[Crossref] [PubMed]

Anal. Chim. Acta (2)

X. G. Ma and Z. X. Zhang, “Application of wavelet transform to background correction in inductively coupled plasma atomic emission spectrometry,” Anal. Chim. Acta 485(2), 233–239 (2003).
[Crossref]

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642(1-2), 12–18 (2009).
[Crossref] [PubMed]

Anal. Methods (1)

V. K. Unnikrishnan, R. Nayak, K. Aithal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Analysis of trace elements in complex matrices (soil) by laser induced breakdown spectroscopy (LIBS),” Anal. Methods 5(5), 1294–1300 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

R. Barbini, F. Colao, R. Fantoni, A. Palucci, and F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys., A Mater. Sci. Process. 69(1), S175–S178 (1999).
[Crossref]

Appl. Spectrosc. (3)

Front. Phys. (1)

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Gene (1)

M. H. Zenk, “Heavy metal detoxification in higher plants--a review,” Gene 179(1), 21–30 (1996).
[Crossref] [PubMed]

J. Anal. At. Spectrom. (1)

B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): A means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24(12), 1665–1675 (2009).
[Crossref]

J. Chem. Inf. Comput. Sci. (1)

C. Ma and X. Shao, “Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra,” J. Chem. Inf. Comput. Sci. 44(3), 907–911 (2004).
[Crossref] [PubMed]

Opt. Express (1)

Soil Sci. Soc. Am. J. (3)

M. E. Essington, G. V. Melnichenko, M. A. Stewart, and R. A. Hull, “Soil metals analysis using laser-induced breakdown spectroscopy (LIBS),” Soil Sci. Soc. Am. J. 73(5), 1469–1478 (2009).
[Crossref]

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67(5), 1616–1619 (2003).
[Crossref]

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74(1), 87–93 (2010).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (5)

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazletta, J. Martinb, T. Pearceb, and A. Ziglera, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta B At. Spectrosc. 56(6), 707–714 (2001).
[Crossref]

F. H. Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56(6), 933–945 (2001).
[Crossref]

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta B At. Spectrosc. 62(12), 1582–1589 (2007).
[Crossref]

J. E. Haddad, M. Villot-Kadri, A. Ismaël, G. Gallou, K. Michel, D. Bruyère, V. Laperche, L. Canioni, and B. Bousquet, “Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79, 51–57 (2013).
[Crossref]

E. C. Ferreira, D. M. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B At. Spectrosc. 63(10), 1216–1220 (2008).
[Crossref]

Other (4)

S. H. Chen, X. H. Ma, H. F. Zhao, and H. Lv, “Research of laser induced breakdown spectroscopy for detection of trace Cd in polluted soil,” in 22nd International Conference on Optical Fiber Sensor (ISOP, 2012), paper 8421AL.
[Crossref]

R. Noll, Laser-Induced Breakdown Spectroscopy (Springer Berlin, 2012).

D. C. Adriano, Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals (Springer-Verlag, 2001).

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the standard addition method.
Fig. 2
Fig. 2 LIBS experiment setup (a) and pellet soil samples (b).
Fig. 3
Fig. 3 Comparison of original spectrum of sample No. 5(red) and its corrected spectra, which is corrected by two-point background subtraction method (blue) and wavelet background removal (black), respectively.
Fig. 4
Fig. 4 The calibration curves and the determination coefficients of the original data (red) and its corrected data, which is corrected by two-point background subtraction method (blue) and wavelet background removal (black), respectively, for sample No. 2.
Fig. 5
Fig. 5 Original spectrum of sample No. 1, which ranges from 404.5 to 406.5 nm.
Fig. 6
Fig. 6 Calibration plots of original data (red), the two-point background subtraction data (blue) and wavelet background removal data (black) for sample No. 2, respectively.
Fig. 7
Fig. 7 Calibration plots of original data (red), the two-point background subtraction data (blue) and wavelet background removal data (black) for Cd element, respectively.
Fig. 8
Fig. 8 Comparison of the calibration plots using original data (red), two-point data (blue) and WT data (black) for Cd by using SAM.

Tables (4)

Tables Icon

Table 1 Sample number and concentration.

Tables Icon

Table 2 The predicted results of the conventional calibration methods.

Tables Icon

Table 3 The slope and R2 of the calibration curves.

Tables Icon

Table 4 The predicted results of the standard addition methods.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

 I=k( C X + C 0 )+b,
 I=k C x +( k C 0 +b ),
C 0 =( C x,I=0 + b k ) C x,I=0 .
C 0 =( C x,I=0 + b k ) C x,I=0 .
LOD= 3σ k ,

Metrics