Abstract

Mid-infrared supercontinuum generation is considered in chalcogenide fibres when taking into account both polarisations and the necessary higher order modes. In particular we focus on high pulse energy supercontinuum generation with long pump pulses. The modeling indicates that when only a single polarisation in the fundamental mode is considered the obtainable supercontinuum bandwidth is substantially exaggerated compared to when both polarisations are taken into account. Our modeling shows that if the pump pulse is short enough (≤ 10ps) then higher order modes are not important because of temporal walk-off. In contrast long pump pulses (≥ 40ps) will efficiently excite higher order modes through Raman scattering, which will deplete the fundamental mode of energy and limit the possibility of obtaining a broadband supercontinuum.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm

Irnis Kubat, Christian S. Agger, Uffe Møller, Angela B. Seddon, Zhuoqi Tang, Slawomir Sujecki, Trevor M. Benson, David Furniss, Samir Lamrini, Karsten Scholle, Peter Fuhrberg, Bruce Napier, Mark Farries, Jon Ward, Peter M. Moselund, and Ole Bang
Opt. Express 22(16) 19169-19182 (2014)

Mid-infrared supercontinuum generation in multimode As2 Se3 chalcogenide photonic crystal fiber

Ameni Ben Khalifa, Amine Ben Salem, and Rim Cherif
Appl. Opt. 56(15) 4319-4324 (2017)

Supercontinuum generation in chalcogenide-silica step-index fibers

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St.J. Russell
Opt. Express 19(21) 21003-21010 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Seddon, “Mid-infrared (ir) a hot topic: The potential for using mid-ir light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250, 1020–1027 (2013).
    [Crossref]
  2. G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
    [Crossref]
  3. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [Crossref] [PubMed]
  4. G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
    [Crossref]
  5. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in zblan fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007).
    [Crossref] [PubMed]
  6. C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power midir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
    [Crossref]
  7. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from uv to 3.85 μm in a fluoride fiber,” Opt. Lett. 34, 2015–2017 (2009).
    [Crossref] [PubMed]
  8. P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
    [Crossref]
  9. I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 μm in uniform and tapered zblan step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B 30, 2743–2757 (2013).
    [Crossref]
  10. R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-ir supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 m,” Proc. SPIE 8898, 889808 (2013).
    [Crossref]
  11. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core zblan photonic crystal fibre,” Nature Photon. 9, 133–139 (2015).
    [Crossref]
  12. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in as2se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
    [Crossref] [PubMed]
  13. R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Optical Fiber Technology 18, 345–348 (2012).
    [Crossref]
  14. C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm,” Opt. Express 21, 29488–29504 (2013).
    [Crossref]
  15. M. Bache, H. Guo, and B. Zhou, “Generating mid-ir octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Mater. Express 3, 1647–1657 (2013).
    [Crossref]
  16. I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
    [Crossref] [PubMed]
  17. I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large na chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22, 19169–19182 (2014).
    [Crossref] [PubMed]
  18. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nature Photon. 8, 830834 (2014).
  19. U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
    [Crossref] [PubMed]
  20. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
    [Crossref] [PubMed]
  21. J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-ir supercontinuum generation from nonsilica microstructured optical fibers,” 13, 738–749 (2007).
  22. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature420, 650–653 (2002).
    [Crossref] [PubMed]
  23. C. Markos, S. N. Yannopoulos, and K. Vlachos, “Chalcogenide glass layers in silica photonic crystal fibers,” Opt. Express 20, 14814–14824 (2012).
    [Crossref] [PubMed]
  24. C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 6057 (2014).
    [Crossref] [PubMed]
  25. H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4, 1444–1455 (2014).
    [Crossref]
  26. T. Hu, D. D. Hudson, and S. D. Jackson, “Actively q-switched 2.9 μm ho 3+ pr 3+-doped fluoride fiber laser,” Opt. Lett 37, 2145–2147 (2012).
    [Crossref] [PubMed]
  27. T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39, 2133–2136 (2014).
    [Crossref] [PubMed]
  28. Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
    [Crossref]
  29. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nature Photon. 6, 423–431 (2012).
    [Crossref]
  30. T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
    [Crossref]
  31. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. E. Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18, 26647–26654 (2010).
    [Crossref] [PubMed]
  32. B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high na chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98, 1389–1392 (2015).
    [Crossref]
  33. Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss ge-as-se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5, 1722–1737 (2015).
    [Crossref]
  34. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [Crossref]
  35. M. Grabka, B. Wajnchold, S. Pustelny, and W. Gawlik, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta. Phys. Pol. A 118, 1647–1657 (2010).
  36. J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in zblan step-index fibers,” Opt. Express 21, 10764–10771 (2013).
    [Crossref] [PubMed]
  37. I. Shavrin, S. Novotny, and H. Ludvigsen, “Mode excitation and supercontinuum generation in a few-mode suspended-core fiber,” Opt. Express 21, 32141–32150 (2013).
    [Crossref]
  38. K. S. Chiang, “Stimulated raman scattering in a multimode optical fiber: evolution of modes in stokes waves,” Opt. Lett. 17, 352–354 (1992).
    [Crossref] [PubMed]
  39. A. Sharma, M. Dokhanian, Z. Wu, R. Posey, A. Williams, and P. Venkateswarlu, “Stimulated raman scattering in a multimode optical fiber with bend-induced loss,” Opt. Commun. 111, 127–131 (1994).
    [Crossref]
  40. H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated raman scattering cascade spanning the wavelength range of 523 to 1750nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102, 201107 (2013).
    [Crossref]
  41. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
    [Crossref] [PubMed]
  42. P.-A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
    [Crossref] [PubMed]
  43. R. T. White and T. M. Monro, “Cascaded raman shifting of high-peak-power nanosecond pulses in as2s3 and as2se3 optical fibers,” Opt. Lett. 36, 2351–2353 (2011).
    [Crossref] [PubMed]
  44. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25, 1645–1654 (2008).
    [Crossref]
  45. R. Khakimov, I. Shavrin, S. Novotny, M. Kaivola, and H. Ludvigsen, “Numerical solver for supercontinuum generation in multimode optical fibers,” Opt. Express 21, 14388–14398 (2013).
    [Crossref] [PubMed]
  46. Irflex inc., “arsenic selenide fibre loss,” http://www.irflex.com/ .
  47. B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
    [Crossref] [PubMed]
  48. E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
    [Crossref]
  49. M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005).
    [Crossref] [PubMed]
  50. G. P. Agrawal, “Nonlinear Fiber Optics,” 4th ed. (Elsevier, 2007).
  51. E. A. Golovchenko and A. N. Pilipetskii, “Unified analysis of four-photon mixing, modulational instability, and stimulated raman scattering under various polarization conditions in fibers,” J. Opt. Soc. Am. B 11, 92–101 (1994).
    [Crossref]
  52. R. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
    [Crossref]

2015 (6)

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core zblan photonic crystal fibre,” Nature Photon. 9, 133–139 (2015).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high na chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98, 1389–1392 (2015).
[Crossref]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref] [PubMed]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref] [PubMed]

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss ge-as-se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5, 1722–1737 (2015).
[Crossref]

2014 (10)

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref] [PubMed]

T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39, 2133–2136 (2014).
[Crossref] [PubMed]

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4, 1444–1455 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large na chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nature Photon. 8, 830834 (2014).

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 6057 (2014).
[Crossref] [PubMed]

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

2013 (9)

A. B. Seddon, “Mid-infrared (ir) a hot topic: The potential for using mid-ir light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250, 1020–1027 (2013).
[Crossref]

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-ir supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 m,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated raman scattering cascade spanning the wavelength range of 523 to 1750nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102, 201107 (2013).
[Crossref]

J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in zblan step-index fibers,” Opt. Express 21, 10764–10771 (2013).
[Crossref] [PubMed]

R. Khakimov, I. Shavrin, S. Novotny, M. Kaivola, and H. Ludvigsen, “Numerical solver for supercontinuum generation in multimode optical fibers,” Opt. Express 21, 14388–14398 (2013).
[Crossref] [PubMed]

M. Bache, H. Guo, and B. Zhou, “Generating mid-ir octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Mater. Express 3, 1647–1657 (2013).
[Crossref]

I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 μm in uniform and tapered zblan step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B 30, 2743–2757 (2013).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm,” Opt. Express 21, 29488–29504 (2013).
[Crossref]

I. Shavrin, S. Novotny, and H. Ludvigsen, “Mode excitation and supercontinuum generation in a few-mode suspended-core fiber,” Opt. Express 21, 32141–32150 (2013).
[Crossref]

2012 (5)

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[Crossref]

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Optical Fiber Technology 18, 345–348 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nature Photon. 6, 423–431 (2012).
[Crossref]

T. Hu, D. D. Hudson, and S. D. Jackson, “Actively q-switched 2.9 μm ho 3+ pr 3+-doped fluoride fiber laser,” Opt. Lett 37, 2145–2147 (2012).
[Crossref] [PubMed]

C. Markos, S. N. Yannopoulos, and K. Vlachos, “Chalcogenide glass layers in silica photonic crystal fibers,” Opt. Express 20, 14814–14824 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (4)

2009 (3)

2008 (1)

2007 (1)

2005 (1)

2004 (1)

2002 (1)

1994 (3)

E. A. Golovchenko and A. N. Pilipetskii, “Unified analysis of four-photon mixing, modulational instability, and stimulated raman scattering under various polarization conditions in fibers,” J. Opt. Soc. Am. B 11, 92–101 (1994).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

A. Sharma, M. Dokhanian, Z. Wu, R. Posey, A. Williams, and P. Venkateswarlu, “Stimulated raman scattering in a multimode optical fiber with bend-induced loss,” Opt. Commun. 111, 127–131 (1994).
[Crossref]

1992 (1)

1977 (1)

R. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nature Photon. 8, 830834 (2014).

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4, 1444–1455 (2014).
[Crossref]

Abouraddy, A. F.

Adam, J. L.

Aggarwal, I. D.

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Optical Fiber Technology 18, 345–348 (2012).
[Crossref]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in as2se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[Crossref] [PubMed]

Agger, C.

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[Crossref]

Agger, C. S.

Agrawal, G. P.

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated raman scattering cascade spanning the wavelength range of 523 to 1750nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102, 201107 (2013).
[Crossref]

G. P. Agrawal, “Nonlinear Fiber Optics,” 4th ed. (Elsevier, 2007).

Amraoui, M. E.

Andrews, A. E.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Babic, F.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core zblan photonic crystal fibre,” Nature Photon. 9, 133–139 (2015).
[Crossref]

Bache, M.

Badding, J. V.

Ballato, J.

Bang, O.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref] [PubMed]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large na chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4, 1444–1455 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref] [PubMed]

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 6057 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nature Photon. 8, 830834 (2014).

I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 μm in uniform and tapered zblan step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B 30, 2743–2757 (2013).
[Crossref]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[Crossref]

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005).
[Crossref] [PubMed]

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature420, 650–653 (2002).
[Crossref] [PubMed]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nature Photon. 8, 830834 (2014).

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref] [PubMed]

Benson, T. M.

Bent, J.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Brambilla, G.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-ir supercontinuum generation from nonsilica microstructured optical fibers,” 13, 738–749 (2007).

Brilland, L.

Caillaud, C.

Calvez, L.

Canat, G.

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Champert, P.-A.

Chartier, T.

Chau, A. H. L.

Chaudhari, C.

Chavez-Pirson, A.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-ir supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 m,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Cheng, M.-Y.

Chiang, K. S.

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Choi, D.-Y.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref] [PubMed]

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Churbanov, M. F.

Coen, S.

Couderc, V.

Coulombier, Q.

Dantanarayana, H. G.

Danto, S.

Daube, B. C.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Debbarma, S.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Dokhanian, M.

A. Sharma, M. Dokhanian, Z. Wu, R. Posey, A. Williams, and P. Venkateswarlu, “Stimulated raman scattering in a multimode optical fiber with bend-induced loss,” Opt. Commun. 111, 127–131 (1994).
[Crossref]

Duhant, M.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nature Photon. 8, 830834 (2014).

J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in zblan step-index fibers,” Opt. Express 21, 10764–10771 (2013).
[Crossref] [PubMed]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[Crossref]

Ebendorff-Heidepriem, H.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
[Crossref]

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-ir supercontinuum generation from nonsilica microstructured optical fibers,” 13, 738–749 (2007).

Elkins, J. W.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Falk, P.

Farries, M.

Feng, X.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-ir supercontinuum generation from nonsilica microstructured optical fibers,” 13, 738–749 (2007).

Février, S.

Finazzi, V.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-ir supercontinuum generation from nonsilica microstructured optical fibers,” 13, 738–749 (2007).

Finger, M. A.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core zblan photonic crystal fibre,” Nature Photon. 9, 133–139 (2015).
[Crossref]

Fink, Y.

Flanagan, J.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-ir supercontinuum generation from nonsilica microstructured optical fibers,” 13, 738–749 (2007).

Fred, J.

Freeman, M.

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power midir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Freeman, M. J.

Froehly, C.

Frosz, M. H.

Fuhrberg, P.

Furniss, D.

Gai, X.

Galvanauskas, A.

Gattass, R. R.

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Optical Fiber Technology 18, 345–348 (2012).
[Crossref]

Gawlik, W.

M. Grabka, B. Wajnchold, S. Pustelny, and W. Gawlik, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta. Phys. Pol. A 118, 1647–1657 (2010).

Golovchenko, E. A.

Gottlieb, E.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Grabka, M.

M. Grabka, B. Wajnchold, S. Pustelny, and W. Gawlik, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta. Phys. Pol. A 118, 1647–1657 (2010).

Guizard, S.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

Guo, H.

Guo, W.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high na chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98, 1389–1392 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref] [PubMed]

Hall, B.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature420, 650–653 (2002).
[Crossref] [PubMed]

Harvey, J. D.

Hegde, R. S.

Hellwarth, R.

R. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
[Crossref]

Hintsa, E. J.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Holloway, J. S.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Horak, P.

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
[Crossref] [PubMed]

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25, 1645–1654 (2008).
[Crossref]

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-ir supercontinuum generation from nonsilica microstructured optical fibers,” 13, 738–749 (2007).

Hu, J.

Hu, T.

T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39, 2133–2136 (2014).
[Crossref] [PubMed]

T. Hu, D. D. Hudson, and S. D. Jackson, “Actively q-switched 2.9 μm ho 3+ pr 3+-doped fluoride fiber laser,” Opt. Lett 37, 2145–2147 (2012).
[Crossref] [PubMed]

Hudson, D. D.

T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39, 2133–2136 (2014).
[Crossref] [PubMed]

T. Hu, D. D. Hudson, and S. D. Jackson, “Actively q-switched 2.9 μm ho 3+ pr 3+-doped fluoride fiber laser,” Opt. Lett 37, 2145–2147 (2012).
[Crossref] [PubMed]

Hurst, D. F.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Islam, M.

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power midir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Islam, M. N.

Jackson, S. D.

T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39, 2133–2136 (2014).
[Crossref] [PubMed]

T. Hu, D. D. Hudson, and S. D. Jackson, “Actively q-switched 2.9 μm ho 3+ pr 3+-doped fluoride fiber laser,” Opt. Lett 37, 2145–2147 (2012).
[Crossref] [PubMed]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nature Photon. 6, 423–431 (2012).
[Crossref]

Jiang, X.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core zblan photonic crystal fibre,” Nature Photon. 9, 133–139 (2015).
[Crossref]

Jiménez, R.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature420, 650–653 (2002).
[Crossref] [PubMed]

Johansen, M.

Joly, N. Y.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core zblan photonic crystal fibre,” Nature Photon. 9, 133–139 (2015).
[Crossref]

Kaivola, M.

Keiding, S. R.

Khakimov, R.

Kito, C.

Knight, J. C.

Konyukhov, A. I.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

Kort, E. A.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Kubat, I.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref] [PubMed]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4, 1444–1455 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nature Photon. 8, 830834 (2014).

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 6057 (2014).
[Crossref] [PubMed]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref] [PubMed]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large na chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 μm in uniform and tapered zblan step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B 30, 2743–2757 (2013).
[Crossref]

Kumar, M.

Kuzyutkina, Y. S.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

Labonté, L.

Lamrini, S.

Leong, J.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-ir supercontinuum generation from nonsilica microstructured optical fibers,” 13, 738–749 (2007).

Leonhardt, R.

Leproux, P.

Li, L.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high na chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98, 1389–1392 (2015).
[Crossref]

Liao, M.

Ludvigsen, H.

Luther-Davies, B.

Ma, P.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Madden, S.

Madden, S. J.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Mafi, A.

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated raman scattering cascade spanning the wavelength range of 523 to 1750nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102, 201107 (2013).
[Crossref]

Markos, C.

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 6057 (2014).
[Crossref] [PubMed]

C. Markos, S. N. Yannopoulos, and K. Vlachos, “Chalcogenide glass layers in silica photonic crystal fibers,” Opt. Express 20, 14814–14824 (2012).
[Crossref] [PubMed]

Mauricio, J.

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power midir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Mazé, G.

McManus, J. B.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Mechin, D.

Méchin, D.

Menyuk, C. R.

Møller, U.

Møller, U. V.

Monro, T.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-ir supercontinuum generation from nonsilica microstructured optical fibers,” 13, 738–749 (2007).

Monro, T. M.

Moore, F. L.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Moselund, P. M.

Mouskeftaras, A.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

Napier, B.

Nelson, D. D.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Nérin, P.

Nguyen, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-ir supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 m,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Nguyen, V.

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Optical Fiber Technology 18, 345–348 (2012).
[Crossref]

Norwood, R. A.

Novotny, S.

Ohishi, Y.

Park, S.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Peischl, J.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Petersen, C.

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[Crossref]

Petersen, C. R.

Petropoulos, P.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-ir supercontinuum generation from nonsilica microstructured optical fibers,” 13, 738–749 (2007).

Peyghambarian, N.

Pilipetskii, A. N.

Pittman, J. V.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Poletti, F.

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
[Crossref] [PubMed]

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25, 1645–1654 (2008).
[Crossref]

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-ir supercontinuum generation from nonsilica microstructured optical fibers,” 13, 738–749 (2007).

Posey, R.

A. Sharma, M. Dokhanian, Z. Wu, R. Posey, A. Williams, and P. Venkateswarlu, “Stimulated raman scattering in a multimode optical fiber with bend-induced loss,” Opt. Commun. 111, 127–131 (1994).
[Crossref]

Poulain, M.

Pourbeyram, H.

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated raman scattering cascade spanning the wavelength range of 523 to 1750nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102, 201107 (2013).
[Crossref]

Price, J.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-ir supercontinuum generation from nonsilica microstructured optical fibers,” 13, 738–749 (2007).

Pureza, P.

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Optical Fiber Technology 18, 345–348 (2012).
[Crossref]

Pustelny, S.

M. Grabka, B. Wajnchold, S. Pustelny, and W. Gawlik, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta. Phys. Pol. A 118, 1647–1657 (2010).

Qi, S.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high na chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98, 1389–1392 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref] [PubMed]

Qin, G.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nature Photon. 8, 830834 (2014).

J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in zblan step-index fibers,” Opt. Express 21, 10764–10771 (2013).
[Crossref] [PubMed]

Renard, W.

Renversez, G.

Rhonehouse, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-ir supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 m,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Richardson, D.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-ir supercontinuum generation from nonsilica microstructured optical fibers,” 13, 738–749 (2007).

Rishøj, L.

Romanova, E. A.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

Rottwitt, K.

Roy, P.

Russell, P. S. J.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core zblan photonic crystal fibre,” Nature Photon. 9, 133–139 (2015).
[Crossref]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
[Crossref]

Ryerson, T. B.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Sanghera, J. S.

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Optical Fiber Technology 18, 345–348 (2012).
[Crossref]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in as2se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[Crossref] [PubMed]

Santoni, G. W.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Scholle, K.

Seddon, A.

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nature Photon. 8, 830834 (2014).

Seddon, A. B.

Sharma, A.

A. Sharma, M. Dokhanian, Z. Wu, R. Posey, A. Williams, and P. Venkateswarlu, “Stimulated raman scattering in a multimode optical fiber with bend-induced loss,” Opt. Commun. 111, 127–131 (1994).
[Crossref]

Shavrin, I.

Shaw, L. B.

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Optical Fiber Technology 18, 345–348 (2012).
[Crossref]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in as2se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[Crossref] [PubMed]

Shen, X.

Shiryaev, V. S.

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Skorobogatiy, M.

Smektala, F.

Smith, C.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-ir supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 m,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Sojka, L.

Song, F.

Stephens, B. B.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Stolyarov, A. M.

Sujecki, S.

Suzuki, T.

Sweeney, C.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Tang, D.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high na chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98, 1389–1392 (2015).
[Crossref]

Tang, Z.

Tao, G.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high na chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98, 1389–1392 (2015).
[Crossref]

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
[Crossref]

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature420, 650–653 (2002).
[Crossref] [PubMed]

Terry, F. L.

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power midir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Terry, L.

Thapa, R.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-ir supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 m,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Tombelaine, V.

Toupin, P.

Travers, J. C.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core zblan photonic crystal fibre,” Nature Photon. 9, 133–139 (2015).
[Crossref]

Troles, J.

Ung, B.

Venkateswarlu, P.

A. Sharma, M. Dokhanian, Z. Wu, R. Posey, A. Williams, and P. Venkateswarlu, “Stimulated raman scattering in a multimode optical fiber with bend-induced loss,” Opt. Commun. 111, 127–131 (1994).
[Crossref]

Vlachos, K.

Wadsworth, W. J.

Wajnchold, B.

M. Grabka, B. Wajnchold, S. Pustelny, and W. Gawlik, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta. Phys. Pol. A 118, 1647–1657 (2010).

Wang, R.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high na chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98, 1389–1392 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref] [PubMed]

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
[Crossref]

Wang, T.

Ward, J.

Wei, C.

Wei, W.

White, R. T.

Wiersma, K.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-ir supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 m,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Williams, A.

A. Sharma, M. Dokhanian, Z. Wu, R. Posey, A. Williams, and P. Venkateswarlu, “Stimulated raman scattering in a multimode optical fiber with bend-induced loss,” Opt. Commun. 111, 127–131 (1994).
[Crossref]

Winful, H. G.

Wofsy, S. C.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Wong, G. K. L.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core zblan photonic crystal fibre,” Nature Photon. 9, 133–139 (2015).
[Crossref]

Wu, Z.

A. Sharma, M. Dokhanian, Z. Wu, R. Posey, A. Williams, and P. Venkateswarlu, “Stimulated raman scattering in a multimode optical fiber with bend-induced loss,” Opt. Commun. 111, 127–131 (1994).
[Crossref]

Xia, C.

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power midir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in zblan fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007).
[Crossref] [PubMed]

Xiang, B.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Xu, Z.

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power midir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Yan, X.

Yang, A.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high na chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98, 1389–1392 (2015).
[Crossref]

Yang, Z.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high na chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98, 1389–1392 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref] [PubMed]

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
[Crossref]

Yannopoulos, S. N.

Yu, Y.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high na chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98, 1389–1392 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref] [PubMed]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref] [PubMed]

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Zahniser, M. S.

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

Zakel, A.

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power midir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Zhai, C.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high na chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98, 1389–1392 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref] [PubMed]

Zhang, B.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref] [PubMed]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high na chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98, 1389–1392 (2015).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nature Photon. 8, 830834 (2014).

M. Bache, H. Guo, and B. Zhou, “Generating mid-ir octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Mater. Express 3, 1647–1657 (2013).
[Crossref]

Zhu, X.

Zong, J.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-ir supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 m,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Acta. Phys. Pol. A (1)

M. Grabka, B. Wajnchold, S. Pustelny, and W. Gawlik, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta. Phys. Pol. A 118, 1647–1657 (2010).

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated raman scattering cascade spanning the wavelength range of 523 to 1750nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102, 201107 (2013).
[Crossref]

Atmos. Meas. Tech. (1)

G. W. Santoni, B. C. Daube, E. A. Kort, R. Jiménez, S. Park, J. V. Pittman, E. Gottlieb, B. Xiang, M. S. Zahniser, D. D. Nelson, J. B. McManus, J. Peischl, T. B. Ryerson, J. S. Holloway, A. E. Andrews, C. Sweeney, B. Hall, E. J. Hintsa, F. L. Moore, J. W. Elkins, D. F. Hurst, B. B. Stephens, J. Bent, and S. C. Wofsy, “Evaluation of the airborne quantum cascade laser spectrometer (qcls) measurements of the carbon and greenhouse gas-suite; co2, ch4, n2o, and co - during the calnex and hippo campaigns,” Atmos. Meas. Tech. 7, 1509–1526 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power midir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high na chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98, 1389–1392 (2015).
[Crossref]

J. Opt. Soc. Am. B (4)

Laser Photon. Rev. (1)

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Nature Photon. (3)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nature Photon. 6, 423–431 (2012).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core zblan photonic crystal fibre,” Nature Photon. 9, 133–139 (2015).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nature Photon. 8, 830834 (2014).

Opt. Commun. (1)

A. Sharma, M. Dokhanian, Z. Wu, R. Posey, A. Williams, and P. Venkateswarlu, “Stimulated raman scattering in a multimode optical fiber with bend-induced loss,” Opt. Commun. 111, 127–131 (1994).
[Crossref]

Opt. Eng. (1)

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

Opt. Express (15)

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005).
[Crossref] [PubMed]

B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
[Crossref] [PubMed]

R. Khakimov, I. Shavrin, S. Novotny, M. Kaivola, and H. Ludvigsen, “Numerical solver for supercontinuum generation in multimode optical fibers,” Opt. Express 21, 14388–14398 (2013).
[Crossref] [PubMed]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. E. Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18, 26647–26654 (2010).
[Crossref] [PubMed]

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
[Crossref] [PubMed]

P.-A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
[Crossref] [PubMed]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in as2se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[Crossref] [PubMed]

C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm,” Opt. Express 21, 29488–29504 (2013).
[Crossref]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in zblan fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007).
[Crossref] [PubMed]

J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in zblan step-index fibers,” Opt. Express 21, 10764–10771 (2013).
[Crossref] [PubMed]

I. Shavrin, S. Novotny, and H. Ludvigsen, “Mode excitation and supercontinuum generation in a few-mode suspended-core fiber,” Opt. Express 21, 32141–32150 (2013).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref] [PubMed]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large na chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

C. Markos, S. N. Yannopoulos, and K. Vlachos, “Chalcogenide glass layers in silica photonic crystal fibers,” Opt. Express 20, 14814–14824 (2012).
[Crossref] [PubMed]

Opt. Lett (1)

T. Hu, D. D. Hudson, and S. D. Jackson, “Actively q-switched 2.9 μm ho 3+ pr 3+-doped fluoride fiber laser,” Opt. Lett 37, 2145–2147 (2012).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. Express (4)

Optical Fiber Technology (1)

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Optical Fiber Technology 18, 345–348 (2012).
[Crossref]

Phys. Status Solidi B (1)

A. B. Seddon, “Mid-infrared (ir) a hot topic: The potential for using mid-ir light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250, 1020–1027 (2013).
[Crossref]

Proc. SPIE (2)

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[Crossref]

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-ir supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 m,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Prog. Quantum Electron. (1)

R. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
[Crossref]

Sci. Rep. (1)

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 6057 (2014).
[Crossref] [PubMed]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Other (4)

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-ir supercontinuum generation from nonsilica microstructured optical fibers,” 13, 738–749 (2007).

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature420, 650–653 (2002).
[Crossref] [PubMed]

G. P. Agrawal, “Nonlinear Fiber Optics,” 4th ed. (Elsevier, 2007).

Irflex inc., “arsenic selenide fibre loss,” http://www.irflex.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Dispersion of the guided modes in a 8μm core diameter fibre with NA=1.0 with the power distribution of the transverse field component to the right. The vertical solid line is the 2.9μm pump and the dashed lines are the first seven Raman stokes orders. (b) Normalised coupling coefficient versus cutoff wavelength for the different modes. The dashed vertical lines mark the 25 and 50% coupling limits. (c) Walk-off length between the pump at 2.9μm in the LP01 mode and the first Raman line at 3.1μm in the higher order modes versus their respective cutoff wavelengths for a 10ps pump pulse.

Fig. 2
Fig. 2

(a) Supercontinuum spectra after 1m of fibre. Inset: LP01 mode and polarisation. (b) Total power as function of propagation length. (c) Infrared edge evaluated at −30dB as function of propagation length. (d) Contour plot of the developing supercontinuum up to 2m for a 60ps pump pulse. The dashed lines represent the ZDWs on the fibre.

Fig. 3
Fig. 3

(a) Supercontinuum spectra after one meter of fibre for different pump pulse durations. Inset: intensity distribution of the LP01 mode. (b) Power in the pump (solid) and the orthogonal (dashed) polarisations. Inset: Intensity distribution and polarisation for the two polarisations. (c) Infrared edge evaluated at −30dB for the two polarisations. (d)–(e) Contour plots of the developing continuum for the 60ps pulse for the polarisation with the pump pulse and of the orthogonal polarisation, respectively. Dashed and solid black lines are the pump and Raman stokes, respectively, the red lines are the FWM stokes and anti-stokes occurring in the orthogonal polarisation. (f) PMI gain band corresponding to the sidebands (solid red) in (e).

Fig. 4
Fig. 4

(a) Supercontinuum generation in the LP01 mode at the end of one metre of fibre for different pump pulse durations. Inset: Spatial distribution of the mode. (b) Power distribution between the two polarisations of the LP01 mode. (c) Infrared edge at −30dB. The solid and dashed lines are for the pump polarisation and the orthogonal polarisation, respectively. (d)–(f) Same notation as before for the LP02 mode. (g) Contour plot of the LP01 continuum in the polarisation containing the pump pulse. The solid and dashed lines indicate the pump and the Raman lines, respectively. (h) Contour plot of the LP01 continuum in the orthogonal polarisation. The solid black and red lines indicate the pump and peak PMI gain bands, respectively, and the red dashed line is the first Raman line from the PMI stokes line. (i) Contour plot for the LP02 polarisation co-polarised with the LP01 polarisation containing the pump pulse. (j) Contour plot for the orthogonal LP02 polarisation.

Fig. 5
Fig. 5

Four component supercontinuum modeling of two separate two mode cases using a 60ps pump pulse as described in the text. Purple and blue show the LP01 and LP11 modes, respectively, when only these modes are considered. Purple and green show the LP01 and LP21 modes, respectively, when only these modes are considered. (a) Modal spectral profiles. (b) Power in the pump polarisation (solid) and orthogonal polarisation (dashed). (c) Infrared edge evaluated at −30dB.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A ˜ p ( z , Ω ) z = i [ β ˜ ( p ) ( ω ) α ( p ) ( ω ) / 2 ] A ˜ p ( z , Ω ) + i n 2 ω 0 c ( 1 + Ω ω 0 ) l m n F { 2 Q p l m n ( 1 ) ( ω 0 ) A l ( T ) R * ( A m A n * ) + ( 1 f R ) Q p l m n ( 2 ) ( ω 0 ) A l * ( T ) A m ( T ) A n ( T ) } = i [ D ^ + N ^ ] A ˜ ( z , Ω ) ,
Q p l m n ( 1 ) ( ω ) = ε 0 2 n 0 2 c 2 12 [ F ˜ p * ( x , y , ω ) F ˜ l ( x , y , ω ) ] [ F ˜ m ( x , y , ω ) F ˜ n * ( x , y , ω ) ] d x d y N p ( ω ) N l ( ω ) N m ( ω ) N n ( ω ) Q p l m n ( 2 ) ( ω ) = ε 0 2 n 0 2 c 2 12 [ F ˜ p * ( x , y , ω ) F ˜ l * ( x , y , ω ) ] [ F ˜ m ( x , y , ω ) F ˜ n ( x , y , ω ) ] d x d y N p ( ω ) N l ( ω ) N m ( ω ) N n ( ω ) N i 2 ( ω ) = 1 4 [ F ˜ i * ( x , y , ω ) × H ˜ i ( x , y , ω ) + F ˜ i ( x , y , ω ) × H ˜ i * ( x , y , ω ) ] e z d x d y , i = ( p , l , m , n ) ,
A ˜ ( z , Ω ) z = i [ β ˜ ( ω ) α ( ω ) / 2 ] A ˜ ( z , Ω ) + i γ ( 1 + Ω ω 0 ) F [ A ( z , T ) R ( T T ) | A ( z , T ) | 2 d T ] ,
A ˜ 1 ( z , Ω ) z = i [ β ˜ ( 1 ) ( ω ) α ( 1 ) ( ω ) / 2 ] A ˜ 1 ( z , Ω ) + i γ ( 1 + Ω ω 0 ) F [ ( 1 f R ) A 1 ( T ) ( | A 1 ( T ) | 2 + 2 3 | A 2 ( T ) | 2 ) × + f R A 1 ( T ) h * ( | A 1 | 2 + | A 2 | 2 ) + ( 1 f R ) 1 3 A 1 * ( T ) A 2 2 ( T ) ] A ˜ 2 ( z , Ω ) z = i [ β ˜ ( 2 ) ( ω ) α ( 2 ) ( ω ) / 2 ] A ˜ 2 ( z , Ω ) + i γ ( 1 + Ω ω 0 ) F [ ( 1 f R ) A 2 ( T ) ( | A 2 ( T ) | 2 + 2 3 | A 1 ( T ) | 2 ) × f R A 2 ( T ) h * ( | A 2 | 2 + | A 1 | 2 ) + ( 1 f R ) 1 3 A 2 * ( T ) A 1 2 ( T ) ] ,
[ K i Ω / ω p γ P 0 ( 2 3 ( 1 f R ) + f R ) ] 2 = ( Δ β / 2 ) 2 ( 1 f R ) 1 3 ( ( Δ β / 2 ) + ( Ω / ω p γ P 0 ) 2 ) ,
A ˜ 1 ( z , Ω ) z = i [ β ˜ ( 1 ) ( ω ) + i α ( 1 ) ( ω ) / 2 ] A ˜ 1 ( z , Ω ) + i n 2 ω 0 c ( 1 + Ω ω 0 ) F ( 2 ( Q 1111 ( 1 ) R * ( A 1 A 1 * ) + + Q 1144 ( 1 ) R * ( A 4 A 4 * ) ) A 1 + 2 ( Q 1313 ( 1 ) R * ( A 1 A 3 * ) + Q 1331 ( 1 ) R * ( A 3 A 1 * ) ) A 3 + ( 1 f R ) ( Q 1111 ( 2 ) A 1 A 1 + + Q 1144 ( 2 ) A 4 A 4 ) A 1 * + ( 1 f R ) ( Q 1313 ( 2 ) A 1 A 3 + A 1331 ( 2 ) A 3 A 1 ) A 3 * ) A ˜ 2 ( z , Ω ) z = i [ β ˜ ( 2 ) ( ω ) + i α ( 2 ) ( ω ) / 2 ] ( ω ) A ˜ 2 ( z , Ω ) + i n 2 ω 0 c ( 1 + Ω ω 0 ) F ( 2 ( Q 2211 ( 1 ) R * ( A 1 A 1 * ) + + Q 2244 ( 1 ) R * ( A 4 A 4 * ) A 2 + 2 ( Q 2424 ( 1 ) R * ( A 2 A 4 * ) + Q 2442 ( 1 ) R * ( A 4 A 2 * ) ) A 4 + ( 1 f R ) ( Q 2222 ( 2 ) A 2 A 2 + + Q 2244 ( 2 ) A 4 A 4 ) A 2 * + ( 1 f R ) ( Q 2424 ( 2 ) A 2 A 4 + A 2442 ( 2 ) A 4 A 2 ) A 4 * ) A ˜ 3 ( z , Ω ) z = i [ β ˜ ( 3 ) ( ω ) + i α ( 3 ) ( ω ) / 2 ] A ˜ 3 ( z , Ω ) + i n 2 ω 0 c ( 1 + Ω ω 0 ) F ( 2 ( Q 3311 ( 1 ) R * ( A 1 A 1 * ) + + Q 3344 ( 1 ) R * ( A 4 A 4 * ) ) A 3 + 2 ( Q 3131 ( 1 ) R * ( A 3 A 1 * ) + Q 3113 ( 1 ) R * ( A 1 A 3 * ) ) A 1 + ( 1 f R ) ( Q 3333 ( 2 ) A 3 A 3 + + Q 3344 ( 2 ) A 4 A 4 ) A 3 * + ( 1 f R ) ( Q 3131 ( 2 ) A 3 A 1 + Q 3113 ( 2 ) A 1 A 3 ) A 1 * A ˜ 4 ( z , Ω ) z = i [ β ˜ ( 4 ) ( ω ) + i α ( 4 ) ( ω ) / 2 ] A ˜ 4 ( z , Ω ) + i n 2 ω 0 c ( 1 + Ω ω 0 ) F ( 2 ( Q 4411 ( 1 ) R * ( A 1 A 1 * ) + + Q 4444 ( 1 ) R * ( A 4 A 4 * ) ) A 4 + 2 ( Q 4242 ( 1 ) R * ( A 4 A 2 * ) + Q 4224 ( 1 ) R * ( A 2 A 4 * ) ) A 2 + ( 1 f R ) ( Q 4411 ( 2 ) A 1 A 1 + + Q 4444 ( 2 ) A 4 A 4 ) A 4 * + ( 1 f R ) ( Q 4242 ( 2 ) A 4 A 2 + A 4224 ( 2 ) A 2 A 4 ) A 2 * ) .

Metrics