R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
[Crossref]
H. Guo, F. Liu, Y. Yuan, H. Yu, and M. Yang, “Ultra-weak fbg and its refractive index distribution in the drawing optical fiber,” Opt. Express 23, 4829–4838 (2015).
[Crossref]
[PubMed]
R. Cheng, L. Xia, J. Zhou, and D. Liu, “Wavelength interrogation of fiber bragg grating sensors based on crossed optical gaussian filters,” Opt. Lett. 40, 1760–1763 (2015).
[Crossref]
[PubMed]
A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6, 1–10 (2014).
[Crossref]
Q. Zhang, T. Zhu, F. Yin, and K. S. Chiang, “Temperature-insensitive real-time inclinometer based on an etched fiber bragg grating,” IEEE Photon. Technol. Lett. 26, 1049–1052 (2014).
[Crossref]
J. Huang, L. Hua, X. Lan, T. Wei, and H. Xiao, “Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing,” Opt. Express 21, 18152–18159 (2013).
[Crossref]
[PubMed]
Z. Luo, H. Wen, H. Guo, and M. Yang, “A time-and wavelength-division multiplexing sensor network with ultra-weak fiber bragg gratings,” Opt. Express 21, 22799–22807 (2013).
[Crossref]
[PubMed]
A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21, 28175–28181 (2013).
[Crossref]
X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, P. P. Shum, and D. Liu, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Opt. Express 20, 12076–12084 (2012).
[Crossref]
[PubMed]
W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber bragg grating sensor network,” J. Lightwave Technol. 30, 2751–2756 (2012).
[Crossref]
P. Orr and P. Niewczas, “High-speed, solid state, interferometric interrogator and multiplexer for fiber bragg grating sensors,” J. Lightwave Technol. 29, 3387–3392 (2011).
[Crossref]
Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[Crossref]
Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]
F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]
Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber fabry–perot interferometer sensors based on ultrashort bragg gratings,” IEEE Photon. Technol. Lett. 19, 622–624 (2007).
[Crossref]
S. Yashiro, N. Takeda, T. Okabe, and H. Sekine, “A new approach to predicting multiple damage states in composite laminates with embedded fbg sensors,” Compos. Sci. Technol. 65, 659–667 (2005). JNC13-AMAC-Strasbourg.
[Crossref]
G. Lloyd, L. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber bragg grating sensor interrogator,” IEEE Photon. Technol. Lett. 16, 2323–2325 (2004).
[Crossref]
H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct 26, 1647–1657 (2004).
[Crossref]
M. Yoshida, T. Miyamoto, N. Zou, K. Nakamura, and H. Ito, “Novel pmd measurement method based on ofdr using a frequency-shifted feedback fiber laser,” Opt. Express 9, 207–211 (2001).
[Crossref]
[PubMed]
W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974 (2001).
K. Kuang, R. Kenny, M. Whelan, W. Cantwell, and P. Chalker, “Embedded fibre bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[Crossref]
Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in cfrp composites using embedded fiber bragg grating sensors,” Smart Mater. Struct. 9, 832 (2000).
[Crossref]
P. K. Chan, W. Jin, and M. S. Demokan, “Fmcw multiplexing of fiber bragg grating sensors,” Selected Topics in Quantum Electronics, IEEE Journal of 6, 756–763 (2000).
[Crossref]
T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]
H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide n× nwavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]
H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: Applications and technologies,” IEEE Commun. Mag. 27, 53–63 (1989).
[Crossref]
R. Alferness and R. Schmidt, “Tunable optical waveguide directional coupler filter,” Appl. Phys. Lett. 33, 161–163 (1978).
[Crossref]
R. Alferness and R. Schmidt, “Tunable optical waveguide directional coupler filter,” Appl. Phys. Lett. 33, 161–163 (1978).
[Crossref]
J. D. Berger, F. Ilkov, D. King, A. Tselikov, and D. Anthon, “Widely tunable, narrow optical bandpass gaussian filter using a silicon microactuator,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2003), p. TuN2.
J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using efpi and fbg sensors,” Sensor Actuat A-Phys 103, 330–340 (2003).
[Crossref]
A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6, 1–10 (2014).
[Crossref]
A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21, 28175–28181 (2013).
[Crossref]
G. Lloyd, L. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber bragg grating sensor interrogator,” IEEE Photon. Technol. Lett. 16, 2323–2325 (2004).
[Crossref]
J. D. Berger, F. Ilkov, D. King, A. Tselikov, and D. Anthon, “Widely tunable, narrow optical bandpass gaussian filter using a silicon microactuator,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2003), p. TuN2.
Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[Crossref]
K. Kuang, R. Kenny, M. Whelan, W. Cantwell, and P. Chalker, “Embedded fibre bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[Crossref]
A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6, 1–10 (2014).
[Crossref]
A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21, 28175–28181 (2013).
[Crossref]
K. Kuang, R. Kenny, M. Whelan, W. Cantwell, and P. Chalker, “Embedded fibre bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[Crossref]
P. K. Chan, W. Jin, and M. S. Demokan, “Fmcw multiplexing of fiber bragg grating sensors,” Selected Topics in Quantum Electronics, IEEE Journal of 6, 756–763 (2000).
[Crossref]
R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
[Crossref]
R. Cheng, L. Xia, J. Zhou, and D. Liu, “Wavelength interrogation of fiber bragg grating sensors based on crossed optical gaussian filters,” Opt. Lett. 40, 1760–1763 (2015).
[Crossref]
[PubMed]
H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: Applications and technologies,” IEEE Commun. Mag. 27, 53–63 (1989).
[Crossref]
Q. Zhang, T. Zhu, F. Yin, and K. S. Chiang, “Temperature-insensitive real-time inclinometer based on an etched fiber bragg grating,” IEEE Photon. Technol. Lett. 26, 1049–1052 (2014).
[Crossref]
P. K. Chan, W. Jin, and M. S. Demokan, “Fmcw multiplexing of fiber bragg grating sensors,” Selected Topics in Quantum Electronics, IEEE Journal of 6, 756–763 (2000).
[Crossref]
W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber bragg grating sensor network,” J. Lightwave Technol. 30, 2751–2756 (2012).
[Crossref]
Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[Crossref]
Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]
W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974 (2001).
T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]
G. Lloyd, L. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber bragg grating sensor interrogator,” IEEE Photon. Technol. Lett. 16, 2323–2325 (2004).
[Crossref]
W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber bragg grating sensor network,” J. Lightwave Technol. 30, 2751–2756 (2012).
[Crossref]
Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[Crossref]
W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974 (2001).
H. Guo, F. Liu, Y. Yuan, H. Yu, and M. Yang, “Ultra-weak fbg and its refractive index distribution in the drawing optical fiber,” Opt. Express 23, 4829–4838 (2015).
[Crossref]
[PubMed]
Z. Luo, H. Wen, H. Guo, and M. Yang, “A time-and wavelength-division multiplexing sensor network with ultra-weak fiber bragg gratings,” Opt. Express 21, 22799–22807 (2013).
[Crossref]
[PubMed]
A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6, 1–10 (2014).
[Crossref]
J. D. Berger, F. Ilkov, D. King, A. Tselikov, and D. Anthon, “Widely tunable, narrow optical bandpass gaussian filter using a silicon microactuator,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2003), p. TuN2.
H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide n× nwavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]
P. K. Chan, W. Jin, and M. S. Demokan, “Fmcw multiplexing of fiber bragg grating sensors,” Selected Topics in Quantum Electronics, IEEE Journal of 6, 756–763 (2000).
[Crossref]
K. Kuang, R. Kenny, M. Whelan, W. Cantwell, and P. Chalker, “Embedded fibre bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[Crossref]
J. D. Berger, F. Ilkov, D. King, A. Tselikov, and D. Anthon, “Widely tunable, narrow optical bandpass gaussian filter using a silicon microactuator,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2003), p. TuN2.
H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: Applications and technologies,” IEEE Commun. Mag. 27, 53–63 (1989).
[Crossref]
Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in cfrp composites using embedded fiber bragg grating sensors,” Smart Mater. Struct. 9, 832 (2000).
[Crossref]
K. Kuang, R. Kenny, M. Whelan, W. Cantwell, and P. Chalker, “Embedded fibre bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[Crossref]
W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974 (2001).
J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using efpi and fbg sensors,” Sensor Actuat A-Phys 103, 330–340 (2003).
[Crossref]
H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct 26, 1647–1657 (2004).
[Crossref]
H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct 26, 1647–1657 (2004).
[Crossref]
X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, P. P. Shum, and D. Liu, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Opt. Express 20, 12076–12084 (2012).
[Crossref]
[PubMed]
X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, P. P. Shum, and D. Liu, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Opt. Express 20, 12076–12084 (2012).
[Crossref]
[PubMed]
Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]
R. Cheng, L. Xia, J. Zhou, and D. Liu, “Wavelength interrogation of fiber bragg grating sensors based on crossed optical gaussian filters,” Opt. Lett. 40, 1760–1763 (2015).
[Crossref]
[PubMed]
X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, P. P. Shum, and D. Liu, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Opt. Express 20, 12076–12084 (2012).
[Crossref]
[PubMed]
X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, P. P. Shum, and D. Liu, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Opt. Express 20, 12076–12084 (2012).
[Crossref]
[PubMed]
F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]
G. Lloyd, L. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber bragg grating sensor interrogator,” IEEE Photon. Technol. Lett. 16, 2323–2325 (2004).
[Crossref]
H. A. Macleod, Thin-film optical filters (CRC Press, 2001).
[Crossref]
Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]
H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide n× nwavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]
S. Yashiro, N. Takeda, T. Okabe, and H. Sekine, “A new approach to predicting multiple damage states in composite laminates with embedded fbg sensors,” Compos. Sci. Technol. 65, 659–667 (2005). JNC13-AMAC-Strasbourg.
[Crossref]
Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in cfrp composites using embedded fiber bragg grating sensors,” Smart Mater. Struct. 9, 832 (2000).
[Crossref]
F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
[Crossref]
F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]
F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
[Crossref]
F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]
R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
[Crossref]
W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974 (2001).
A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6, 1–10 (2014).
[Crossref]
A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21, 28175–28181 (2013).
[Crossref]
R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
[Crossref]
A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6, 1–10 (2014).
[Crossref]
A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21, 28175–28181 (2013).
[Crossref]
R. Alferness and R. Schmidt, “Tunable optical waveguide directional coupler filter,” Appl. Phys. Lett. 33, 161–163 (1978).
[Crossref]
S. Yashiro, N. Takeda, T. Okabe, and H. Sekine, “A new approach to predicting multiple damage states in composite laminates with embedded fbg sensors,” Compos. Sci. Technol. 65, 659–667 (2005). JNC13-AMAC-Strasbourg.
[Crossref]
Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber fabry–perot interferometer sensors based on ultrashort bragg gratings,” IEEE Photon. Technol. Lett. 19, 622–624 (2007).
[Crossref]
X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, P. P. Shum, and D. Liu, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Opt. Express 20, 12076–12084 (2012).
[Crossref]
[PubMed]
H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct 26, 1647–1657 (2004).
[Crossref]
Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber fabry–perot interferometer sensors based on ultrashort bragg gratings,” IEEE Photon. Technol. Lett. 19, 622–624 (2007).
[Crossref]
G. Lloyd, L. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber bragg grating sensor interrogator,” IEEE Photon. Technol. Lett. 16, 2323–2325 (2004).
[Crossref]
X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, P. P. Shum, and D. Liu, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Opt. Express 20, 12076–12084 (2012).
[Crossref]
[PubMed]
H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide n× nwavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]
S. Yashiro, N. Takeda, T. Okabe, and H. Sekine, “A new approach to predicting multiple damage states in composite laminates with embedded fbg sensors,” Compos. Sci. Technol. 65, 659–667 (2005). JNC13-AMAC-Strasbourg.
[Crossref]
Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in cfrp composites using embedded fiber bragg grating sensors,” Smart Mater. Struct. 9, 832 (2000).
[Crossref]
H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide n× nwavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]
J. D. Berger, F. Ilkov, D. King, A. Tselikov, and D. Anthon, “Widely tunable, narrow optical bandpass gaussian filter using a silicon microactuator,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2003), p. TuN2.
W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber bragg grating sensor network,” J. Lightwave Technol. 30, 2751–2756 (2012).
[Crossref]
Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[Crossref]
Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber fabry–perot interferometer sensors based on ultrashort bragg gratings,” IEEE Photon. Technol. Lett. 19, 622–624 (2007).
[Crossref]
Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber fabry–perot interferometer sensors based on ultrashort bragg gratings,” IEEE Photon. Technol. Lett. 19, 622–624 (2007).
[Crossref]
Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[Crossref]
Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber fabry–perot interferometer sensors based on ultrashort bragg gratings,” IEEE Photon. Technol. Lett. 19, 622–624 (2007).
[Crossref]
R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
[Crossref]
K. Kuang, R. Kenny, M. Whelan, W. Cantwell, and P. Chalker, “Embedded fibre bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[Crossref]
W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974 (2001).
X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, P. P. Shum, and D. Liu, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Opt. Express 20, 12076–12084 (2012).
[Crossref]
[PubMed]
R. Cheng, L. Xia, J. Zhou, and D. Liu, “Wavelength interrogation of fiber bragg grating sensors based on crossed optical gaussian filters,” Opt. Lett. 40, 1760–1763 (2015).
[Crossref]
[PubMed]
R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
[Crossref]
H. Guo, F. Liu, Y. Yuan, H. Yu, and M. Yang, “Ultra-weak fbg and its refractive index distribution in the drawing optical fiber,” Opt. Express 23, 4829–4838 (2015).
[Crossref]
[PubMed]
Z. Luo, H. Wen, H. Guo, and M. Yang, “A time-and wavelength-division multiplexing sensor network with ultra-weak fiber bragg gratings,” Opt. Express 21, 22799–22807 (2013).
[Crossref]
[PubMed]
S. Yashiro, N. Takeda, T. Okabe, and H. Sekine, “A new approach to predicting multiple damage states in composite laminates with embedded fbg sensors,” Compos. Sci. Technol. 65, 659–667 (2005). JNC13-AMAC-Strasbourg.
[Crossref]
Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in cfrp composites using embedded fiber bragg grating sensors,” Smart Mater. Struct. 9, 832 (2000).
[Crossref]
F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
[Crossref]
F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]
Q. Zhang, T. Zhu, F. Yin, and K. S. Chiang, “Temperature-insensitive real-time inclinometer based on an etched fiber bragg grating,” IEEE Photon. Technol. Lett. 26, 1049–1052 (2014).
[Crossref]
X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, P. P. Shum, and D. Liu, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Opt. Express 20, 12076–12084 (2012).
[Crossref]
[PubMed]
Q. Zhang, T. Zhu, F. Yin, and K. S. Chiang, “Temperature-insensitive real-time inclinometer based on an etched fiber bragg grating,” IEEE Photon. Technol. Lett. 26, 1049–1052 (2014).
[Crossref]
Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]
Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]
Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]
R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
[Crossref]
R. Cheng, L. Xia, J. Zhou, and D. Liu, “Wavelength interrogation of fiber bragg grating sensors based on crossed optical gaussian filters,” Opt. Lett. 40, 1760–1763 (2015).
[Crossref]
[PubMed]
Q. Zhang, T. Zhu, F. Yin, and K. S. Chiang, “Temperature-insensitive real-time inclinometer based on an etched fiber bragg grating,” IEEE Photon. Technol. Lett. 26, 1049–1052 (2014).
[Crossref]
R. Alferness and R. Schmidt, “Tunable optical waveguide directional coupler filter,” Appl. Phys. Lett. 33, 161–163 (1978).
[Crossref]
K. Kuang, R. Kenny, M. Whelan, W. Cantwell, and P. Chalker, “Embedded fibre bragg grating sensors in advanced composite materials,” Compos. Sci. Technol. 61, 1379–1387 (2001).
[Crossref]
S. Yashiro, N. Takeda, T. Okabe, and H. Sekine, “A new approach to predicting multiple damage states in composite laminates with embedded fbg sensors,” Compos. Sci. Technol. 65, 659–667 (2005). JNC13-AMAC-Strasbourg.
[Crossref]
H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct 26, 1647–1657 (2004).
[Crossref]
H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: Applications and technologies,” IEEE Commun. Mag. 27, 53–63 (1989).
[Crossref]
F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]
R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, and Y. Wen, “Interrogation of ultrashort bragg grating sensors using shifted optical gaussian filters,” IEEE Photon. Technol. Lett. 27, 1833–1836 (2015).
[Crossref]
Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber bragg gratings,” IEEE Photon. Technol. Lett. 23, 70–72 (2011).
[Crossref]
Q. Zhang, T. Zhu, F. Yin, and K. S. Chiang, “Temperature-insensitive real-time inclinometer based on an etched fiber bragg grating,” IEEE Photon. Technol. Lett. 26, 1049–1052 (2014).
[Crossref]
G. Lloyd, L. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber bragg grating sensor interrogator,” IEEE Photon. Technol. Lett. 16, 2323–2325 (2004).
[Crossref]
Y. Miao, B. Liu, W. Zhang, B. Dong, H. Zhou, and Q. Zhao, “Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber bragg gratings,” IEEE Photon. Technol. Lett. 20, 1393–1395 (2008).
[Crossref]
Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber fabry–perot interferometer sensors based on ultrashort bragg gratings,” IEEE Photon. Technol. Lett. 19, 622–624 (2007).
[Crossref]
A. L. Ricchiuti, J. Hervas, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6, 1–10 (2014).
[Crossref]
F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
[Crossref]
Y. Sano and T. Yoshino, “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber bragg grating sensors,” J. Lightwave Technol. 21, 132–139 (2003).
[Crossref]
H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide n× nwavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]
T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]
W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber bragg grating sensor network,” J. Lightwave Technol. 30, 2751–2756 (2012).
[Crossref]
P. Orr and P. Niewczas, “High-speed, solid state, interferometric interrogator and multiplexer for fiber bragg grating sensors,” J. Lightwave Technol. 29, 3387–3392 (2011).
[Crossref]
W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974 (2001).
X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, P. P. Shum, and D. Liu, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Opt. Express 20, 12076–12084 (2012).
[Crossref]
[PubMed]
Z. Luo, H. Wen, H. Guo, and M. Yang, “A time-and wavelength-division multiplexing sensor network with ultra-weak fiber bragg gratings,” Opt. Express 21, 22799–22807 (2013).
[Crossref]
[PubMed]
H. Guo, F. Liu, Y. Yuan, H. Yu, and M. Yang, “Ultra-weak fbg and its refractive index distribution in the drawing optical fiber,” Opt. Express 23, 4829–4838 (2015).
[Crossref]
[PubMed]
M. Yoshida, T. Miyamoto, N. Zou, K. Nakamura, and H. Ito, “Novel pmd measurement method based on ofdr using a frequency-shifted feedback fiber laser,” Opt. Express 9, 207–211 (2001).
[Crossref]
[PubMed]
A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21, 28175–28181 (2013).
[Crossref]
J. Huang, L. Hua, X. Lan, T. Wei, and H. Xiao, “Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing,” Opt. Express 21, 18152–18159 (2013).
[Crossref]
[PubMed]
P. K. Chan, W. Jin, and M. S. Demokan, “Fmcw multiplexing of fiber bragg grating sensors,” Selected Topics in Quantum Electronics, IEEE Journal of 6, 756–763 (2000).
[Crossref]
J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using efpi and fbg sensors,” Sensor Actuat A-Phys 103, 330–340 (2003).
[Crossref]
Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in cfrp composites using embedded fiber bragg grating sensors,” Smart Mater. Struct. 9, 832 (2000).
[Crossref]
H. A. Macleod, Thin-film optical filters (CRC Press, 2001).
[Crossref]
J. D. Berger, F. Ilkov, D. King, A. Tselikov, and D. Anthon, “Widely tunable, narrow optical bandpass gaussian filter using a silicon microactuator,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2003), p. TuN2.