Abstract

Ultrashort fiber Bragg gratings (US-FBGs) have significant potential as weak grating sensors for distributed sensing, but the exploitation have been limited by their inherent broad spectra that are undesirable for most traditional wavelength measurements. To address this, we have recently introduced a new interrogation concept using shifted optical Gaussian filters (SOGF) which is well suitable for US-FBG measurements. Here, we apply it to demonstrate, for the first time, an US-FBG-based self-referencing distributed optical sensing technique, with the advantages of adjustable sensitivity and range, high-speed and wide-range (potentially >14000 με) intensity-based detection, and resistance to disturbance by nonuniform parameter distribution. The entire system is essentially based on a microwave network, which incorporates the SOGF with a fiber delay-line between the two arms. Differential detections of the cascaded US-FBGs are performed individually in the network time-domain response which can be obtained by analyzing its complex frequency response. Experimental results are presented and discussed using eight cascaded US-FBGs. A comprehensive numerical analysis is also conducted to assess the system performance, which shows that the use of US-FBGs instead of conventional weak FBGs could significantly improve the power budget and capacity of the distributed sensing system while maintaining the crosstalk level and intensity decay rate, providing a promising route for future sensing applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
TDM interrogation of intensity-modulated USFBGs network based on multichannel lasers

Jalal Rohollahnejad, Li Xia, Rui Cheng, Yanli Ran, Udaya Rahubadde, Jiaao Zhou, and Lin Zhu
Opt. Express 25(2) 670-680 (2017)

A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings

Zhihui Luo, Hongqiao Wen, Huiyong Guo, and Minghong Yang
Opt. Express 21(19) 22799-22807 (2013)

Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters

Rui Cheng, Li Xia, Jiaao Zhou, and Deming Liu
Opt. Lett. 40(8) 1760-1763 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber bragg grating sensor network,” J. Lightwave Technol. 30, 2751–2756 (2012).
    [Crossref]
  2. Z. Luo, H. Wen, H. Guo, and M. Yang, “A time-and wavelength-division multiplexing sensor network with ultra-weak fiber bragg gratings,” Opt. Express 21, 22799–22807 (2013).
    [Crossref] [PubMed]
  3. H. Guo, F. Liu, Y. Yuan, H. Yu, and M. Yang, “Ultra-weak fbg and its refractive index distribution in the drawing optical fiber,” Opt. Express 23, 4829–4838 (2015).
    [Crossref] [PubMed]
  4. G. Lloyd, L. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber bragg grating sensor interrogator,” IEEE Photon. Technol. Lett. 16, 2323–2325 (2004).
    [Crossref]
  5. M. Yoshida, T. Miyamoto, N. Zou, K. Nakamura, and H. Ito, “Novel pmd measurement method based on ofdr using a frequency-shifted feedback fiber laser,” Opt. Express 9, 207–211 (2001).
    [Crossref] [PubMed]
  6. H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct 26, 1647–1657 (2004).
    [Crossref]
  7. J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using efpi and fbg sensors,” Sensor Actuat A-Phys 103, 330–340 (2003).
    [Crossref]
  8. W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974 (2001).
  9. Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
    [Crossref]
  10. Q. Zhang, T. Zhu, F. Yin, and K. S. Chiang, “Temperature-insensitive real-time inclinometer based on an etched fiber bragg grating,” IEEE Photon. Technol. Lett. 26, 1049–1052 (2014).
    [Crossref]
  11. P. Orr and P. Niewczas, “High-speed, solid state, interferometric interrogator and multiplexer for fiber bragg grating sensors,” J. Lightwave Technol. 29, 3387–3392 (2011).
    [Crossref]
  12. Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
    [Crossref]
  13. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [Crossref]
  14. K. Kuang, R. Kenny, M. Whelan, W. Cantwell, and P. Chalker, “Embedded fibre bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
    [Crossref]
  15. S. Yashiro, N. Takeda, T. Okabe, and H. Sekine, “A new approach to predicting multiple damage states in composite laminates with embedded fbg sensors,” Compos. Sci. Technol. 65, 659–667 (2005). JNC13-AMAC-Strasbourg.
    [Crossref]
  16. Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in cfrp composites using embedded fiber bragg grating sensors,” Smart Mater. Struct. 9, 832 (2000).
    [Crossref]
  17. X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, P. P. Shum, and D. Liu, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Opt. Express 20, 12076–12084 (2012).
    [Crossref] [PubMed]
  18. Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber fabry–perot interferometer sensors based on ultrashort bragg gratings,” IEEE Photon. Technol. Lett. 19, 622–624 (2007).
    [Crossref]
  19. R. Cheng, L. Xia, J. Zhou, and D. Liu, “Wavelength interrogation of fiber bragg grating sensors based on crossed optical gaussian filters,” Opt. Lett. 40, 1760–1763 (2015).
    [Crossref] [PubMed]
  20. R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
    [Crossref]
  21. A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21, 28175–28181 (2013).
    [Crossref]
  22. J. Huang, L. Hua, X. Lan, T. Wei, and H. Xiao, “Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing,” Opt. Express 21, 18152–18159 (2013).
    [Crossref] [PubMed]
  23. F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
    [Crossref]
  24. A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6, 1–10 (2014).
    [Crossref]
  25. F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
    [Crossref]
  26. P. K. Chan, W. Jin, and M. S. Demokan, “Fmcw multiplexing of fiber bragg grating sensors,” Selected Topics in Quantum Electronics, IEEE Journal of 6, 756–763 (2000).
    [Crossref]
  27. H. A. Macleod, Thin-film optical filters (CRC Press, 2001).
    [Crossref]
  28. R. Alferness and R. Schmidt, “Tunable optical waveguide directional coupler filter,” Appl. Phys. Lett. 33, 161–163 (1978).
    [Crossref]
  29. J. D. Berger, F. Ilkov, D. King, A. Tselikov, and D. Anthon, “Widely tunable, narrow optical bandpass gaussian filter using a silicon microactuator,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2003), p. TuN2.
  30. H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: Applications and technologies,” IEEE Commun. Mag. 27, 53–63 (1989).
    [Crossref]
  31. Y. Sano and T. Yoshino, “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber bragg grating sensors,” J. Lightwave Technol. 21, 132–139 (2003).
    [Crossref]
  32. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide n× nwavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
    [Crossref]

2015 (3)

2014 (2)

A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6, 1–10 (2014).
[Crossref]

Q. Zhang, T. Zhu, F. Yin, and K. S. Chiang, “Temperature-insensitive real-time inclinometer based on an etched fiber bragg grating,” IEEE Photon. Technol. Lett. 26, 1049–1052 (2014).
[Crossref]

2013 (3)

2012 (2)

2011 (2)

P. Orr and P. Niewczas, “High-speed, solid state, interferometric interrogator and multiplexer for fiber bragg grating sensors,” J. Lightwave Technol. 29, 3387–3392 (2011).
[Crossref]

Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[Crossref]

2009 (1)

2008 (2)

Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]

2007 (1)

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber fabry–perot interferometer sensors based on ultrashort bragg gratings,” IEEE Photon. Technol. Lett. 19, 622–624 (2007).
[Crossref]

2005 (1)

S. Yashiro, N. Takeda, T. Okabe, and H. Sekine, “A new approach to predicting multiple damage states in composite laminates with embedded fbg sensors,” Compos. Sci. Technol. 65, 659–667 (2005). JNC13-AMAC-Strasbourg.
[Crossref]

2004 (2)

G. Lloyd, L. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber bragg grating sensor interrogator,” IEEE Photon. Technol. Lett. 16, 2323–2325 (2004).
[Crossref]

H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct 26, 1647–1657 (2004).
[Crossref]

2003 (2)

J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using efpi and fbg sensors,” Sensor Actuat A-Phys 103, 330–340 (2003).
[Crossref]

Y. Sano and T. Yoshino, “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber bragg grating sensors,” J. Lightwave Technol. 21, 132–139 (2003).
[Crossref]

2001 (3)

M. Yoshida, T. Miyamoto, N. Zou, K. Nakamura, and H. Ito, “Novel pmd measurement method based on ofdr using a frequency-shifted feedback fiber laser,” Opt. Express 9, 207–211 (2001).
[Crossref] [PubMed]

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974 (2001).

K. Kuang, R. Kenny, M. Whelan, W. Cantwell, and P. Chalker, “Embedded fibre bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[Crossref]

2000 (2)

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in cfrp composites using embedded fiber bragg grating sensors,” Smart Mater. Struct. 9, 832 (2000).
[Crossref]

P. K. Chan, W. Jin, and M. S. Demokan, “Fmcw multiplexing of fiber bragg grating sensors,” Selected Topics in Quantum Electronics, IEEE Journal of 6, 756–763 (2000).
[Crossref]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

1995 (1)

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide n× nwavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]

1989 (1)

H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: Applications and technologies,” IEEE Commun. Mag. 27, 53–63 (1989).
[Crossref]

1978 (1)

R. Alferness and R. Schmidt, “Tunable optical waveguide directional coupler filter,” Appl. Phys. Lett. 33, 161–163 (1978).
[Crossref]

Alferness, R.

R. Alferness and R. Schmidt, “Tunable optical waveguide directional coupler filter,” Appl. Phys. Lett. 33, 161–163 (1978).
[Crossref]

Anthon, D.

J. D. Berger, F. Ilkov, D. King, A. Tselikov, and D. Anthon, “Widely tunable, narrow optical bandpass gaussian filter using a silicon microactuator,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2003), p. TuN2.

Asundi, A.

J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using efpi and fbg sensors,” Sensor Actuat A-Phys 103, 330–340 (2003).
[Crossref]

Barrera, D.

A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6, 1–10 (2014).
[Crossref]

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21, 28175–28181 (2013).
[Crossref]

Bennion, I.

G. Lloyd, L. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber bragg grating sensor interrogator,” IEEE Photon. Technol. Lett. 16, 2323–2325 (2004).
[Crossref]

Berger, J. D.

J. D. Berger, F. Ilkov, D. King, A. Tselikov, and D. Anthon, “Widely tunable, narrow optical bandpass gaussian filter using a silicon microactuator,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2003), p. TuN2.

Bi, W.

Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[Crossref]

Cantwell, W.

K. Kuang, R. Kenny, M. Whelan, W. Cantwell, and P. Chalker, “Embedded fibre bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[Crossref]

Capmany, J.

A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6, 1–10 (2014).
[Crossref]

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21, 28175–28181 (2013).
[Crossref]

Chalker, P.

K. Kuang, R. Kenny, M. Whelan, W. Cantwell, and P. Chalker, “Embedded fibre bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[Crossref]

Chan, P. K.

P. K. Chan, W. Jin, and M. S. Demokan, “Fmcw multiplexing of fiber bragg grating sensors,” Selected Topics in Quantum Electronics, IEEE Journal of 6, 756–763 (2000).
[Crossref]

Cheng, R.

R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
[Crossref]

R. Cheng, L. Xia, J. Zhou, and D. Liu, “Wavelength interrogation of fiber bragg grating sensors based on crossed optical gaussian filters,” Opt. Lett. 40, 1760–1763 (2015).
[Crossref] [PubMed]

Cheung, K.-W.

H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: Applications and technologies,” IEEE Commun. Mag. 27, 53–63 (1989).
[Crossref]

Chiang, K. S.

Q. Zhang, T. Zhu, F. Yin, and K. S. Chiang, “Temperature-insensitive real-time inclinometer based on an etched fiber bragg grating,” IEEE Photon. Technol. Lett. 26, 1049–1052 (2014).
[Crossref]

Demokan, M. S.

P. K. Chan, W. Jin, and M. S. Demokan, “Fmcw multiplexing of fiber bragg grating sensors,” Selected Topics in Quantum Electronics, IEEE Journal of 6, 756–763 (2000).
[Crossref]

Dong, B.

W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber bragg grating sensor network,” J. Lightwave Technol. 30, 2751–2756 (2012).
[Crossref]

Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[Crossref]

Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]

Ecke, W.

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974 (2001).

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

Everall, L.

G. Lloyd, L. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber bragg grating sensor interrogator,” IEEE Photon. Technol. Lett. 16, 2323–2325 (2004).
[Crossref]

Gong, J.

W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber bragg grating sensor network,” J. Lightwave Technol. 30, 2751–2756 (2012).
[Crossref]

Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[Crossref]

Graue, R.

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974 (2001).

Guo, H.

Hervas, J.

A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6, 1–10 (2014).
[Crossref]

Hua, L.

Huang, J.

Ilkov, F.

J. D. Berger, F. Ilkov, D. King, A. Tselikov, and D. Anthon, “Widely tunable, narrow optical bandpass gaussian filter using a silicon microactuator,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2003), p. TuN2.

Inoue, Y.

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide n× nwavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]

Ito, H.

Jin, W.

P. K. Chan, W. Jin, and M. S. Demokan, “Fmcw multiplexing of fiber bragg grating sensors,” Selected Topics in Quantum Electronics, IEEE Journal of 6, 756–763 (2000).
[Crossref]

Kenny, R.

K. Kuang, R. Kenny, M. Whelan, W. Cantwell, and P. Chalker, “Embedded fibre bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[Crossref]

King, D.

J. D. Berger, F. Ilkov, D. King, A. Tselikov, and D. Anthon, “Widely tunable, narrow optical bandpass gaussian filter using a silicon microactuator,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2003), p. TuN2.

Kobrinski, H.

H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: Applications and technologies,” IEEE Commun. Mag. 27, 53–63 (1989).
[Crossref]

Kosaka, T.

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in cfrp composites using embedded fiber bragg grating sensors,” Smart Mater. Struct. 9, 832 (2000).
[Crossref]

Kuang, K.

K. Kuang, R. Kenny, M. Whelan, W. Cantwell, and P. Chalker, “Embedded fibre bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[Crossref]

Lan, X.

Latka, I.

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974 (2001).

Leng, J.

J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using efpi and fbg sensors,” Sensor Actuat A-Phys 103, 330–340 (2003).
[Crossref]

Li, D.-S.

H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct 26, 1647–1657 (2004).
[Crossref]

Li, H.-N.

H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct 26, 1647–1657 (2004).
[Crossref]

Li, X.

Liang, R.

Liu, B.

Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]

Liu, D.

Liu, F.

Liu, Y.

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]

Lloyd, G.

G. Lloyd, L. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber bragg grating sensor interrogator,” IEEE Photon. Technol. Lett. 16, 2323–2325 (2004).
[Crossref]

Luo, Z.

Macleod, H. A.

H. A. Macleod, Thin-film optical filters (CRC Press, 2001).
[Crossref]

Miao, Y.

Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]

Miyamoto, T.

Nakamura, K.

Niewczas, P.

Oda, K.

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide n× nwavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]

Okabe, T.

S. Yashiro, N. Takeda, T. Okabe, and H. Sekine, “A new approach to predicting multiple damage states in composite laminates with embedded fbg sensors,” Compos. Sci. Technol. 65, 659–667 (2005). JNC13-AMAC-Strasbourg.
[Crossref]

Okabe, Y.

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in cfrp composites using embedded fiber bragg grating sensors,” Smart Mater. Struct. 9, 832 (2000).
[Crossref]

Orr, P.

Qi, B.

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
[Crossref]

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]

Qian, L.

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
[Crossref]

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]

Ran, Y.

R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
[Crossref]

Reutlinger, A.

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974 (2001).

Ricchiuti, A. L.

A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6, 1–10 (2014).
[Crossref]

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21, 28175–28181 (2013).
[Crossref]

Rohollahnejad, J.

R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
[Crossref]

Sales, S.

A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6, 1–10 (2014).
[Crossref]

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21, 28175–28181 (2013).
[Crossref]

Sano, Y.

Schmidt, R.

R. Alferness and R. Schmidt, “Tunable optical waveguide directional coupler filter,” Appl. Phys. Lett. 33, 161–163 (1978).
[Crossref]

Sekine, H.

S. Yashiro, N. Takeda, T. Okabe, and H. Sekine, “A new approach to predicting multiple damage states in composite laminates with embedded fbg sensors,” Compos. Sci. Technol. 65, 659–667 (2005). JNC13-AMAC-Strasbourg.
[Crossref]

Shen, F.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber fabry–perot interferometer sensors based on ultrashort bragg gratings,” IEEE Photon. Technol. Lett. 19, 622–624 (2007).
[Crossref]

Shillig, T. J.

Shum, P. P.

Song, G.-B.

H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct 26, 1647–1657 (2004).
[Crossref]

Song, L.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber fabry–perot interferometer sensors based on ultrashort bragg gratings,” IEEE Photon. Technol. Lett. 19, 622–624 (2007).
[Crossref]

Sugden, K.

G. Lloyd, L. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber bragg grating sensor interrogator,” IEEE Photon. Technol. Lett. 16, 2323–2325 (2004).
[Crossref]

Sun, Q.

Takahashi, H.

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide n× nwavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]

Takeda, N.

S. Yashiro, N. Takeda, T. Okabe, and H. Sekine, “A new approach to predicting multiple damage states in composite laminates with embedded fbg sensors,” Compos. Sci. Technol. 65, 659–667 (2005). JNC13-AMAC-Strasbourg.
[Crossref]

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in cfrp composites using embedded fiber bragg grating sensors,” Smart Mater. Struct. 9, 832 (2000).
[Crossref]

Thevenaz, L.

Toba, H.

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide n× nwavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]

Tselikov, A.

J. D. Berger, F. Ilkov, D. King, A. Tselikov, and D. Anthon, “Widely tunable, narrow optical bandpass gaussian filter using a silicon microactuator,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2003), p. TuN2.

Wang, A.

W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber bragg grating sensor network,” J. Lightwave Technol. 30, 2751–2756 (2012).
[Crossref]

Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[Crossref]

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber fabry–perot interferometer sensors based on ultrashort bragg gratings,” IEEE Photon. Technol. Lett. 19, 622–624 (2007).
[Crossref]

Wang, D. Y.

Wang, W.

Wang, X.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber fabry–perot interferometer sensors based on ultrashort bragg gratings,” IEEE Photon. Technol. Lett. 19, 622–624 (2007).
[Crossref]

Wang, Y.

Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[Crossref]

Wang, Z.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber fabry–perot interferometer sensors based on ultrashort bragg gratings,” IEEE Photon. Technol. Lett. 19, 622–624 (2007).
[Crossref]

Wei, T.

Wen, H.

Wen, Y.

R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
[Crossref]

Whelan, M.

K. Kuang, R. Kenny, M. Whelan, W. Cantwell, and P. Chalker, “Embedded fibre bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[Crossref]

Willsch, R.

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974 (2001).

Wo, J.

Xia, L.

R. Cheng, L. Xia, J. Zhou, and D. Liu, “Wavelength interrogation of fiber bragg grating sensors based on crossed optical gaussian filters,” Opt. Lett. 40, 1760–1763 (2015).
[Crossref] [PubMed]

R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
[Crossref]

Xiao, H.

Yang, M.

Yashiro, S.

S. Yashiro, N. Takeda, T. Okabe, and H. Sekine, “A new approach to predicting multiple damage states in composite laminates with embedded fbg sensors,” Compos. Sci. Technol. 65, 659–667 (2005). JNC13-AMAC-Strasbourg.
[Crossref]

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in cfrp composites using embedded fiber bragg grating sensors,” Smart Mater. Struct. 9, 832 (2000).
[Crossref]

Ye, F.

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
[Crossref]

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]

Yin, F.

Q. Zhang, T. Zhu, F. Yin, and K. S. Chiang, “Temperature-insensitive real-time inclinometer based on an etched fiber bragg grating,” IEEE Photon. Technol. Lett. 26, 1049–1052 (2014).
[Crossref]

Yoshida, M.

Yoshino, T.

Yu, H.

Yuan, Y.

Zhang, J.

Zhang, Q.

Q. Zhang, T. Zhu, F. Yin, and K. S. Chiang, “Temperature-insensitive real-time inclinometer based on an etched fiber bragg grating,” IEEE Photon. Technol. Lett. 26, 1049–1052 (2014).
[Crossref]

Zhang, W.

Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]

Zhao, Q.

Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]

Zhou, H.

Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]

Zhou, J.

R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
[Crossref]

R. Cheng, L. Xia, J. Zhou, and D. Liu, “Wavelength interrogation of fiber bragg grating sensors based on crossed optical gaussian filters,” Opt. Lett. 40, 1760–1763 (2015).
[Crossref] [PubMed]

Zhu, T.

Q. Zhang, T. Zhu, F. Yin, and K. S. Chiang, “Temperature-insensitive real-time inclinometer based on an etched fiber bragg grating,” IEEE Photon. Technol. Lett. 26, 1049–1052 (2014).
[Crossref]

Zou, N.

Appl. Phys. Lett. (1)

R. Alferness and R. Schmidt, “Tunable optical waveguide directional coupler filter,” Appl. Phys. Lett. 33, 161–163 (1978).
[Crossref]

Compos. Sci. Technol. (2)

K. Kuang, R. Kenny, M. Whelan, W. Cantwell, and P. Chalker, “Embedded fibre bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[Crossref]

S. Yashiro, N. Takeda, T. Okabe, and H. Sekine, “A new approach to predicting multiple damage states in composite laminates with embedded fbg sensors,” Compos. Sci. Technol. 65, 659–667 (2005). JNC13-AMAC-Strasbourg.
[Crossref]

Eng. Struct (1)

H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct 26, 1647–1657 (2004).
[Crossref]

IEEE Commun. Mag. (1)

H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: Applications and technologies,” IEEE Commun. Mag. 27, 53–63 (1989).
[Crossref]

IEEE Photon. Technol. Lett. (7)

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]

R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
[Crossref]

Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[Crossref]

Q. Zhang, T. Zhu, F. Yin, and K. S. Chiang, “Temperature-insensitive real-time inclinometer based on an etched fiber bragg grating,” IEEE Photon. Technol. Lett. 26, 1049–1052 (2014).
[Crossref]

G. Lloyd, L. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber bragg grating sensor interrogator,” IEEE Photon. Technol. Lett. 16, 2323–2325 (2004).
[Crossref]

Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber fabry–perot interferometer sensors based on ultrashort bragg gratings,” IEEE Photon. Technol. Lett. 19, 622–624 (2007).
[Crossref]

IEEE Photonics J. (1)

A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6, 1–10 (2014).
[Crossref]

J. Lightwave Technol. (6)

Meas. Sci. Technol. (1)

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974 (2001).

Opt. Express (6)

Opt. Lett. (1)

Selected Topics in Quantum Electronics, IEEE Journal of (1)

P. K. Chan, W. Jin, and M. S. Demokan, “Fmcw multiplexing of fiber bragg grating sensors,” Selected Topics in Quantum Electronics, IEEE Journal of 6, 756–763 (2000).
[Crossref]

Sensor Actuat A-Phys (1)

J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using efpi and fbg sensors,” Sensor Actuat A-Phys 103, 330–340 (2003).
[Crossref]

Smart Mater. Struct. (1)

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in cfrp composites using embedded fiber bragg grating sensors,” Smart Mater. Struct. 9, 832 (2000).
[Crossref]

Other (2)

H. A. Macleod, Thin-film optical filters (CRC Press, 2001).
[Crossref]

J. D. Berger, F. Ilkov, D. King, A. Tselikov, and D. Anthon, “Widely tunable, narrow optical bandpass gaussian filter using a silicon microactuator,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2003), p. TuN2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Characteristic comparison between conventional weak FBGs and US-FBGs.
Fig. 2
Fig. 2 (a) Basic structure of the proposed distributed sensing system. (b) Multi-tap microwave photonics (MWP) filter structure with an operation equivalent to the sensing system part in the red dash-line block. (c) and (d) Comprehensive description of the fundamental concept using shifted Gaussian filters for wavelength interrogation of distributed US-FBG sensors. GF, Gaussian filter; VNA, vector network analyzer; EOM, electronic optic modulator; PD, photodetector. PPR, peak 2 (red)-to-peak 1 (blue) ratio (dB).
Fig. 3
Fig. 3 (a) Reflected spectrum of the 1st US-FBG. (b) Transmittances of the shifted Gaussian filters. (c) Magnitude and (d) phase response of the microwave-based sensing system. (e) Impulse response, that is the time-domain response of the system, which is obtained from inverse Fourier transformation operation to the complex network response (including both the magnitude and phase responses).
Fig. 4
Fig. 4 (a) Schematic illustration of the test to verify the insensitivity of the measurement to source fluctuations, where the intensity of the ASE is decreased by 3.3 dBm. (b) Comparison of the normalized system time-domain responses before and after the power decrease. (c) All the grating PPR changes after the test. (d) Schematic illustration of the test to validate the immunity to transmission fiber-related light intensity changes. (e) Comparison of the normalized system time-domain responses before and after the introduced bend loss. (f) All the PPR changes after the test. PPR: peak 2-to-peak 1 ratio (dB).
Fig. 5
Fig. 5 (a) Enlarged 3D view of the evolution of the two adjacent peak (peak 1 and peak 2) height changes of the 7th US-FBG as the applied strain increases, and the upper-left inset presents the whole system time-domain response at the initial state (all the gratings are free of the strain). (b) Plots of the normalized peak heights as a function of strain. (c) Peak 2-to-peak 1 ratio (dB), that is PPR, versus the strain. The filter offset is 0.6 nm during the measurement.
Fig. 6
Fig. 6 (a) Measured PPR versus strain for the 3rd US-FBG; the inset shows peak 1 and peak 2 change curves during the measurement. (b) 3D view of all the grating PPR changes during the measurement of the 3rd US-FBG. (c) PPR versus strain for the 5th US-FBG; the inset shows peak 1 and peak 2 change curves during the measurement. (d) 3D view of all the grating PPR changes during the measurement of the 5th US-FBG.
Fig. 7
Fig. 7 Measurement results of (a) the 1st, (b) the 2nd, (c) the 3rd, and (d) the 7th US-FBGs for the different filter wavelength offsets of 0.6, 0.8 and 1.0 nm.
Fig. 8
Fig. 8 Multi-reflection crosstalk level versus (a) grating reflectivity and (b) grating bandwidth.
Fig. 9
Fig. 9 (a) Spectrum distortion of the 800th grating due to spectral shadowing effect. (b) Response curve change of the 800th grating.
Fig. 10
Fig. 10 Response curve comparisons between the 1st and the 800th grating for the different grating reflectivity of (a) −36 dB, (b) −32 dB and (c) −28 dB, and for the different grating FWHM of (d) 1.8 nm, (e) 2.3 nm and (f) 2.8 nm.
Fig. 11
Fig. 11 Reflection power as a function of sensor number (a) for different grating reflectivity and (b) for different grating bandwidths.
Fig. 12
Fig. 12 (a) Reflection power versus sensor number for different grating bandwidth, where from black to origin there is a gradual increase of the FWHM from 0.2 to 2.3 nm with increments of 0.35 nm; the horizontal dashed line represents the minimum optical power of −35 dBm. (b) Maximum multiplexed sensor number versus grating bandwidth.

Tables (1)

Tables Icon

Table 1 Comparison of measurement parameters when different filter offsets are used for the four measured gratings

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

H ( ω ) = k = 1 N ( P 1 , k ( λ k ) e i ω T k + P 2 , k ( λ k ) e i ω ( T k + Δ T ) )
h ( t ) k = 1 N ( P 1 , k ( λ k ) δ ( t T k ) + P 2 , k ( λ k ) δ ( t ( T k + Δ T ) ) )
h k ( t T k ) P 1 , k ( λ k ) δ ( t T k ) + P 2 , k ( λ k ) δ ( t ( T k + Δ T ) ) ,
h ( t ) k = 1 N h k ( t T k ) ,
PPR k ( λ k ) = lg P 2 , k ( λ k ) P 1 , k ( λ k ) , k = 1 , 2 , N ,
PPR k ( λ k ) = E + F λ k , k = 1 , 2 , N ,
F λ os
D min = c 2 n Δ ,
M k = ( k 1 ) ( k 2 ) 2 R ( λ ) 3 ( 1 ( λ ) ) 2 k 4 I 0 d λ
R ( λ ) = r exp ( 4 ln 2 ( λ λ B B ) 2 )
P k = ( 1 R ( λ ) ) 2 k 2 R ( λ ) I 0 d λ
C k = M k P k

Metrics