Abstract

In this paper we theoretically investigate the feasibility of creating leaky wave antennas capable of converting spoof plasmons to radiating modes. Spoof plasmons are surface waves excited along metallic corrugated surfaces and they are considered the microwave and THz equivalent of optical surface plasmon polaritons. Given that a corrugated surface is essentially a reactance surface, the proposed design methodology relies on engineering a corrugated surface so that it exhibits a sinusoidally modulated reactance profile. Through such non-uniform periodic reactance surfaces, guided surface waves can efficiently couple into free-space radiating modes. This requires the development of a realistic methodology that effectively maps the necessary sinusoidal reactance variation to a sinusoidal variation corresponding to the depth of the grooves. Both planar and cylindrical corrugated surfaces are examined and it is numerically demonstrated that the corresponding sinusoidally modulated leaky wave structures can very efficiently convert guided spoof plasmons to radiating modes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Leaky wave lenses for spoof plasmon collimation

Anastasios H. Panaretos and Douglas H. Werner
Opt. Express 24(13) 14654-14671 (2016)

Tunable leaky-wave radiation by graphene-covered corrugated surfaces

Mohammad Reza Tavakol, Amirhossein Saba, Kamalodin Arik, and Amin Khavasi
Appl. Opt. 57(30) 8971-8977 (2018)

Spoof localized surface plasmons in corrugated ring structures excited by microstrip line

Bao Jia Yang, Yong Jin Zhou, and Qian Xun Xiao
Opt. Express 23(16) 21434-21442 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. E. Collins, Field Theory of Guided Waves (Wiley-IEEE, 1991).
  2. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, 1991).
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
  5. M. Agio and A. Alu, Optical Antennas (Cambridge University, 2013).
  6. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  7. F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
    [Crossref] [PubMed]
  8. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
    [Crossref] [PubMed]
  9. A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).
  10. R. S. Elliot, “On the theory of corrugated plane surfaces,” IRE Trans. Antennas Propag. 2(2), 71–81 (1954).
    [Crossref]
  11. W. Rotman, “A study of single-surface corrugated guides,” IRE Trans. Antennas Propag. 39(8), 952–959 (1951).
  12. R. W. Hougardy and R. C. Hansen, “Scanning surface wave antennas-oblique surface waves over a corrugated conductor,” IRE Trans. Antennas Propag. 6(4), 370–376 (1958).
    [Crossref]
  13. C. C. Cutler, Electromagnetic Waves Guided by Corrugated Conducting Surfaces (Bell Telephone Lab, 1944).
  14. J. T. Bolljahn, “Synthesis of modulated corrugated surface-wave structures,” IRE Trans. Antennas Propag. 9(3), 236–241 (1961).
    [Crossref]
  15. C. C. Wang and E. T. Kornhauser, “Propagation on modulated corrugated rods,” IRE Microw. Theory Technol. 9(3), 161–165 (1961).
  16. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14(26), 13021–13029 (2006).
    [Crossref] [PubMed]
  17. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
    [Crossref] [PubMed]
  18. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
    [Crossref] [PubMed]
  19. A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
    [Crossref]
  20. Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
    [Crossref] [PubMed]
  21. L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
    [Crossref] [PubMed]
  22. B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
    [Crossref] [PubMed]
  23. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
    [Crossref] [PubMed]
  24. X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
    [Crossref]
  25. T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
    [Crossref]
  26. X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
    [Crossref]
  27. H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
    [Crossref]
  28. J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
    [Crossref] [PubMed]
  29. J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
    [Crossref] [PubMed]
  30. A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook, 4th ed., J. L. Volakis, ed., (McGraw-Hill, 2007).
  31. A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag. 7(5), 201–208 (1959).
    [Crossref]
  32. J. S. Gómez-Díaz, M. Esquius-Morote, and J. Perruisseau-Carrier, “Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips,” Opt. Express 21(21), 24856–24872 (2013).
    [Crossref] [PubMed]
  33. M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally-modulated graphene leaky-wave antenna for electronic beam-scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
    [Crossref]
  34. A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally modulated reactance surface,” IEEE Trans. Antenn. Propag. 59(6), 2087–2096 (2011).
    [Crossref]
  35. A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
    [Crossref]
  36. A. J. Martinez-Ros, J. L. Gomez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
    [Crossref]
  37. G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antenn. Propag. 59(12), 4436–4444 (2011).
    [Crossref]
  38. S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
    [Crossref]
  39. R. F. Harrington, Time-Harmonic Electromagnetic Fields (Wiley-IEEE, 2001).
  40. D. M. Pozar, Microwave Engineering (Wiley, 1998).
  41. M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
    [Crossref]
  42. S. Li, M. M. Jadidi, T. E. Murphy, and G. Kumar, “Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves,” Opt. Express 21(6), 7041–7049 (2013).
    [Crossref] [PubMed]
  43. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
    [Crossref] [PubMed]
  44. B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
    [Crossref]

2015 (5)

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
[Crossref] [PubMed]

2014 (4)

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally-modulated graphene leaky-wave antenna for electronic beam-scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

2013 (7)

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

S. Li, M. M. Jadidi, T. E. Murphy, and G. Kumar, “Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves,” Opt. Express 21(6), 7041–7049 (2013).
[Crossref] [PubMed]

J. S. Gómez-Díaz, M. Esquius-Morote, and J. Perruisseau-Carrier, “Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips,” Opt. Express 21(21), 24856–24872 (2013).
[Crossref] [PubMed]

A. J. Martinez-Ros, J. L. Gomez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
[Crossref]

S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
[Crossref]

M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
[Crossref]

2011 (3)

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antenn. Propag. 59(12), 4436–4444 (2011).
[Crossref]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally modulated reactance surface,” IEEE Trans. Antenn. Propag. 59(6), 2087–2096 (2011).
[Crossref]

2010 (3)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).

2006 (2)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14(26), 13021–13029 (2006).
[Crossref] [PubMed]

2005 (1)

F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

1961 (2)

J. T. Bolljahn, “Synthesis of modulated corrugated surface-wave structures,” IRE Trans. Antennas Propag. 9(3), 236–241 (1961).
[Crossref]

C. C. Wang and E. T. Kornhauser, “Propagation on modulated corrugated rods,” IRE Microw. Theory Technol. 9(3), 161–165 (1961).

1959 (1)

A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag. 7(5), 201–208 (1959).
[Crossref]

1958 (1)

R. W. Hougardy and R. C. Hansen, “Scanning surface wave antennas-oblique surface waves over a corrugated conductor,” IRE Trans. Antennas Propag. 6(4), 370–376 (1958).
[Crossref]

1954 (1)

R. S. Elliot, “On the theory of corrugated plane surfaces,” IRE Trans. Antennas Propag. 2(2), 71–81 (1954).
[Crossref]

1951 (1)

W. Rotman, “A study of single-surface corrugated guides,” IRE Trans. Antennas Propag. 39(8), 952–959 (1951).

Agrafiotis, S.

Agrawal, A.

M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
[Crossref]

Akalin, T.

M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
[Crossref]

Andrews, S. R.

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Antar, Y. M. M.

S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
[Crossref]

Beaskoetxea, U.

M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
[Crossref]

Beruete, M.

M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
[Crossref]

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[Crossref] [PubMed]

Blary, K.

M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
[Crossref]

Bolljahn, J. T.

J. T. Bolljahn, “Synthesis of modulated corrugated surface-wave structures,” IRE Trans. Antennas Propag. 9(3), 236–241 (1961).
[Crossref]

Breese, M. B. H.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Caminita, F.

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antenn. Propag. 59(12), 4436–4444 (2011).
[Crossref]

Capasso, F.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Casaletti, M.

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antenn. Propag. 59(12), 4436–4444 (2011).
[Crossref]

Chahadih, A.

M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
[Crossref]

Chai, L.

Chen, Y.

Cheng, Q.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Cui, T. J.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

Davies, A. G.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Du, C.-H.

L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
[Crossref] [PubMed]

Durach, M.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

Elliot, R. S.

R. S. Elliot, “On the theory of corrugated plane surfaces,” IRE Trans. Antennas Propag. 2(2), 71–81 (1954).
[Crossref]

Esquius-Morote, M.

M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally-modulated graphene leaky-wave antenna for electronic beam-scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

J. S. Gómez-Díaz, M. Esquius-Morote, and J. Perruisseau-Carrier, “Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips,” Opt. Express 21(21), 24856–24872 (2013).
[Crossref] [PubMed]

Etayo Salinas, D.

M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
[Crossref]

Falcone, F.

Fan, J. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Fernandez-Dominguez, A. I.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).

Fernández-Domínguez, A. I.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Freundorfer, Al. P.

S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
[Crossref]

Gao, X.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Gómez-Díaz, J. S.

M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally-modulated graphene leaky-wave antenna for electronic beam-scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

J. S. Gómez-Díaz, M. Esquius-Morote, and J. Perruisseau-Carrier, “Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips,” Opt. Express 21(21), 24856–24872 (2013).
[Crossref] [PubMed]

Gomez-Tornero, J. L.

A. J. Martinez-Ros, J. L. Gomez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
[Crossref]

Gómez-Tornero, J. L.

A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
[Crossref]

Goussetis, G.

A. J. Martinez-Ros, J. L. Gomez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
[Crossref]

Grbic, A.

A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally modulated reactance surface,” IEEE Trans. Antenn. Propag. 59(6), 2087–2096 (2011).
[Crossref]

Han, X.-L.

M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
[Crossref]

Hanham, S. M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Hansen, R. C.

R. W. Hougardy and R. C. Hansen, “Scanning surface wave antennas-oblique surface waves over a corrugated conductor,” IRE Trans. Antennas Propag. 6(4), 370–376 (1958).
[Crossref]

Hessel, A.

A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag. 7(5), 201–208 (1959).
[Crossref]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[Crossref] [PubMed]

Hong, M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Hou, J.

J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

Hougardy, R. W.

R. W. Hougardy and R. C. Hansen, “Scanning surface wave antennas-oblique surface waves over a corrugated conductor,” IRE Trans. Antennas Propag. 6(4), 370–376 (1958).
[Crossref]

Hu, M.

Huang, C.-P.

L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
[Crossref] [PubMed]

Jadidi, M. M.

Jiang, T.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Jiang, W. X.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Kats, M. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Khanna, S. P.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Klein, N.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Kong, L.-B.

L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
[Crossref] [PubMed]

Kornhauser, E. T.

C. C. Wang and E. T. Kornhauser, “Propagation on modulated corrugated rods,” IRE Microw. Theory Technol. 9(3), 161–165 (1961).

Kumar, G.

Li, L.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Li, S.

Li, Y.

Liao, Z.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Liew, Y. F.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Linfield, E. H.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Liu, P.-K.

L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
[Crossref] [PubMed]

Liu, S.

M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
[Crossref]

Lo, W. C.

J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[Crossref] [PubMed]

Losada, V.

A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
[Crossref]

Luo, Y.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

Ma, H. F.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Maci, S.

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antenn. Propag. 59(12), 4436–4444 (2011).
[Crossref]

Maier, S. A.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[Crossref] [PubMed]

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Martin-Cano, D.

Martinez-Ros, A. J.

A. J. Martinez-Ros, J. L. Gomez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
[Crossref]

Martínez-Ros, A. J.

A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
[Crossref]

Martin-Moreno, L.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).

Martín-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Matekovits, L.

S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
[Crossref]

Medina, F.

A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
[Crossref]

Mesa, F.

A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
[Crossref]

Minatti, G.

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antenn. Propag. 59(12), 4436–4444 (2011).
[Crossref]

Moreno, E.

Murphy, T. E.

Nahata, A.

M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
[Crossref]

Navarro-Cia, M.

M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
[Crossref]

Navarro-Cía, M.

Nesterov, M. L.

Ng, B.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Oliner, A. A.

A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag. 7(5), 201–208 (1959).
[Crossref]

Orefice, M.

S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
[Crossref]

Pan, B. C.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Patel, A. M.

A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally modulated reactance surface,” IEEE Trans. Antenn. Propag. 59(6), 2087–2096 (2011).
[Crossref]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Perruisseau-Carrier, J.

M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally-modulated graphene leaky-wave antenna for electronic beam-scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

J. S. Gómez-Díaz, M. Esquius-Morote, and J. Perruisseau-Carrier, “Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips,” Opt. Express 21(21), 24856–24872 (2013).
[Crossref] [PubMed]

Podilchak, S. K.

S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
[Crossref]

Ran, L.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Ren, J.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

Rotman, W.

W. Rotman, “A study of single-surface corrugated guides,” IRE Trans. Antennas Propag. 39(8), 952–959 (1951).

Ruan, Z.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Rusina, A.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

Sáenz, J. J.

F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[Crossref] [PubMed]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[Crossref] [PubMed]

Shen, J. Q.

J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

Shen, L.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Shen, X.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Shi, J. H.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Song, Z.

Sorolla, M.

Sorolla Ayza, M.

M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
[Crossref]

Stockman, M. I.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

Wang, C. C.

C. C. Wang and E. T. Kornhauser, “Propagation on modulated corrugated rods,” IRE Microw. Theory Technol. 9(3), 161–165 (1961).

Wang, C. Y.

Wang, Q. J.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Wu, C. J.

J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

Wu, J.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Wu, J. J.

J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Xing, Q.

Yang, T. J.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Yin, J. Y.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

Yin, X.-G.

L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
[Crossref] [PubMed]

Yu, N.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Zehar, M.

M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
[Crossref]

Zhang, H. C.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

Zhang, Z.

Zhao, J.

ACS Photonics (1)

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Appl. Phys. Lett. (3)

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

IEEE Trans. Antenn. Propag. (6)

A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally modulated reactance surface,” IEEE Trans. Antenn. Propag. 59(6), 2087–2096 (2011).
[Crossref]

A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
[Crossref]

A. J. Martinez-Ros, J. L. Gomez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
[Crossref]

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antenn. Propag. 59(12), 4436–4444 (2011).
[Crossref]

S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
[Crossref]

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).

IEEE Trans. Terahertz Sci. Technol. (2)

M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cia, D. Etayo Salinas, A. Nahata, T. Akalin, and M. Sorolla Ayza, “Terahertz corrugated and bull’s-eye antennas,” IEEE Trans. Terahertz Sci. Technol. 3(6), 740–747 (2013).
[Crossref]

M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally-modulated graphene leaky-wave antenna for electronic beam-scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

IRE Microw. Theory Technol. (1)

C. C. Wang and E. T. Kornhauser, “Propagation on modulated corrugated rods,” IRE Microw. Theory Technol. 9(3), 161–165 (1961).

IRE Trans. Antennas Propag. (5)

A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag. 7(5), 201–208 (1959).
[Crossref]

R. S. Elliot, “On the theory of corrugated plane surfaces,” IRE Trans. Antennas Propag. 2(2), 71–81 (1954).
[Crossref]

W. Rotman, “A study of single-surface corrugated guides,” IRE Trans. Antennas Propag. 39(8), 952–959 (1951).

R. W. Hougardy and R. C. Hansen, “Scanning surface wave antennas-oblique surface waves over a corrugated conductor,” IRE Trans. Antennas Propag. 6(4), 370–376 (1958).
[Crossref]

J. T. Bolljahn, “Synthesis of modulated corrugated surface-wave structures,” IRE Trans. Antennas Propag. 9(3), 236–241 (1961).
[Crossref]

Laser Photonics Rev. (1)

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Nat. Mater. (1)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Opt. Express (6)

Phys. Rev. Lett. (3)

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[Crossref] [PubMed]

F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[Crossref] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Sci. Rep. (4)

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
[Crossref] [PubMed]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Other (9)

A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook, 4th ed., J. L. Volakis, ed., (McGraw-Hill, 2007).

C. C. Cutler, Electromagnetic Waves Guided by Corrugated Conducting Surfaces (Bell Telephone Lab, 1944).

R. E. Collins, Field Theory of Guided Waves (Wiley-IEEE, 1991).

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, 1991).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

M. Agio and A. Alu, Optical Antennas (Cambridge University, 2013).

R. F. Harrington, Time-Harmonic Electromagnetic Fields (Wiley-IEEE, 2001).

D. M. Pozar, Microwave Engineering (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Planar corrugated surface and equivalent transmission line representation. Wave guidance is assumed along the y-direction. The structure is infinite along the x-direction.
Fig. 2
Fig. 2 Longitudinal wavenumber along a corrugated surface at 9 GHz as a function of tooth length when T = 0.5 mm and G + T = 2 mm. The dash-line indicates the desired un-modulated wavenumber value.
Fig. 3
Fig. 3 Planar SMRS. (a) Groove depth variation as a function of length. (b) Longitudinal wavenumber variation as a function of length. (c) Reactance variation as a function of length. Note that only two periods of the SMRS are shown. The LW section follows a 10 mm long WG section that is characterized by a longitudinal wavenumber equal to that corresponding to the un-modulated case.
Fig. 4
Fig. 4 Planar corrugated LWA utilizing a SMRS. (a) Perspective view. (b) Source detail. Red color indicates the open TEM waveguide source. Green color indicates the waveguide section comprised of an un-modulated corrugated surface. Blue color corresponds to the leaky wave section of the antenna.
Fig. 5
Fig. 5 (a) Reflection and transmission coefficients. (b) Realized gain. (c) Radiation efficiency. (d) Leakage rate.
Fig. 6
Fig. 6 Cylindrical corrugated impedance surface. (a) Perspective view. (b) Longitudinal cross-section. Guidance is assumed along the z-direction. The structure is axi-symmetric with respect to the z-axis.
Fig. 7
Fig. 7 (a) Longitudinal wavenumber response along a planar and a cylindrical corrugated surface with the same geometrical characteristics. (b) Longitudinal wavenumber response along a cylindrical corrugated surface as a function of the groove depth. Dashed line indicates the desired un-modulated wavenumber.
Fig. 8
Fig. 8 Cylindrical SMRS. (a) Groove depth variation as a function of length. (b) Longitudinal wavenumber variation as a function of length. (c) Reactance variation as a function of length. Note that only two periods of the SMRS are shown. The LW section follows a 10 mm long WG section that is characterized by a longitudinal wavenumber equal to the corresponding un-modulated case.
Fig. 9
Fig. 9 Cylindrical corrugated LWA utilizing a SMRS. (a) Perspective view. (b) Source detail. Red color indicates the open coaxial waveguide source. Green color indicates the waveguide section comprised of an un-modulated corrugated surface. Blue color corresponds to the leaky wave section of the antenna.
Fig. 10
Fig. 10 (a) Reflection and transmission coefficients. (b) Radiation efficiency. (c) Realized E-plane gain. (d) Realized H-plane gain.
Fig. 11
Fig. 11 Dispersion diagram of a SMRS with M = 0.3. (a) Propagation constant βn for modes n = 0, −1, and −2. (b) Attenuation constant.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

κ β u jα+ 2πn p = β n jα
Z(y)=j X u [ 1+Mcos( 2πy p ) ]
Re{κ}= β 1 k 0 sin( θ s )= β u 2π p
Z in =j Z 0 G G+T tan( k 0 l )
Z up Z 0 TM = k z ω ε 0
k z =j k y 2 k 0 2
Z in + Z up =0 Z 0 G G+T tan( k 0 l ) k y 2 k 0 2 ω ε 0 =0
Z ρ + + Z ρ =0
Z ρ + =j k ρ ω ε 0 H 0 (2) ( k ρ R out ) H 1 (2) ( k ρ R out )
Z ρ =j Z 0 G G+T J 0 ( k 0 R out ) Y 0 ( k 0 R in ) J 0 ( k 0 R in ) Y 0 ( k 0 R out ) J 1 ( k 0 R out ) Y 0 ( k 0 R in ) J 1 ( k 0 R in ) Y 0 ( k 0 R out )
k ρ =j k z 2 k 0 2
D(n,0) 1 D(n,+1) 1 D(n,+2) 1 D(n,1) 1 D(n,2) =0
D(n,m) 2 M [ 1 j X u 1 ( γ k 0 + 2π(nm) k 0 p ) 2 ]

Metrics