Abstract

We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of arbitrary frequency chirps with a fiber-based phase modulator and self-injection-locked diode laser

C. E. Rogers III, M. J. Wright, J. L. Carini, J. A. Pechkis, and P. L. Gould
J. Opt. Soc. Am. B 24(6) 1249-1253 (2007)

Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers

V. Pruneri, G. Bonfrate, P. G. Kazansky, D. J. Richardson, N. G. Broderick, J. P. de Sandro, C. Simonneau, P. Vidakovic, and J. A. Levenson
Opt. Lett. 24(4) 208-210 (1999)

References

  • View by:
  • |
  • |
  • |

  1. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
    [Crossref] [PubMed]
  2. T. A. Collins and S. A. Malinovskaya, “Manipulation of ultracold Rb atoms using a single linearly chirped laser pulse,” Opt. Lett. 37, 2298–2300 (2012).
    [Crossref] [PubMed]
  3. G. Liu, V. Zakarov, T. Collins, P. Gould, and S. A. Malinovskaya, “Population inversion in hyperfine states of Rb with a single nanosecond chirped pulse in the framework of a four-level system,” Phys. Rev A 89, 041803 (2014).
    [Crossref]
  4. M. J. Wright, J. A. Pechkis, J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Coherent control of ultracold collisions with chirped light: Direction matters,” Phys. Rev. A 75, 051401(R) (2007).
    [Crossref]
  5. J. A. Pechkis, J. L. Carini, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Coherent control of ultracold 85Rb trap-loss collisions with nonlinearly frequency-chirped light,” Phys. Rev. A 83, 063403 (2011).
    [Crossref]
  6. M. J. Wright, “Semi-classical calculations of ultracold and cold collisions with frequency-chirped light,” Eur. Phys. J. D 69, 1–6 (2015).
  7. C. P. Koch and M. Shapiro, “Coherent control of ultracold photoassociation,” Chem. Rev. 112, 4928–4948 (2012).
    [Crossref] [PubMed]
  8. J. L. Carini, J. A. Pechkis, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Production of ultracold molecules with chirped nanosecond pulses: Evidence for coherent effects,” Phys. Rev A 87, 011401(R) (2013).
    [Crossref]
  9. J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Enhancement of ultracold molecule formation using shaped nanosecond frequency chirps,” Phys. Rev. Lett. 115, 173003 (2015).
    [Crossref] [PubMed]
  10. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J.L. OBrien, “Quantum computers,” Nature 464, 45–53 (2010).
    [Crossref] [PubMed]
  11. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [Crossref]
  12. A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum.75, 2668–2671 (2004).
  13. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21, 366–368 (1996).
    [Crossref] [PubMed]
  14. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon. 4, 760–766 (2010).
    [Crossref]
  15. R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18, 18655–18670 (2010).
    [Crossref] [PubMed]
  16. D. S. Wu, D. J. Richardson, and R. Slavik, “Optical Fourier synthesis of high-repetition-rate pulses,” Optica 2, 18–26 (2015).
    [Crossref]
  17. J. Thom, G. Wilpers, E. Riis, and A. G. Sinclair, “Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems,” Opt. Express 21, 18712–18723 (2013).
    [Crossref] [PubMed]
  18. M. J. Wright, P. L. Gould, and S. D. Gensemer, “Frequency-chirped light from an injection-locked diode laser,” Rev. Sci. Instrum. 75, 4718–4720 (2004).
    [Crossref]
  19. K. Teng, M. Disla, J. Dellatto, A. Limani, B. Kaufman, and M.J. Wright, “Frequency chirped light at large detuning with an injection-locked diode laser,” Rev. Sci. Instrum. 86, 043114 (2015).
    [Crossref] [PubMed]
  20. P. J. Delfyett, D. Mandridis, M. U. Piracha, D. Nguyen, K. Kim, and S. Lee, Chirped pulse laser sources and applications, Prog. Quant. Electron. 36, 475–540 (2012).
    [Crossref]
  21. A. Kanno, S. Honda, R. Yamanaka, H. Sotobayashi, and T. Kawanishi, “Ultrafast and broadband frequency chirp signal generation using a high-extinction-ratio optical modulator,” Opt. Lett. 35, 4160–4162 (2010).
    [Crossref] [PubMed]
  22. S. Wang, W. Zheng, L. Zhao, Q. Zhu, J. Xu, and Y. Tang, “All-fiber abritrary and precise pulse spectral shaping,” Laser Phys. Lett. 12, 045107 (2015).
    [Crossref]
  23. J. Brennan, D. Labrake, P. Chou, and H. Haus, Method and apparatus for arbitrary spectral shaping of an optical pulse, U.S. Patent 6195484.
  24. A. Malinowski, K.T. Vu, K.K. Chen, J. Nilsson, Y. Jeong, S. Alam, D. Lin, and D.J. Richardson, High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping, Opt. Express 17, 20927–20937 (2009).
    [Crossref] [PubMed]
  25. M.D. Skeldon, Optical pulse-shaping system based on an electro-optic modulator driven by an aperture-coupled-stripline electrical-waveform generator, J. Opt. Soc. Am B 19, 2413–2426 (2002).
    [Crossref]
  26. H. Chi and J. Yao, Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator, Electron. Lett. 43, 415–417 (2007).
    [Crossref]
  27. H. Murata, A. Morimoto, T. Kobayahsi, and S. Yamamoto, Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators, IEEE J. Select Topics in Quant. Electron. 6, 1325–1331 (2000).
    [Crossref]
  28. P. Adany, C. Allen, and R. Hui, Chirped LIDAR using simplified homodyne detection, J. Lightwave Technol. 27, 3351–3357 (2009).
    [Crossref]
  29. C. E. Rogers, M. J. Wright, J. L. Carini, J. A. Pechkis, and P. L. Gould, “Generation of arbitrary frequency chirps with a fiber-based phase modulator and self-injection-locked diode laser,” J. Opt. Soc. Am. B 24, 1249–1253 (2007).
    [Crossref]
  30. V. Bolpasi and W. von Klitzing, “Double-pass tapered amplifier diode laser system with an output power of 1 W for an injection power of only 200 μW,” Rev. Sci. Instrum. 81, 113108 (2010).
    [Crossref]
  31. V. M. Valenzuela, L. Hernández, and E. Gomez, “High power rapidly tunable system for laser cooling,” Rev. Sci. Instrum. 83, 015111 (2012).
    [Crossref] [PubMed]
  32. National Instruments, LabVIEW software documentation: Analytic wavelet transform, http://zone.ni.com/reference/en-XX/help/371419D-01/lvasptconcepts/wa_awt/ (2015).
  33. R. T. White, Y. He, B. J. Orr, M. Kono, and K. Baldwin, “Control of frequency chirp in nanosecond-pulsed laser spectroscopy. 3. Spectrotemporal dynamics of an injection-seeded optical parametric oscillator,” J. Opt. Soc. Am. B 24, 2601–2609 (2007).
    [Crossref]
  34. Y. Wang, J. Minář, L. Sheridan, and V. Scarani, “Efficient excitation of a two-level atom by a single photon in a propagating mode,” Phys. Rev. A 83, 063842 (2011).
    [Crossref]
  35. S. A. Aljunid, G. Maslennikov, Y. Wang, H.L. Dao, V. Scarani, and C. Kurtsiefer, “Excitation of a single atom with exponentially rising light pulses,” Phys. Rev. Lett. 111, 103001 (2013).
    [Crossref]
  36. M. R. Fetterman, D. Goswami, D. Keusters, W. Yang, J.-K. Rhee, and W. S. Warren, “Ultrafast pulse shaping: amplification and characterization,” Opt. Express 3, 366–375 (1998).
    [Crossref] [PubMed]
  37. J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Enhancement of ultracold molecule formation by local control in the nanosecond regime,” New J. Phys. 17, 025008 (2015).
    [Crossref]
  38. R. Seiler, T. Paul, M. Andrist, and F. Merkt, “Generation of programmable near-Fourier-transform-limited pulses of narrow-band laser radiation from the near infrared to the vacuum ultraviolet,” Rev. Sci. Instrum. 76, 103103 (2005).
    [Crossref]

2015 (6)

M. J. Wright, “Semi-classical calculations of ultracold and cold collisions with frequency-chirped light,” Eur. Phys. J. D 69, 1–6 (2015).

J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Enhancement of ultracold molecule formation using shaped nanosecond frequency chirps,” Phys. Rev. Lett. 115, 173003 (2015).
[Crossref] [PubMed]

K. Teng, M. Disla, J. Dellatto, A. Limani, B. Kaufman, and M.J. Wright, “Frequency chirped light at large detuning with an injection-locked diode laser,” Rev. Sci. Instrum. 86, 043114 (2015).
[Crossref] [PubMed]

S. Wang, W. Zheng, L. Zhao, Q. Zhu, J. Xu, and Y. Tang, “All-fiber abritrary and precise pulse spectral shaping,” Laser Phys. Lett. 12, 045107 (2015).
[Crossref]

J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Enhancement of ultracold molecule formation by local control in the nanosecond regime,” New J. Phys. 17, 025008 (2015).
[Crossref]

D. S. Wu, D. J. Richardson, and R. Slavik, “Optical Fourier synthesis of high-repetition-rate pulses,” Optica 2, 18–26 (2015).
[Crossref]

2014 (1)

G. Liu, V. Zakarov, T. Collins, P. Gould, and S. A. Malinovskaya, “Population inversion in hyperfine states of Rb with a single nanosecond chirped pulse in the framework of a four-level system,” Phys. Rev A 89, 041803 (2014).
[Crossref]

2013 (3)

J. L. Carini, J. A. Pechkis, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Production of ultracold molecules with chirped nanosecond pulses: Evidence for coherent effects,” Phys. Rev A 87, 011401(R) (2013).
[Crossref]

S. A. Aljunid, G. Maslennikov, Y. Wang, H.L. Dao, V. Scarani, and C. Kurtsiefer, “Excitation of a single atom with exponentially rising light pulses,” Phys. Rev. Lett. 111, 103001 (2013).
[Crossref]

J. Thom, G. Wilpers, E. Riis, and A. G. Sinclair, “Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems,” Opt. Express 21, 18712–18723 (2013).
[Crossref] [PubMed]

2012 (4)

T. A. Collins and S. A. Malinovskaya, “Manipulation of ultracold Rb atoms using a single linearly chirped laser pulse,” Opt. Lett. 37, 2298–2300 (2012).
[Crossref] [PubMed]

V. M. Valenzuela, L. Hernández, and E. Gomez, “High power rapidly tunable system for laser cooling,” Rev. Sci. Instrum. 83, 015111 (2012).
[Crossref] [PubMed]

P. J. Delfyett, D. Mandridis, M. U. Piracha, D. Nguyen, K. Kim, and S. Lee, Chirped pulse laser sources and applications, Prog. Quant. Electron. 36, 475–540 (2012).
[Crossref]

C. P. Koch and M. Shapiro, “Coherent control of ultracold photoassociation,” Chem. Rev. 112, 4928–4948 (2012).
[Crossref] [PubMed]

2011 (2)

J. A. Pechkis, J. L. Carini, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Coherent control of ultracold 85Rb trap-loss collisions with nonlinearly frequency-chirped light,” Phys. Rev. A 83, 063403 (2011).
[Crossref]

Y. Wang, J. Minář, L. Sheridan, and V. Scarani, “Efficient excitation of a two-level atom by a single photon in a propagating mode,” Phys. Rev. A 83, 063842 (2011).
[Crossref]

2010 (5)

V. Bolpasi and W. von Klitzing, “Double-pass tapered amplifier diode laser system with an output power of 1 W for an injection power of only 200 μW,” Rev. Sci. Instrum. 81, 113108 (2010).
[Crossref]

R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18, 18655–18670 (2010).
[Crossref] [PubMed]

A. Kanno, S. Honda, R. Yamanaka, H. Sotobayashi, and T. Kawanishi, “Ultrafast and broadband frequency chirp signal generation using a high-extinction-ratio optical modulator,” Opt. Lett. 35, 4160–4162 (2010).
[Crossref] [PubMed]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon. 4, 760–766 (2010).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J.L. OBrien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

2009 (2)

2007 (4)

C. E. Rogers, M. J. Wright, J. L. Carini, J. A. Pechkis, and P. L. Gould, “Generation of arbitrary frequency chirps with a fiber-based phase modulator and self-injection-locked diode laser,” J. Opt. Soc. Am. B 24, 1249–1253 (2007).
[Crossref]

R. T. White, Y. He, B. J. Orr, M. Kono, and K. Baldwin, “Control of frequency chirp in nanosecond-pulsed laser spectroscopy. 3. Spectrotemporal dynamics of an injection-seeded optical parametric oscillator,” J. Opt. Soc. Am. B 24, 2601–2609 (2007).
[Crossref]

M. J. Wright, J. A. Pechkis, J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Coherent control of ultracold collisions with chirped light: Direction matters,” Phys. Rev. A 75, 051401(R) (2007).
[Crossref]

H. Chi and J. Yao, Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator, Electron. Lett. 43, 415–417 (2007).
[Crossref]

2005 (1)

R. Seiler, T. Paul, M. Andrist, and F. Merkt, “Generation of programmable near-Fourier-transform-limited pulses of narrow-band laser radiation from the near infrared to the vacuum ultraviolet,” Rev. Sci. Instrum. 76, 103103 (2005).
[Crossref]

2004 (1)

M. J. Wright, P. L. Gould, and S. D. Gensemer, “Frequency-chirped light from an injection-locked diode laser,” Rev. Sci. Instrum. 75, 4718–4720 (2004).
[Crossref]

2002 (1)

M.D. Skeldon, Optical pulse-shaping system based on an electro-optic modulator driven by an aperture-coupled-stripline electrical-waveform generator, J. Opt. Soc. Am B 19, 2413–2426 (2002).
[Crossref]

2000 (2)

H. Murata, A. Morimoto, T. Kobayahsi, and S. Yamamoto, Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators, IEEE J. Select Topics in Quant. Electron. 6, 1325–1331 (2000).
[Crossref]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

1998 (2)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

M. R. Fetterman, D. Goswami, D. Keusters, W. Yang, J.-K. Rhee, and W. S. Warren, “Ultrafast pulse shaping: amplification and characterization,” Opt. Express 3, 366–375 (1998).
[Crossref] [PubMed]

1996 (1)

Adany, P.

Alam, S.

Aljunid, S. A.

S. A. Aljunid, G. Maslennikov, Y. Wang, H.L. Dao, V. Scarani, and C. Kurtsiefer, “Excitation of a single atom with exponentially rising light pulses,” Phys. Rev. Lett. 111, 103001 (2013).
[Crossref]

Allen, C.

Andrist, M.

R. Seiler, T. Paul, M. Andrist, and F. Merkt, “Generation of programmable near-Fourier-transform-limited pulses of narrow-band laser radiation from the near infrared to the vacuum ultraviolet,” Rev. Sci. Instrum. 76, 103103 (2005).
[Crossref]

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Baldwin, K.

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Bolpasi, V.

V. Bolpasi and W. von Klitzing, “Double-pass tapered amplifier diode laser system with an output power of 1 W for an injection power of only 200 μW,” Rev. Sci. Instrum. 81, 113108 (2010).
[Crossref]

Brennan, J.

J. Brennan, D. Labrake, P. Chou, and H. Haus, Method and apparatus for arbitrary spectral shaping of an optical pulse, U.S. Patent 6195484.

Brixner, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Carini, J. L.

J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Enhancement of ultracold molecule formation using shaped nanosecond frequency chirps,” Phys. Rev. Lett. 115, 173003 (2015).
[Crossref] [PubMed]

J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Enhancement of ultracold molecule formation by local control in the nanosecond regime,” New J. Phys. 17, 025008 (2015).
[Crossref]

J. L. Carini, J. A. Pechkis, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Production of ultracold molecules with chirped nanosecond pulses: Evidence for coherent effects,” Phys. Rev A 87, 011401(R) (2013).
[Crossref]

J. A. Pechkis, J. L. Carini, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Coherent control of ultracold 85Rb trap-loss collisions with nonlinearly frequency-chirped light,” Phys. Rev. A 83, 063403 (2011).
[Crossref]

C. E. Rogers, M. J. Wright, J. L. Carini, J. A. Pechkis, and P. L. Gould, “Generation of arbitrary frequency chirps with a fiber-based phase modulator and self-injection-locked diode laser,” J. Opt. Soc. Am. B 24, 1249–1253 (2007).
[Crossref]

M. J. Wright, J. A. Pechkis, J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Coherent control of ultracold collisions with chirped light: Direction matters,” Phys. Rev. A 75, 051401(R) (2007).
[Crossref]

Chatel, B.

A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum.75, 2668–2671 (2004).

Chen, K.K.

Chi, H.

H. Chi and J. Yao, Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator, Electron. Lett. 43, 415–417 (2007).
[Crossref]

Chou, P.

J. Brennan, D. Labrake, P. Chou, and H. Haus, Method and apparatus for arbitrary spectral shaping of an optical pulse, U.S. Patent 6195484.

Collins, T.

G. Liu, V. Zakarov, T. Collins, P. Gould, and S. A. Malinovskaya, “Population inversion in hyperfine states of Rb with a single nanosecond chirped pulse in the framework of a four-level system,” Phys. Rev A 89, 041803 (2014).
[Crossref]

Collins, T. A.

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon. 4, 760–766 (2010).
[Crossref]

Dao, H.L.

S. A. Aljunid, G. Maslennikov, Y. Wang, H.L. Dao, V. Scarani, and C. Kurtsiefer, “Excitation of a single atom with exponentially rising light pulses,” Phys. Rev. Lett. 111, 103001 (2013).
[Crossref]

Delfyett, P. J.

P. J. Delfyett, D. Mandridis, M. U. Piracha, D. Nguyen, K. Kim, and S. Lee, Chirped pulse laser sources and applications, Prog. Quant. Electron. 36, 475–540 (2012).
[Crossref]

Dellatto, J.

K. Teng, M. Disla, J. Dellatto, A. Limani, B. Kaufman, and M.J. Wright, “Frequency chirped light at large detuning with an injection-locked diode laser,” Rev. Sci. Instrum. 86, 043114 (2015).
[Crossref] [PubMed]

Disla, M.

K. Teng, M. Disla, J. Dellatto, A. Limani, B. Kaufman, and M.J. Wright, “Frequency chirped light at large detuning with an injection-locked diode laser,” Rev. Sci. Instrum. 86, 043114 (2015).
[Crossref] [PubMed]

Fetterman, M. R.

Fontaine, N. K.

Gensemer, S. D.

M. J. Wright, P. L. Gould, and S. D. Gensemer, “Frequency-chirped light from an injection-locked diode laser,” Rev. Sci. Instrum. 75, 4718–4720 (2004).
[Crossref]

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Gomez, E.

V. M. Valenzuela, L. Hernández, and E. Gomez, “High power rapidly tunable system for laser cooling,” Rev. Sci. Instrum. 83, 015111 (2012).
[Crossref] [PubMed]

Goswami, D.

Gould, P.

G. Liu, V. Zakarov, T. Collins, P. Gould, and S. A. Malinovskaya, “Population inversion in hyperfine states of Rb with a single nanosecond chirped pulse in the framework of a four-level system,” Phys. Rev A 89, 041803 (2014).
[Crossref]

Gould, P. L.

J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Enhancement of ultracold molecule formation using shaped nanosecond frequency chirps,” Phys. Rev. Lett. 115, 173003 (2015).
[Crossref] [PubMed]

J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Enhancement of ultracold molecule formation by local control in the nanosecond regime,” New J. Phys. 17, 025008 (2015).
[Crossref]

J. L. Carini, J. A. Pechkis, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Production of ultracold molecules with chirped nanosecond pulses: Evidence for coherent effects,” Phys. Rev A 87, 011401(R) (2013).
[Crossref]

J. A. Pechkis, J. L. Carini, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Coherent control of ultracold 85Rb trap-loss collisions with nonlinearly frequency-chirped light,” Phys. Rev. A 83, 063403 (2011).
[Crossref]

M. J. Wright, J. A. Pechkis, J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Coherent control of ultracold collisions with chirped light: Direction matters,” Phys. Rev. A 75, 051401(R) (2007).
[Crossref]

C. E. Rogers, M. J. Wright, J. L. Carini, J. A. Pechkis, and P. L. Gould, “Generation of arbitrary frequency chirps with a fiber-based phase modulator and self-injection-locked diode laser,” J. Opt. Soc. Am. B 24, 1249–1253 (2007).
[Crossref]

M. J. Wright, P. L. Gould, and S. D. Gensemer, “Frequency-chirped light from an injection-locked diode laser,” Rev. Sci. Instrum. 75, 4718–4720 (2004).
[Crossref]

Haus, H.

J. Brennan, D. Labrake, P. Chou, and H. Haus, Method and apparatus for arbitrary spectral shaping of an optical pulse, U.S. Patent 6195484.

He, Y.

Heritage, J. P.

Hernández, L.

V. M. Valenzuela, L. Hernández, and E. Gomez, “High power rapidly tunable system for laser cooling,” Rev. Sci. Instrum. 83, 015111 (2012).
[Crossref] [PubMed]

Honda, S.

Hui, R.

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J.L. OBrien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Jeong, Y.

Kallush, S.

J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Enhancement of ultracold molecule formation using shaped nanosecond frequency chirps,” Phys. Rev. Lett. 115, 173003 (2015).
[Crossref] [PubMed]

J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Enhancement of ultracold molecule formation by local control in the nanosecond regime,” New J. Phys. 17, 025008 (2015).
[Crossref]

J. L. Carini, J. A. Pechkis, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Production of ultracold molecules with chirped nanosecond pulses: Evidence for coherent effects,” Phys. Rev A 87, 011401(R) (2013).
[Crossref]

J. A. Pechkis, J. L. Carini, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Coherent control of ultracold 85Rb trap-loss collisions with nonlinearly frequency-chirped light,” Phys. Rev. A 83, 063403 (2011).
[Crossref]

M. J. Wright, J. A. Pechkis, J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Coherent control of ultracold collisions with chirped light: Direction matters,” Phys. Rev. A 75, 051401(R) (2007).
[Crossref]

Kanno, A.

Kaufman, B.

K. Teng, M. Disla, J. Dellatto, A. Limani, B. Kaufman, and M.J. Wright, “Frequency chirped light at large detuning with an injection-locked diode laser,” Rev. Sci. Instrum. 86, 043114 (2015).
[Crossref] [PubMed]

Kawanishi, T.

Keusters, D.

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Kim, K.

P. J. Delfyett, D. Mandridis, M. U. Piracha, D. Nguyen, K. Kim, and S. Lee, Chirped pulse laser sources and applications, Prog. Quant. Electron. 36, 475–540 (2012).
[Crossref]

Kobayahsi, T.

H. Murata, A. Morimoto, T. Kobayahsi, and S. Yamamoto, Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators, IEEE J. Select Topics in Quant. Electron. 6, 1325–1331 (2000).
[Crossref]

Koch, C. P.

C. P. Koch and M. Shapiro, “Coherent control of ultracold photoassociation,” Chem. Rev. 112, 4928–4948 (2012).
[Crossref] [PubMed]

Kono, M.

Kosloff, R.

J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Enhancement of ultracold molecule formation using shaped nanosecond frequency chirps,” Phys. Rev. Lett. 115, 173003 (2015).
[Crossref] [PubMed]

J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Enhancement of ultracold molecule formation by local control in the nanosecond regime,” New J. Phys. 17, 025008 (2015).
[Crossref]

J. L. Carini, J. A. Pechkis, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Production of ultracold molecules with chirped nanosecond pulses: Evidence for coherent effects,” Phys. Rev A 87, 011401(R) (2013).
[Crossref]

J. A. Pechkis, J. L. Carini, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Coherent control of ultracold 85Rb trap-loss collisions with nonlinearly frequency-chirped light,” Phys. Rev. A 83, 063403 (2011).
[Crossref]

M. J. Wright, J. A. Pechkis, J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Coherent control of ultracold collisions with chirped light: Direction matters,” Phys. Rev. A 75, 051401(R) (2007).
[Crossref]

Kurtsiefer, C.

S. A. Aljunid, G. Maslennikov, Y. Wang, H.L. Dao, V. Scarani, and C. Kurtsiefer, “Excitation of a single atom with exponentially rising light pulses,” Phys. Rev. Lett. 111, 103001 (2013).
[Crossref]

Labrake, D.

J. Brennan, D. Labrake, P. Chou, and H. Haus, Method and apparatus for arbitrary spectral shaping of an optical pulse, U.S. Patent 6195484.

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J.L. OBrien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J.L. OBrien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Lee, S.

P. J. Delfyett, D. Mandridis, M. U. Piracha, D. Nguyen, K. Kim, and S. Lee, Chirped pulse laser sources and applications, Prog. Quant. Electron. 36, 475–540 (2012).
[Crossref]

Limani, A.

K. Teng, M. Disla, J. Dellatto, A. Limani, B. Kaufman, and M.J. Wright, “Frequency chirped light at large detuning with an injection-locked diode laser,” Rev. Sci. Instrum. 86, 043114 (2015).
[Crossref] [PubMed]

Lin, D.

Liu, G.

G. Liu, V. Zakarov, T. Collins, P. Gould, and S. A. Malinovskaya, “Population inversion in hyperfine states of Rb with a single nanosecond chirped pulse in the framework of a four-level system,” Phys. Rev A 89, 041803 (2014).
[Crossref]

Malinovskaya, S. A.

G. Liu, V. Zakarov, T. Collins, P. Gould, and S. A. Malinovskaya, “Population inversion in hyperfine states of Rb with a single nanosecond chirped pulse in the framework of a four-level system,” Phys. Rev A 89, 041803 (2014).
[Crossref]

T. A. Collins and S. A. Malinovskaya, “Manipulation of ultracold Rb atoms using a single linearly chirped laser pulse,” Opt. Lett. 37, 2298–2300 (2012).
[Crossref] [PubMed]

Malinowski, A.

Mandridis, D.

P. J. Delfyett, D. Mandridis, M. U. Piracha, D. Nguyen, K. Kim, and S. Lee, Chirped pulse laser sources and applications, Prog. Quant. Electron. 36, 475–540 (2012).
[Crossref]

Maslennikov, G.

S. A. Aljunid, G. Maslennikov, Y. Wang, H.L. Dao, V. Scarani, and C. Kurtsiefer, “Excitation of a single atom with exponentially rising light pulses,” Phys. Rev. Lett. 111, 103001 (2013).
[Crossref]

Merkt, F.

R. Seiler, T. Paul, M. Andrist, and F. Merkt, “Generation of programmable near-Fourier-transform-limited pulses of narrow-band laser radiation from the near infrared to the vacuum ultraviolet,” Rev. Sci. Instrum. 76, 103103 (2005).
[Crossref]

Minár, J.

Y. Wang, J. Minář, L. Sheridan, and V. Scarani, “Efficient excitation of a two-level atom by a single photon in a propagating mode,” Phys. Rev. A 83, 063842 (2011).
[Crossref]

Monmayrant, A.

A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum.75, 2668–2671 (2004).

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J.L. OBrien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Morimoto, A.

H. Murata, A. Morimoto, T. Kobayahsi, and S. Yamamoto, Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators, IEEE J. Select Topics in Quant. Electron. 6, 1325–1331 (2000).
[Crossref]

Murata, H.

H. Murata, A. Morimoto, T. Kobayahsi, and S. Yamamoto, Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators, IEEE J. Select Topics in Quant. Electron. 6, 1325–1331 (2000).
[Crossref]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J.L. OBrien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Nguyen, D.

P. J. Delfyett, D. Mandridis, M. U. Piracha, D. Nguyen, K. Kim, and S. Lee, Chirped pulse laser sources and applications, Prog. Quant. Electron. 36, 475–540 (2012).
[Crossref]

Nilsson, J.

OBrien, J.L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J.L. OBrien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Orr, B. J.

Paul, T.

R. Seiler, T. Paul, M. Andrist, and F. Merkt, “Generation of programmable near-Fourier-transform-limited pulses of narrow-band laser radiation from the near infrared to the vacuum ultraviolet,” Rev. Sci. Instrum. 76, 103103 (2005).
[Crossref]

Pechkis, J. A.

J. L. Carini, J. A. Pechkis, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Production of ultracold molecules with chirped nanosecond pulses: Evidence for coherent effects,” Phys. Rev A 87, 011401(R) (2013).
[Crossref]

J. A. Pechkis, J. L. Carini, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Coherent control of ultracold 85Rb trap-loss collisions with nonlinearly frequency-chirped light,” Phys. Rev. A 83, 063403 (2011).
[Crossref]

M. J. Wright, J. A. Pechkis, J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Coherent control of ultracold collisions with chirped light: Direction matters,” Phys. Rev. A 75, 051401(R) (2007).
[Crossref]

C. E. Rogers, M. J. Wright, J. L. Carini, J. A. Pechkis, and P. L. Gould, “Generation of arbitrary frequency chirps with a fiber-based phase modulator and self-injection-locked diode laser,” J. Opt. Soc. Am. B 24, 1249–1253 (2007).
[Crossref]

Piracha, M. U.

P. J. Delfyett, D. Mandridis, M. U. Piracha, D. Nguyen, K. Kim, and S. Lee, Chirped pulse laser sources and applications, Prog. Quant. Electron. 36, 475–540 (2012).
[Crossref]

Rhee, J.-K.

Richardson, D. J.

Richardson, D.J.

Riis, E.

Rogers, C. E.

J. L. Carini, J. A. Pechkis, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Production of ultracold molecules with chirped nanosecond pulses: Evidence for coherent effects,” Phys. Rev A 87, 011401(R) (2013).
[Crossref]

J. A. Pechkis, J. L. Carini, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Coherent control of ultracold 85Rb trap-loss collisions with nonlinearly frequency-chirped light,” Phys. Rev. A 83, 063403 (2011).
[Crossref]

C. E. Rogers, M. J. Wright, J. L. Carini, J. A. Pechkis, and P. L. Gould, “Generation of arbitrary frequency chirps with a fiber-based phase modulator and self-injection-locked diode laser,” J. Opt. Soc. Am. B 24, 1249–1253 (2007).
[Crossref]

Scarani, V.

S. A. Aljunid, G. Maslennikov, Y. Wang, H.L. Dao, V. Scarani, and C. Kurtsiefer, “Excitation of a single atom with exponentially rising light pulses,” Phys. Rev. Lett. 111, 103001 (2013).
[Crossref]

Y. Wang, J. Minář, L. Sheridan, and V. Scarani, “Efficient excitation of a two-level atom by a single photon in a propagating mode,” Phys. Rev. A 83, 063842 (2011).
[Crossref]

Scott, R. P.

Seiler, R.

R. Seiler, T. Paul, M. Andrist, and F. Merkt, “Generation of programmable near-Fourier-transform-limited pulses of narrow-band laser radiation from the near infrared to the vacuum ultraviolet,” Rev. Sci. Instrum. 76, 103103 (2005).
[Crossref]

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Shapiro, M.

C. P. Koch and M. Shapiro, “Coherent control of ultracold photoassociation,” Chem. Rev. 112, 4928–4948 (2012).
[Crossref] [PubMed]

Sheridan, L.

Y. Wang, J. Minář, L. Sheridan, and V. Scarani, “Efficient excitation of a two-level atom by a single photon in a propagating mode,” Phys. Rev. A 83, 063842 (2011).
[Crossref]

Shirasaki, M.

Sinclair, A. G.

Skeldon, M.D.

M.D. Skeldon, Optical pulse-shaping system based on an electro-optic modulator driven by an aperture-coupled-stripline electrical-waveform generator, J. Opt. Soc. Am B 19, 2413–2426 (2002).
[Crossref]

Slavik, R.

Sotobayashi, H.

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Tang, Y.

S. Wang, W. Zheng, L. Zhao, Q. Zhu, J. Xu, and Y. Tang, “All-fiber abritrary and precise pulse spectral shaping,” Laser Phys. Lett. 12, 045107 (2015).
[Crossref]

Teng, K.

K. Teng, M. Disla, J. Dellatto, A. Limani, B. Kaufman, and M.J. Wright, “Frequency chirped light at large detuning with an injection-locked diode laser,” Rev. Sci. Instrum. 86, 043114 (2015).
[Crossref] [PubMed]

Thom, J.

Valenzuela, V. M.

V. M. Valenzuela, L. Hernández, and E. Gomez, “High power rapidly tunable system for laser cooling,” Rev. Sci. Instrum. 83, 015111 (2012).
[Crossref] [PubMed]

von Klitzing, W.

V. Bolpasi and W. von Klitzing, “Double-pass tapered amplifier diode laser system with an output power of 1 W for an injection power of only 200 μW,” Rev. Sci. Instrum. 81, 113108 (2010).
[Crossref]

Vu, K.T.

Wang, S.

S. Wang, W. Zheng, L. Zhao, Q. Zhu, J. Xu, and Y. Tang, “All-fiber abritrary and precise pulse spectral shaping,” Laser Phys. Lett. 12, 045107 (2015).
[Crossref]

Wang, Y.

S. A. Aljunid, G. Maslennikov, Y. Wang, H.L. Dao, V. Scarani, and C. Kurtsiefer, “Excitation of a single atom with exponentially rising light pulses,” Phys. Rev. Lett. 111, 103001 (2013).
[Crossref]

Y. Wang, J. Minář, L. Sheridan, and V. Scarani, “Efficient excitation of a two-level atom by a single photon in a propagating mode,” Phys. Rev. A 83, 063842 (2011).
[Crossref]

Warren, W. S.

Weiner, A. M.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon. 4, 760–766 (2010).
[Crossref]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

White, R. T.

Wilpers, G.

Wright, M. J.

M. J. Wright, “Semi-classical calculations of ultracold and cold collisions with frequency-chirped light,” Eur. Phys. J. D 69, 1–6 (2015).

M. J. Wright, J. A. Pechkis, J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Coherent control of ultracold collisions with chirped light: Direction matters,” Phys. Rev. A 75, 051401(R) (2007).
[Crossref]

C. E. Rogers, M. J. Wright, J. L. Carini, J. A. Pechkis, and P. L. Gould, “Generation of arbitrary frequency chirps with a fiber-based phase modulator and self-injection-locked diode laser,” J. Opt. Soc. Am. B 24, 1249–1253 (2007).
[Crossref]

M. J. Wright, P. L. Gould, and S. D. Gensemer, “Frequency-chirped light from an injection-locked diode laser,” Rev. Sci. Instrum. 75, 4718–4720 (2004).
[Crossref]

Wright, M.J.

K. Teng, M. Disla, J. Dellatto, A. Limani, B. Kaufman, and M.J. Wright, “Frequency chirped light at large detuning with an injection-locked diode laser,” Rev. Sci. Instrum. 86, 043114 (2015).
[Crossref] [PubMed]

Wu, D. S.

Xu, J.

S. Wang, W. Zheng, L. Zhao, Q. Zhu, J. Xu, and Y. Tang, “All-fiber abritrary and precise pulse spectral shaping,” Laser Phys. Lett. 12, 045107 (2015).
[Crossref]

Yamamoto, S.

H. Murata, A. Morimoto, T. Kobayahsi, and S. Yamamoto, Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators, IEEE J. Select Topics in Quant. Electron. 6, 1325–1331 (2000).
[Crossref]

Yamanaka, R.

Yang, W.

Yao, J.

H. Chi and J. Yao, Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator, Electron. Lett. 43, 415–417 (2007).
[Crossref]

Yoo, S. J. B.

Zakarov, V.

G. Liu, V. Zakarov, T. Collins, P. Gould, and S. A. Malinovskaya, “Population inversion in hyperfine states of Rb with a single nanosecond chirped pulse in the framework of a four-level system,” Phys. Rev A 89, 041803 (2014).
[Crossref]

Zhao, L.

S. Wang, W. Zheng, L. Zhao, Q. Zhu, J. Xu, and Y. Tang, “All-fiber abritrary and precise pulse spectral shaping,” Laser Phys. Lett. 12, 045107 (2015).
[Crossref]

Zheng, W.

S. Wang, W. Zheng, L. Zhao, Q. Zhu, J. Xu, and Y. Tang, “All-fiber abritrary and precise pulse spectral shaping,” Laser Phys. Lett. 12, 045107 (2015).
[Crossref]

Zhu, Q.

S. Wang, W. Zheng, L. Zhao, Q. Zhu, J. Xu, and Y. Tang, “All-fiber abritrary and precise pulse spectral shaping,” Laser Phys. Lett. 12, 045107 (2015).
[Crossref]

Chem. Rev. (1)

C. P. Koch and M. Shapiro, “Coherent control of ultracold photoassociation,” Chem. Rev. 112, 4928–4948 (2012).
[Crossref] [PubMed]

Electron. Lett. (1)

H. Chi and J. Yao, Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator, Electron. Lett. 43, 415–417 (2007).
[Crossref]

Eur. Phys. J. D (1)

M. J. Wright, “Semi-classical calculations of ultracold and cold collisions with frequency-chirped light,” Eur. Phys. J. D 69, 1–6 (2015).

IEEE J. Select Topics in Quant. Electron. (1)

H. Murata, A. Morimoto, T. Kobayahsi, and S. Yamamoto, Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators, IEEE J. Select Topics in Quant. Electron. 6, 1325–1331 (2000).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am B (1)

M.D. Skeldon, Optical pulse-shaping system based on an electro-optic modulator driven by an aperture-coupled-stripline electrical-waveform generator, J. Opt. Soc. Am B 19, 2413–2426 (2002).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

S. Wang, W. Zheng, L. Zhao, Q. Zhu, J. Xu, and Y. Tang, “All-fiber abritrary and precise pulse spectral shaping,” Laser Phys. Lett. 12, 045107 (2015).
[Crossref]

Nature (1)

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J.L. OBrien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Nature Photon. (1)

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon. 4, 760–766 (2010).
[Crossref]

New J. Phys. (1)

J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Enhancement of ultracold molecule formation by local control in the nanosecond regime,” New J. Phys. 17, 025008 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Optica (1)

Phys. Rev A (2)

J. L. Carini, J. A. Pechkis, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Production of ultracold molecules with chirped nanosecond pulses: Evidence for coherent effects,” Phys. Rev A 87, 011401(R) (2013).
[Crossref]

G. Liu, V. Zakarov, T. Collins, P. Gould, and S. A. Malinovskaya, “Population inversion in hyperfine states of Rb with a single nanosecond chirped pulse in the framework of a four-level system,” Phys. Rev A 89, 041803 (2014).
[Crossref]

Phys. Rev. A (3)

M. J. Wright, J. A. Pechkis, J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Coherent control of ultracold collisions with chirped light: Direction matters,” Phys. Rev. A 75, 051401(R) (2007).
[Crossref]

J. A. Pechkis, J. L. Carini, C. E. Rogers, P. L. Gould, S. Kallush, and R. Kosloff, “Coherent control of ultracold 85Rb trap-loss collisions with nonlinearly frequency-chirped light,” Phys. Rev. A 83, 063403 (2011).
[Crossref]

Y. Wang, J. Minář, L. Sheridan, and V. Scarani, “Efficient excitation of a two-level atom by a single photon in a propagating mode,” Phys. Rev. A 83, 063842 (2011).
[Crossref]

Phys. Rev. Lett. (2)

S. A. Aljunid, G. Maslennikov, Y. Wang, H.L. Dao, V. Scarani, and C. Kurtsiefer, “Excitation of a single atom with exponentially rising light pulses,” Phys. Rev. Lett. 111, 103001 (2013).
[Crossref]

J. L. Carini, S. Kallush, R. Kosloff, and P. L. Gould, “Enhancement of ultracold molecule formation using shaped nanosecond frequency chirps,” Phys. Rev. Lett. 115, 173003 (2015).
[Crossref] [PubMed]

Prog. Quant. Electron. (1)

P. J. Delfyett, D. Mandridis, M. U. Piracha, D. Nguyen, K. Kim, and S. Lee, Chirped pulse laser sources and applications, Prog. Quant. Electron. 36, 475–540 (2012).
[Crossref]

Rev. Sci. Instrum. (6)

M. J. Wright, P. L. Gould, and S. D. Gensemer, “Frequency-chirped light from an injection-locked diode laser,” Rev. Sci. Instrum. 75, 4718–4720 (2004).
[Crossref]

K. Teng, M. Disla, J. Dellatto, A. Limani, B. Kaufman, and M.J. Wright, “Frequency chirped light at large detuning with an injection-locked diode laser,” Rev. Sci. Instrum. 86, 043114 (2015).
[Crossref] [PubMed]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

V. Bolpasi and W. von Klitzing, “Double-pass tapered amplifier diode laser system with an output power of 1 W for an injection power of only 200 μW,” Rev. Sci. Instrum. 81, 113108 (2010).
[Crossref]

V. M. Valenzuela, L. Hernández, and E. Gomez, “High power rapidly tunable system for laser cooling,” Rev. Sci. Instrum. 83, 015111 (2012).
[Crossref] [PubMed]

R. Seiler, T. Paul, M. Andrist, and F. Merkt, “Generation of programmable near-Fourier-transform-limited pulses of narrow-band laser radiation from the near infrared to the vacuum ultraviolet,” Rev. Sci. Instrum. 76, 103103 (2005).
[Crossref]

Science (1)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Other (3)

A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum.75, 2668–2671 (2004).

J. Brennan, D. Labrake, P. Chou, and H. Haus, Method and apparatus for arbitrary spectral shaping of an optical pulse, U.S. Patent 6195484.

National Instruments, LabVIEW software documentation: Analytic wavelet transform, http://zone.ni.com/reference/en-XX/help/371419D-01/lvasptconcepts/wa_awt/ (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Overall schematic of nanosecond pulse shaping system. Light from an external-cavity diode laser (ECDL) is injected, via an optical fiber, into an electro-optical phase modulator (PM), followed by an intensity modulator (IM), both of which are driven by an arbitrary waveform generator (AWG). After emerging from the fiber, the light seeds a double-pass tapered amplifier (TA). The amplified pulse is characterized by sampling a few percent with a pick-off, combining this light with a beam from a fixed-frequency reference laser (REF), and measuring the resulting heterodyne signal on a fast photodiode (PD). Optics for beam shaping and coupling into and out of the fiber and TA are not shown. Also not shown is the pair of 30 dB optical isolators (for protection of the modulators) located between the IM and the TA. (b) Details of the double-pass TA. The seed light enters the TA in the reverse direction. The light amplified in this first pass is switched by an acousto-optical modulator (AOM) into a delay fiber (DF), then reflected from a diffraction grating (DG) and returned to the TA for the second pass. A pick-off sends a small portion, less than a few percent, of the light to PD1 and PD2 for monitoring. Optics for beam shaping and coupling into and out of the fiber and TA are not shown.
Fig. 2
Fig. 2 Gaussian pulses: measured intensity profiles (points) and Gaussian least-squares fits (solid red curves). The programmed (fitted) FWHM values are (a) 10.0 ns (11.7 ns); (b) 1.00 ns (1.22 ns); 0.10 ns (0.15 ns). The peak power of the 150 ps pulse is 270 ± 30 mW.
Fig. 3
Fig. 3 Exponential pulse: measured intensity (points) and exponential least-squares fit (solid red curve). The best fit time constant is 1.37 ns.
Fig. 4
Fig. 4 Compensation of cavity-mode effects. (a) Uncompensated Gaussian intensity pulse with 6 GHz in 2 ns chirp. Points are the measured intensity and the solid red curve is a Gaussian least-squares fit (FWHM = 5.7 ns). The structure in the center of the pulse is due to the frequency sweeping through a cavity resonance. (b) Compensated pulse with Gaussian least-squares fit (FWHM = 5.0 ns).
Fig. 5
Fig. 5 Measurement of frequency chirps. (a) Heterodyne signal for fast chirp. (b) Scalogram derived from (a). (c) Frequency vs. time for the fast chirp, 5 GHz in 2 ns, derived from the ridge of the scalogram in (b). (d) Frequency vs. time for slow chirp, 600 MHz in 8 ns. Error bars in (c) and (d) are statistical, based on 70 heterodyne measurements.
Fig. 6
Fig. 6 Arctan-plus-linear frequency chirp with double Gaussian intensity pulse. (a) Measured f(t) (points) together with least-squares fit to Eq. (1) (solid red curve). The fit parameters are: m = 0.227 GHz/ns; b = 3.31 GHz, c = 0.527 GHz; s = 0.852 ns−1; tcenter = 6.77 ns. The dashed blue line is the linear contribution: f(t) = mt + b. (b) Measured I(t) (points) together with a least-squares fit to a double Gaussian (solid curve). The measurement is the result of a 1 ns smoothing of the heterodyne signal used to extract the chirp shown in (a). In the fit, the two identical Gaussians are separated by 6.25 ns, and the best fit yields FWHMs of 4.0 ns.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f ( t ) = ( m t + b ) + c × arctan ( s ( t t center ) ) .

Metrics