Abstract

Reversible actuating of surface plasmon propagation by responsive hydrogel grating is reported. Thermo-responsive poly(N-isopropylacrylamide)-based (pNIPAAm) hydrogel nanostructure was designed and tethered to a gold surface in order to switch on and off Bragg scattering of surface plasmons which is associated with an occurrence of a bandgap in their dispersion relation. pNIPAAm-based grating with a period around 280 nm was prepared by using photo-crosslinkable terpolymer and laser interference lithography and it was brought in contact with water. The temperature induced swelling and collapse of pNIPAAm hydrogel grating strongly modulates its refractive index (Δn~0.1) which leads to the reversible opening and closing of a plasmonic bandgap. The experiments demonstrate partial opening of a bandgap with the width of 12 nm at wavelength around 800 nm where SPR exhibited the spectral width of about 75 nm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near-infrared optical response of thin film pH-sensitive hydrogel coated on a gold nanocrescent array

Hao Jiang, Jan Markowski, and Jayshri Sabarinathan
Opt. Express 17(24) 21802-21807 (2009)

Angulo-spectral surface plasmon resonance imaging of nanofabricated grating surfaces

Mohamed Nakkach, Aurélien Duval, Buntha Ea-Kim, Julien Moreau, and Michael Canva
Opt. Lett. 35(13) 2209-2211 (2010)

Long range surface plasmon-coupled fluorescence emission for biosensor applications

Koji Toma, Jakub Dostalek, and Wolfgang Knoll
Opt. Express 19(12) 11090-11099 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  2. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [Crossref] [PubMed]
  3. J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(3), 167–172 (2003).
    [Crossref] [PubMed]
  4. B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
    [Crossref] [PubMed]
  5. J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [Crossref] [PubMed]
  6. L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
    [Crossref] [PubMed]
  7. H. Ditlbacher, J. R. Krenn, N. Félidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80(3), 404–406 (2002).
    [Crossref]
  8. M. U. González, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 deg surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
    [Crossref]
  9. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
    [Crossref] [PubMed]
  10. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
    [Crossref] [PubMed]
  11. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
    [Crossref] [PubMed]
  12. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B Condens. Matter 52(15), 11441–11445 (1995).
    [Crossref] [PubMed]
  13. M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express 20(13), 14042–14053 (2012).
    [Crossref] [PubMed]
  14. D. Kuckling, M. E. Harmon, and C. W. Frank, “Photo-cross-linkable PNIPAAm copolymers. 1. Synthesis and characterization of constrained temperature-responsive hydrogel layers,” Macromol. 35(16), 6377–6383 (2002).
    [Crossref]
  15. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18(2), 1207–1216 (2010).
    [Crossref] [PubMed]
  16. N. Zhang and W. Knoll, “Thermally responsive hydrogel films studied by surface plasmon diffraction,” Anal. Chem. 81(7), 2611–2617 (2009).
    [Crossref] [PubMed]
  17. X. Dong, X. B. Zou, X. Y. Liu, P. Lu, J. M. Yang, D. L. Lin, L. Zhang, and L. S. Zha, “Temperature-tunable plasmonic property and SERS activity of the monodisperse thermo-responsive composite microgels with core-shell structure based on gold nanorod as core,” Colloid Surf. A 452, 46–50 (2014).
    [Crossref]
  18. H. Gehan, C. Mangeney, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Lacaze, and N. Félidj, “Design and optical properties of active polymer-coated plasmonic nanostructures,” J. Phys. Chem. Lett. 2(8), 926–931 (2011).
    [Crossref] [PubMed]
  19. M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
    [Crossref]
  20. P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
    [Crossref] [PubMed]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  22. M. Toma, U. Jonas, A. Mateescu, W. Knoll, and J. Dostalek, “Active control of SPR by thermo-responsive hydrogels for biosensor applications,” J Phys Chem C Nanomater Interfaces 117(22), 11705–11712 (2013).
    [Crossref] [PubMed]
  23. M. J. Junk, R. Berger, and U. Jonas, “Atomic force spectroscopy of thermoresponsive photo-cross-linked hydrogel films,” Langmuir 26(10), 7262–7269 (2010).
    [Crossref] [PubMed]
  24. A. Suzuki, M. Yamazaki, Y. Kobiki, and H. Suzuki, “Surface domains and roughness of polymer gels observed by atomic force microscopy,” Macromolecules 30(8), 2350–2354 (1997).
    [Crossref]
  25. M. Guvendiren, S. Yang, and J. A. Burdick, “Swelling-induced surface patterns in hydrogels with gradient crosslinking density,” Adv. Funct. Mater. 19(19), 3038–3045 (2009).
    [Crossref]
  26. S. Yang, K. Khare, and P. C. Lin, “Harnessing surface wrinkle patterns in soft matter,” Adv. Funct. Mater. 20(16), 2550–2564 (2010).
    [Crossref]
  27. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
    [Crossref] [PubMed]

2015 (1)

M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
[Crossref]

2014 (2)

X. Dong, X. B. Zou, X. Y. Liu, P. Lu, J. M. Yang, D. L. Lin, L. Zhang, and L. S. Zha, “Temperature-tunable plasmonic property and SERS activity of the monodisperse thermo-responsive composite microgels with core-shell structure based on gold nanorod as core,” Colloid Surf. A 452, 46–50 (2014).
[Crossref]

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

2013 (2)

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

M. Toma, U. Jonas, A. Mateescu, W. Knoll, and J. Dostalek, “Active control of SPR by thermo-responsive hydrogels for biosensor applications,” J Phys Chem C Nanomater Interfaces 117(22), 11705–11712 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

H. Gehan, C. Mangeney, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Lacaze, and N. Félidj, “Design and optical properties of active polymer-coated plasmonic nanostructures,” J. Phys. Chem. Lett. 2(8), 926–931 (2011).
[Crossref] [PubMed]

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

2010 (3)

M. J. Junk, R. Berger, and U. Jonas, “Atomic force spectroscopy of thermoresponsive photo-cross-linked hydrogel films,” Langmuir 26(10), 7262–7269 (2010).
[Crossref] [PubMed]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18(2), 1207–1216 (2010).
[Crossref] [PubMed]

S. Yang, K. Khare, and P. C. Lin, “Harnessing surface wrinkle patterns in soft matter,” Adv. Funct. Mater. 20(16), 2550–2564 (2010).
[Crossref]

2009 (2)

M. Guvendiren, S. Yang, and J. A. Burdick, “Swelling-induced surface patterns in hydrogels with gradient crosslinking density,” Adv. Funct. Mater. 19(19), 3038–3045 (2009).
[Crossref]

N. Zhang and W. Knoll, “Thermally responsive hydrogel films studied by surface plasmon diffraction,” Anal. Chem. 81(7), 2611–2617 (2009).
[Crossref] [PubMed]

2008 (3)

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

2007 (1)

P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
[Crossref] [PubMed]

2006 (1)

M. U. González, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 deg surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[Crossref]

2005 (1)

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

2003 (1)

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(3), 167–172 (2003).
[Crossref] [PubMed]

2002 (2)

H. Ditlbacher, J. R. Krenn, N. Félidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80(3), 404–406 (2002).
[Crossref]

D. Kuckling, M. E. Harmon, and C. W. Frank, “Photo-cross-linkable PNIPAAm copolymers. 1. Synthesis and characterization of constrained temperature-responsive hydrogel layers,” Macromol. 35(16), 6377–6383 (2002).
[Crossref]

1997 (1)

A. Suzuki, M. Yamazaki, Y. Kobiki, and H. Suzuki, “Surface domains and roughness of polymer gels observed by atomic force microscopy,” Macromolecules 30(8), 2350–2354 (1997).
[Crossref]

1996 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

1995 (2)

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B Condens. Matter 52(15), 11441–11445 (1995).
[Crossref] [PubMed]

Adam, P.

Andersen, T. B.

Andrews, A. M.

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

Antoniou, N.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Aubard, J.

H. Gehan, C. Mangeney, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Lacaze, and N. Félidj, “Design and optical properties of active polymer-coated plasmonic nanostructures,” J. Phys. Chem. Lett. 2(8), 926–931 (2011).
[Crossref] [PubMed]

Aussenegg, F. R.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(3), 167–172 (2003).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, N. Félidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80(3), 404–406 (2002).
[Crossref]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B Condens. Matter 52(15), 11441–11445 (1995).
[Crossref] [PubMed]

Baudrion, A. L.

M. U. González, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 deg surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[Crossref]

Beines, P. W.

P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
[Crossref] [PubMed]

Berger, R.

M. J. Junk, R. Berger, and U. Jonas, “Atomic force spectroscopy of thermoresponsive photo-cross-linked hydrogel films,” Langmuir 26(10), 7262–7269 (2010).
[Crossref] [PubMed]

Boubekeur-Lecaque, L.

M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
[Crossref]

Bourdillon, C.

M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
[Crossref]

Bozhevolnyi, S. I.

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Burdick, J. A.

M. Guvendiren, S. Yang, and J. A. Burdick, “Swelling-induced surface patterns in hydrogels with gradient crosslinking density,” Adv. Funct. Mater. 19(19), 3038–3045 (2009).
[Crossref]

Capasso, F.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Catchpole, K. R.

Chowdhury, M.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

Cotter, N. P.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

Dereux, A.

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18(2), 1207–1216 (2010).
[Crossref] [PubMed]

M. U. González, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 deg surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[Crossref]

Detz, H.

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

Devaux, E.

M. U. González, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 deg surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[Crossref]

Ditlbacher, H.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(3), 167–172 (2003).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, N. Félidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80(3), 404–406 (2002).
[Crossref]

Dong, X.

X. Dong, X. B. Zou, X. Y. Liu, P. Lu, J. M. Yang, D. L. Lin, L. Zhang, and L. S. Zha, “Temperature-tunable plasmonic property and SERS activity of the monodisperse thermo-responsive composite microgels with core-shell structure based on gold nanorod as core,” Colloid Surf. A 452, 46–50 (2014).
[Crossref]

Dostalek, J.

M. Toma, U. Jonas, A. Mateescu, W. Knoll, and J. Dostalek, “Active control of SPR by thermo-responsive hydrogels for biosensor applications,” J Phys Chem C Nanomater Interfaces 117(22), 11705–11712 (2013).
[Crossref] [PubMed]

Dostálek, J.

Ebbesen, T. W.

M. U. González, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 deg surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[Crossref]

Félidj, N.

M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
[Crossref]

H. Gehan, C. Mangeney, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Lacaze, and N. Félidj, “Design and optical properties of active polymer-coated plasmonic nanostructures,” J. Phys. Chem. Lett. 2(8), 926–931 (2011).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, N. Félidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80(3), 404–406 (2002).
[Crossref]

Frank, C. W.

D. Kuckling, M. E. Harmon, and C. W. Frank, “Photo-cross-linkable PNIPAAm copolymers. 1. Synthesis and characterization of constrained temperature-responsive hydrogel layers,” Macromol. 35(16), 6377–6383 (2002).
[Crossref]

Fu, Y.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

Gehan, H.

H. Gehan, C. Mangeney, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Lacaze, and N. Félidj, “Design and optical properties of active polymer-coated plasmonic nanostructures,” J. Phys. Chem. Lett. 2(8), 926–931 (2011).
[Crossref] [PubMed]

González, M. U.

M. U. González, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 deg surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[Crossref]

Gosciniak, J.

Grand, J.

M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
[Crossref]

Guvendiren, M.

M. Guvendiren, S. Yang, and J. A. Burdick, “Swelling-induced surface patterns in hydrogels with gradient crosslinking density,” Adv. Funct. Mater. 19(19), 3038–3045 (2009).
[Crossref]

Harmon, M. E.

D. Kuckling, M. E. Harmon, and C. W. Frank, “Photo-cross-linkable PNIPAAm copolymers. 1. Synthesis and characterization of constrained temperature-responsive hydrogel layers,” Macromol. 35(16), 6377–6383 (2002).
[Crossref]

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Hohenau, A.

M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
[Crossref]

H. Gehan, C. Mangeney, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Lacaze, and N. Félidj, “Design and optical properties of active polymer-coated plasmonic nanostructures,” J. Phys. Chem. Lett. 2(8), 926–931 (2011).
[Crossref] [PubMed]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(3), 167–172 (2003).
[Crossref] [PubMed]

Homola, J.

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Jonas, U.

M. Toma, U. Jonas, A. Mateescu, W. Knoll, and J. Dostalek, “Active control of SPR by thermo-responsive hydrogels for biosensor applications,” J Phys Chem C Nanomater Interfaces 117(22), 11705–11712 (2013).
[Crossref] [PubMed]

M. J. Junk, R. Berger, and U. Jonas, “Atomic force spectroscopy of thermoresponsive photo-cross-linked hydrogel films,” Langmuir 26(10), 7262–7269 (2010).
[Crossref] [PubMed]

P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
[Crossref] [PubMed]

Junk, M. J.

M. J. Junk, R. Berger, and U. Jonas, “Atomic force spectroscopy of thermoresponsive photo-cross-linked hydrogel films,” Langmuir 26(10), 7262–7269 (2010).
[Crossref] [PubMed]

Khare, K.

S. Yang, K. Khare, and P. C. Lin, “Harnessing surface wrinkle patterns in soft matter,” Adv. Funct. Mater. 20(16), 2550–2564 (2010).
[Crossref]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B Condens. Matter 52(15), 11441–11445 (1995).
[Crossref] [PubMed]

Kjelstrup-Hansen, J.

Klosterkamp, I.

P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
[Crossref] [PubMed]

Knoll, W.

M. Toma, U. Jonas, A. Mateescu, W. Knoll, and J. Dostalek, “Active control of SPR by thermo-responsive hydrogels for biosensor applications,” J Phys Chem C Nanomater Interfaces 117(22), 11705–11712 (2013).
[Crossref] [PubMed]

M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express 20(13), 14042–14053 (2012).
[Crossref] [PubMed]

N. Zhang and W. Knoll, “Thermally responsive hydrogel films studied by surface plasmon diffraction,” Anal. Chem. 81(7), 2611–2617 (2009).
[Crossref] [PubMed]

P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
[Crossref] [PubMed]

Kobiki, Y.

A. Suzuki, M. Yamazaki, Y. Kobiki, and H. Suzuki, “Surface domains and roughness of polymer gels observed by atomic force microscopy,” Macromolecules 30(8), 2350–2354 (1997).
[Crossref]

Krenn, J. R.

M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
[Crossref]

H. Gehan, C. Mangeney, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Lacaze, and N. Félidj, “Design and optical properties of active polymer-coated plasmonic nanostructures,” J. Phys. Chem. Lett. 2(8), 926–931 (2011).
[Crossref] [PubMed]

M. U. González, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 deg surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[Crossref]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(3), 167–172 (2003).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, N. Félidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80(3), 404–406 (2002).
[Crossref]

Kuckling, D.

D. Kuckling, M. E. Harmon, and C. W. Frank, “Photo-cross-linkable PNIPAAm copolymers. 1. Synthesis and characterization of constrained temperature-responsive hydrogel layers,” Macromol. 35(16), 6377–6383 (2002).
[Crossref]

Lacaze, E.

M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
[Crossref]

H. Gehan, C. Mangeney, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Lacaze, and N. Félidj, “Design and optical properties of active polymer-coated plasmonic nanostructures,” J. Phys. Chem. Lett. 2(8), 926–931 (2011).
[Crossref] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

Lamouri, A.

M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
[Crossref]

Lamprecht, B.

H. Ditlbacher, J. R. Krenn, N. Félidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80(3), 404–406 (2002).
[Crossref]

Leitner, A.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(3), 167–172 (2003).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, N. Félidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80(3), 404–406 (2002).
[Crossref]

Lévi, G.

M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
[Crossref]

H. Gehan, C. Mangeney, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Lacaze, and N. Félidj, “Design and optical properties of active polymer-coated plasmonic nanostructures,” J. Phys. Chem. Lett. 2(8), 926–931 (2011).
[Crossref] [PubMed]

Li, L.

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

Li, T.

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

Lin, D. L.

X. Dong, X. B. Zou, X. Y. Liu, P. Lu, J. M. Yang, D. L. Lin, L. Zhang, and L. S. Zha, “Temperature-tunable plasmonic property and SERS activity of the monodisperse thermo-responsive composite microgels with core-shell structure based on gold nanorod as core,” Colloid Surf. A 452, 46–50 (2014).
[Crossref]

Lin, J.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Lin, P. C.

S. Yang, K. Khare, and P. C. Lin, “Harnessing surface wrinkle patterns in soft matter,” Adv. Funct. Mater. 20(16), 2550–2564 (2010).
[Crossref]

Liu, X. Y.

X. Dong, X. B. Zou, X. Y. Liu, P. Lu, J. M. Yang, D. L. Lin, L. Zhang, and L. S. Zha, “Temperature-tunable plasmonic property and SERS activity of the monodisperse thermo-responsive composite microgels with core-shell structure based on gold nanorod as core,” Colloid Surf. A 452, 46–50 (2014).
[Crossref]

Lu, P.

X. Dong, X. B. Zou, X. Y. Liu, P. Lu, J. M. Yang, D. L. Lin, L. Zhang, and L. S. Zha, “Temperature-tunable plasmonic property and SERS activity of the monodisperse thermo-responsive composite microgels with core-shell structure based on gold nanorod as core,” Colloid Surf. A 452, 46–50 (2014).
[Crossref]

Mangeney, C.

M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
[Crossref]

H. Gehan, C. Mangeney, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Lacaze, and N. Félidj, “Design and optical properties of active polymer-coated plasmonic nanostructures,” J. Phys. Chem. Lett. 2(8), 926–931 (2011).
[Crossref] [PubMed]

Markey, L.

Mateescu, A.

M. Toma, U. Jonas, A. Mateescu, W. Knoll, and J. Dostalek, “Active control of SPR by thermo-responsive hydrogels for biosensor applications,” J Phys Chem C Nanomater Interfaces 117(22), 11705–11712 (2013).
[Crossref] [PubMed]

Menges, B.

P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
[Crossref] [PubMed]

Mueller, J. P.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Nash, D. J.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

Nguyen, M.

M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
[Crossref]

Nowaczyk, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Polman, A.

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

Ray, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

Reininger, P.

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

Ristanic, D.

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

Salerno, M.

H. Ditlbacher, J. R. Krenn, N. Félidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80(3), 404–406 (2002).
[Crossref]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B Condens. Matter 52(15), 11441–11445 (1995).
[Crossref] [PubMed]

Schider, G.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(3), 167–172 (2003).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, N. Félidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80(3), 404–406 (2002).
[Crossref]

Schrenk, W.

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

Schwarz, B.

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

Stepanov, A. L.

M. U. González, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 deg surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[Crossref]

Strasser, G.

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

Sun, X.

M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
[Crossref]

Suzuki, A.

A. Suzuki, M. Yamazaki, Y. Kobiki, and H. Suzuki, “Surface domains and roughness of polymer gels observed by atomic force microscopy,” Macromolecules 30(8), 2350–2354 (1997).
[Crossref]

Suzuki, H.

A. Suzuki, M. Yamazaki, Y. Kobiki, and H. Suzuki, “Surface domains and roughness of polymer gels observed by atomic force microscopy,” Macromolecules 30(8), 2350–2354 (1997).
[Crossref]

Szmacinski, H.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

Toma, K.

Toma, M.

M. Toma, U. Jonas, A. Mateescu, W. Knoll, and J. Dostalek, “Active control of SPR by thermo-responsive hydrogels for biosensor applications,” J Phys Chem C Nanomater Interfaces 117(22), 11705–11712 (2013).
[Crossref] [PubMed]

M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express 20(13), 14042–14053 (2012).
[Crossref] [PubMed]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Volkov, V. S.

Wang, Q.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Wang, S.

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

Weeber, J. C.

M. U. González, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 deg surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[Crossref]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Winkler, P. M.

M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
[Crossref]

Yamazaki, M.

A. Suzuki, M. Yamazaki, Y. Kobiki, and H. Suzuki, “Surface domains and roughness of polymer gels observed by atomic force microscopy,” Macromolecules 30(8), 2350–2354 (1997).
[Crossref]

Yang, J. M.

X. Dong, X. B. Zou, X. Y. Liu, P. Lu, J. M. Yang, D. L. Lin, L. Zhang, and L. S. Zha, “Temperature-tunable plasmonic property and SERS activity of the monodisperse thermo-responsive composite microgels with core-shell structure based on gold nanorod as core,” Colloid Surf. A 452, 46–50 (2014).
[Crossref]

Yang, S.

S. Yang, K. Khare, and P. C. Lin, “Harnessing surface wrinkle patterns in soft matter,” Adv. Funct. Mater. 20(16), 2550–2564 (2010).
[Crossref]

M. Guvendiren, S. Yang, and J. A. Burdick, “Swelling-induced surface patterns in hydrogels with gradient crosslinking density,” Adv. Funct. Mater. 19(19), 3038–3045 (2009).
[Crossref]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Yuan, G.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, X. C.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Zha, L. S.

X. Dong, X. B. Zou, X. Y. Liu, P. Lu, J. M. Yang, D. L. Lin, L. Zhang, and L. S. Zha, “Temperature-tunable plasmonic property and SERS activity of the monodisperse thermo-responsive composite microgels with core-shell structure based on gold nanorod as core,” Colloid Surf. A 452, 46–50 (2014).
[Crossref]

Zhang, J.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

Zhang, L.

X. Dong, X. B. Zou, X. Y. Liu, P. Lu, J. M. Yang, D. L. Lin, L. Zhang, and L. S. Zha, “Temperature-tunable plasmonic property and SERS activity of the monodisperse thermo-responsive composite microgels with core-shell structure based on gold nanorod as core,” Colloid Surf. A 452, 46–50 (2014).
[Crossref]

Zhang, N.

N. Zhang and W. Knoll, “Thermally responsive hydrogel films studied by surface plasmon diffraction,” Anal. Chem. 81(7), 2611–2617 (2009).
[Crossref] [PubMed]

Zhang, X.

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

Zhu, S.

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

Zou, X. B.

X. Dong, X. B. Zou, X. Y. Liu, P. Lu, J. M. Yang, D. L. Lin, L. Zhang, and L. S. Zha, “Temperature-tunable plasmonic property and SERS activity of the monodisperse thermo-responsive composite microgels with core-shell structure based on gold nanorod as core,” Colloid Surf. A 452, 46–50 (2014).
[Crossref]

ACS Photonics (1)

M. Nguyen, X. Sun, E. Lacaze, P. M. Winkler, A. Hohenau, J. R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, “Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications,” ACS Photonics 2(8), 1199–1208 (2015).
[Crossref]

Adv. Funct. Mater. (2)

M. Guvendiren, S. Yang, and J. A. Burdick, “Swelling-induced surface patterns in hydrogels with gradient crosslinking density,” Adv. Funct. Mater. 19(19), 3038–3045 (2009).
[Crossref]

S. Yang, K. Khare, and P. C. Lin, “Harnessing surface wrinkle patterns in soft matter,” Adv. Funct. Mater. 20(16), 2550–2564 (2010).
[Crossref]

Anal. Chem. (1)

N. Zhang and W. Knoll, “Thermally responsive hydrogel films studied by surface plasmon diffraction,” Anal. Chem. 81(7), 2611–2617 (2009).
[Crossref] [PubMed]

Analyst (Lond.) (1)

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. Ditlbacher, J. R. Krenn, N. Félidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80(3), 404–406 (2002).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Colloid Surf. A (1)

X. Dong, X. B. Zou, X. Y. Liu, P. Lu, J. M. Yang, D. L. Lin, L. Zhang, and L. S. Zha, “Temperature-tunable plasmonic property and SERS activity of the monodisperse thermo-responsive composite microgels with core-shell structure based on gold nanorod as core,” Colloid Surf. A 452, 46–50 (2014).
[Crossref]

J Phys Chem C Nanomater Interfaces (1)

M. Toma, U. Jonas, A. Mateescu, W. Knoll, and J. Dostalek, “Active control of SPR by thermo-responsive hydrogels for biosensor applications,” J Phys Chem C Nanomater Interfaces 117(22), 11705–11712 (2013).
[Crossref] [PubMed]

J. Microsc. (1)

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(3), 167–172 (2003).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

H. Gehan, C. Mangeney, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Lacaze, and N. Félidj, “Design and optical properties of active polymer-coated plasmonic nanostructures,” J. Phys. Chem. Lett. 2(8), 926–931 (2011).
[Crossref] [PubMed]

Langmuir (2)

M. J. Junk, R. Berger, and U. Jonas, “Atomic force spectroscopy of thermoresponsive photo-cross-linked hydrogel films,” Langmuir 26(10), 7262–7269 (2010).
[Crossref] [PubMed]

P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
[Crossref] [PubMed]

Macromol. (1)

D. Kuckling, M. E. Harmon, and C. W. Frank, “Photo-cross-linkable PNIPAAm copolymers. 1. Synthesis and characterization of constrained temperature-responsive hydrogel layers,” Macromol. 35(16), 6377–6383 (2002).
[Crossref]

Macromolecules (1)

A. Suzuki, M. Yamazaki, Y. Kobiki, and H. Suzuki, “Surface domains and roughness of polymer gels observed by atomic force microscopy,” Macromolecules 30(8), 2350–2354 (1997).
[Crossref]

Nano Lett. (2)

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Nat. Commun. (1)

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B (1)

M. U. González, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 deg surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[Crossref]

Phys. Rev. B Condens. Matter (3)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B Condens. Matter 52(15), 11441–11445 (1995).
[Crossref] [PubMed]

Science (1)

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) Schematics of the prepared pNIPAAm-based grating that is probed by travelling SPP. b) Chemical structure of the photo-crosslinkable pNIPAAm terpolymer used in the interference lithography process.
Fig. 2
Fig. 2 AFM images of a pNIPAAm grating with Λ = 310 nm that was dried at a) room temperature T = 22 °C and b) at elevated temperature T > LCST. Comparison of the c) denser grating with Λ = 290 nm and sparser grating with Λ = 450 nm observed after drying at elevated temperature.
Fig. 3
Fig. 3 Simulated wavelength reflectivity spectra for a flat swollen pNIPAAm film (a), and a series of combinations of modulation depth dh2 and residual layer thickness dh1 for a collapsed pNIPAAm film (b-e). Reflectivity spectra calculated for TM polarization were normalized with those simulated for TE polarization. f) Summary of structural parameters (defined in Fig. 1) used in the above simulations with the angle of incidence θ and plasmonic bandgap width Δλ.
Fig. 4
Fig. 4 Measured reflectivity dependence on θ and λ for a pNIPAAm grating with the period Λ = 280 nm and temperature a) T = 22 °C, b) T = 34 °C, c) T = 37 °C, d) T = 40 °C, and e) T = 45 °C. f) Cross-section of reflectivity at each temperature for the indicated angle of incidence θres at which the bandgap occurs for a pNIPAAm grating with the periodicity Λ = 280 nm. Subsequent reflectivity curves are offset by 0.3 along the reflectivity axis. Reflectivity spectra measured for TM polarization were normalized with those obtained for TE polarization in all graphs.

Metrics