Abstract

We present an experimental study of Hetero-Chiral (HC) plasmonic lenses, comprised of constituents with opposite chirality, demonstrating linearly dichroic focusing. The lenses focus only light with a specific linear polarization and result in a dark focal spot for the orthogonal polarization state. We introduce the design concepts and quantitatively compare several members of the HC family, deriving necessary conditions for linear dichroism and several comparative engineering parameters. The HC lenses were experimentally investigated using aperture-less near field scanning microscope collecting the amplitude of the plasmonic near-field. Our results exhibit an excellent match to the simulation predictions. The demonstrated ability for linearly dichroic functional focusing could lead to novel sensing applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid spiral plasmonic lens: towards an efficient miniature circular polarization analyzer

Weibin Chen, Guanghao Rui, Don C. Abeysinghe, Robert L. Nelson, and Qiwen Zhan
Opt. Express 20(24) 26299-26307 (2012)

Plasmonic focusing in spiral nanostructures under linearly polarized illumination

Jie Li, Chaojie Yang, Huabo Zhao, Feng Lin, and Xing Zhu
Opt. Express 22(14) 16686-16693 (2014)

Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement

Daniel Lin and Jer-Shing Huang
Opt. Express 22(7) 7434-7445 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [Crossref] [PubMed]
  2. H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. E. Gross, A. Nevet, A. Pesach, E. Monroy, S. E. Schacham, M. Orenstein, M. Segev, and G. Bahir, “Measuring the refractive index around intersubband transition resonance in GaN/AlN multi quantum wells,” Opt. Express 21(3), 3800–3808 (2013).
    [Crossref] [PubMed]
  5. B. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
    [Crossref]
  6. W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
    [Crossref]
  7. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
    [Crossref] [PubMed]
  8. J. Li, C. Yang, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in spiral nanostructures under linearly polarized illumination,” Opt. Express 22(14), 16686–16693 (2014).
    [Crossref] [PubMed]
  9. B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm Focusing of Short Wavelength Plasmons in Homogeneous 2D Space,” Nano Lett. 14(10), 5598–5602 (2014).
    [Crossref] [PubMed]
  10. Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
    [Crossref] [PubMed]
  11. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
    [Crossref] [PubMed]
  12. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
    [Crossref] [PubMed]
  13. W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009).
    [Crossref] [PubMed]
  14. A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17(2), 924–932 (2009).
    [Crossref] [PubMed]
  15. G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a Metaspiral Plasmonic Lens,” Nano Lett. 15(9), 5739–5743 (2015).
    [Crossref] [PubMed]
  16. K. A. Bachman, J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Spiral plasmonic nanoantennas as circular polarization transmission filters,” Opt. Express 20(2), 1308–1319 (2012).
    [Crossref] [PubMed]
  17. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
    [Crossref] [PubMed]
  18. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
    [Crossref] [PubMed]
  19. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
    [Crossref] [PubMed]
  20. A. Krasavin, A. Schwanecke, and N. Zheludev, “Extraordinary properties of light transmission through a small chiral hole in a metallic screen,” J. Opt. A, Pure Appl. Opt. 8(4), S98–S105 (2006).
    [Crossref]
  21. A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
    [Crossref] [PubMed]
  22. S. Bassiri, C. Papas, and N. Engheta, “Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab,” J. Opt. Soc. Am. A 5(9), 1450–1459 (1988).
    [Crossref]
  23. M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
    [Crossref]
  24. M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photonics 1(6), 530–537 (2014).
    [Crossref]
  25. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23(7), 1608–1615 (2006).
    [Crossref] [PubMed]
  26. C.-D. Ku, W.-L. Huang, J.-S. Huang, and C.-B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral,” IEEE Photonics J. 5(3), 4800409 (2013).
    [Crossref]

2015 (1)

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a Metaspiral Plasmonic Lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

2014 (3)

J. Li, C. Yang, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in spiral nanostructures under linearly polarized illumination,” Opt. Express 22(14), 16686–16693 (2014).
[Crossref] [PubMed]

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm Focusing of Short Wavelength Plasmons in Homogeneous 2D Space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

2013 (2)

C.-D. Ku, W.-L. Huang, J.-S. Huang, and C.-B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral,” IEEE Photonics J. 5(3), 4800409 (2013).
[Crossref]

E. Gross, A. Nevet, A. Pesach, E. Monroy, S. E. Schacham, M. Orenstein, M. Segev, and G. Bahir, “Measuring the refractive index around intersubband transition resonance in GaN/AlN multi quantum wells,” Opt. Express 21(3), 3800–3808 (2013).
[Crossref] [PubMed]

2012 (2)

K. A. Bachman, J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Spiral plasmonic nanoantennas as circular polarization transmission filters,” Opt. Express 20(2), 1308–1319 (2012).
[Crossref] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

2011 (1)

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

2010 (2)

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

2009 (5)

2008 (1)

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

2006 (3)

2005 (1)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

2003 (1)

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[Crossref] [PubMed]

1993 (1)

B. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
[Crossref]

1988 (1)

Abeysinghe, D. C.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

Bachman, K. A.

Bagnall, D. M.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[Crossref] [PubMed]

Bahir, G.

Bartal, G.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a Metaspiral Plasmonic Lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm Focusing of Short Wavelength Plasmons in Homogeneous 2D Space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Bassiri, S.

Blau, Y.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm Focusing of Short Wavelength Plasmons in Homogeneous 2D Space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Bonakdar, A.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

Bretner, I.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Chen, W.

Collins, R. T.

David, A.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a Metaspiral Plasmonic Lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm Focusing of Short Wavelength Plasmons in Homogeneous 2D Space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Dolev, S.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm Focusing of Short Wavelength Plasmons in Homogeneous 2D Space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Dregely, D.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Engheta, N.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

S. Bassiri, C. Papas, and N. Engheta, “Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab,” J. Opt. Soc. Am. A 5(9), 1450–1459 (1988).
[Crossref]

Fang, Z.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Flammer, P. D.

Furtak, T. E.

Giessen, H.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Gjonaj, B.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a Metaspiral Plasmonic Lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm Focusing of Short Wavelength Plasmons in Homogeneous 2D Space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Gorodetski, Y.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Gross, E.

Hao, F.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Hasman, E.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Hentschel, M.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Hollingsworth, R. E.

Huang, C.-B.

C.-D. Ku, W.-L. Huang, J.-S. Huang, and C.-B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral,” IEEE Photonics J. 5(3), 4800409 (2013).
[Crossref]

Huang, J.-S.

C.-D. Ku, W.-L. Huang, J.-S. Huang, and C.-B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral,” IEEE Photonics J. 5(3), 4800409 (2013).
[Crossref]

Huang, W.-L.

C.-D. Ku, W.-L. Huang, J.-S. Huang, and C.-B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral,” IEEE Photonics J. 5(3), 4800409 (2013).
[Crossref]

Hugonin, J. P.

Kleiner, V.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Krasavin, A.

A. Krasavin, A. Schwanecke, and N. Zheludev, “Extraordinary properties of light transmission through a small chiral hole in a metallic screen,” J. Opt. A, Pure Appl. Opt. 8(4), S98–S105 (2006).
[Crossref]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[Crossref] [PubMed]

Ku, C.-D.

C.-D. Ku, W.-L. Huang, J.-S. Huang, and C.-B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral,” IEEE Photonics J. 5(3), 4800409 (2013).
[Crossref]

Lalanne, P.

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Levine, B.

B. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
[Crossref]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17(2), 924–932 (2009).
[Crossref] [PubMed]

Li, J.

Lin, F.

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Mohseni, H.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

Monroy, E.

Nelson, R. L.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
[Crossref] [PubMed]

Nevet, A.

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Nordlander, P.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Orenstein, M.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a Metaspiral Plasmonic Lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm Focusing of Short Wavelength Plasmons in Homogeneous 2D Space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

E. Gross, A. Nevet, A. Pesach, E. Monroy, S. E. Schacham, M. Orenstein, M. Segev, and G. Bahir, “Measuring the refractive index around intersubband transition resonance in GaN/AlN multi quantum wells,” Opt. Express 21(3), 3800–3808 (2013).
[Crossref] [PubMed]

Papas, C.

Peltzer, J. J.

Peng, Q.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Pesach, A.

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Potts, A.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[Crossref] [PubMed]

Rodier, J. C.

Schacham, S. E.

Schäferling, M.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Schwanecke, A.

A. Krasavin, A. Schwanecke, and N. Zheludev, “Extraordinary properties of light transmission through a small chiral hole in a metallic screen,” J. Opt. A, Pure Appl. Opt. 8(4), S98–S105 (2006).
[Crossref]

Schwanecke, A. S.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[Crossref] [PubMed]

Segev, M.

Shitrit, N.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Song, W.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Spektor, G.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a Metaspiral Plasmonic Lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm Focusing of Short Wavelength Plasmons in Homogeneous 2D Space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Wang, J.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Wu, W.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17(2), 924–932 (2009).
[Crossref] [PubMed]

Yang, C.

Yang, S.

Yin, X.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

Zayats, A. V.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[Crossref] [PubMed]

Zhan, Q.

Zhang, X.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Zhao, H.

Zheludev, N.

A. Krasavin, A. Schwanecke, and N. Zheludev, “Extraordinary properties of light transmission through a small chiral hole in a metallic screen,” J. Opt. A, Pure Appl. Opt. 8(4), S98–S105 (2006).
[Crossref]

Zheludev, N. I.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[Crossref] [PubMed]

Zhu, X.

J. Li, C. Yang, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in spiral nanostructures under linearly polarized illumination,” Opt. Express 22(14), 16686–16693 (2014).
[Crossref] [PubMed]

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

Appl. Phys. Lett. (1)

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

IEEE Photonics J. (1)

C.-D. Ku, W.-L. Huang, J.-S. Huang, and C.-B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral,” IEEE Photonics J. 5(3), 4800409 (2013).
[Crossref]

J. Appl. Phys. (1)

B. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

A. Krasavin, A. Schwanecke, and N. Zheludev, “Extraordinary properties of light transmission through a small chiral hole in a metallic screen,” J. Opt. A, Pure Appl. Opt. 8(4), S98–S105 (2006).
[Crossref]

J. Opt. Soc. Am. A (2)

Nano Lett. (7)

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm Focusing of Short Wavelength Plasmons in Homogeneous 2D Space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a Metaspiral Plasmonic Lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Other (2)

H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Construction schematic (a) and Scanning Electron Microscope (SEM) image (b) of the AS HC lens formed by two engaged Archimedes spirals.

Fig. 2
Fig. 2

AS HC lens (a,c) Experimental results of the absolute value of the field within the lens under horizontal (a) and vertical (c) linearly polarized illumination (white arrows) and the corresponding FDTD simulation results (b,d). The insets show the enlarged focal region. The measured extinction ratio of the linear dichroism is 32.

Fig. 3
Fig. 3

Construction schematic (a) and SEM image (b) of the Hollow HC lens formed by two engaged Archimedes spirals of m = 4 with erasure of the internal part.

Fig. 4
Fig. 4

Hollow HC Lens (spiral order m = 4) NSOM measurements (a,c) and corresponding FDTD simulation results (b,d) under linearly polarized illumination (white arrows). The measured linear dichroism extinction ratio is 10.

Fig. 5
Fig. 5

Construction schematic (a) and SEM image (b) of the Half-Moons lens formed by two engaged circular, non-Archimedean spirals.

Fig. 6
Fig. 6

Half-Moons Lens NSOM measurements (a,c) and corresponding FDTD simulation results (b,d) under linearly polarized illumination (white arrows). The measured linear dichroism extinction ratio is 80.

Fig. 7
Fig. 7

Relative focal spot intensity efficiency (blue) and relative focal point intensity/device area (red) for impinging light with horizontal polarization. All structures have the same slit width and similar length. From left to right: non-Archimedean HC lens, AS HC lens, Half Moons lens, Hollow HC m = 4, circular spiral, Archimedes spiral.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E H C ( x ^ ) = E A S + 1 ( R H C + L H C ) + E A S 1 ( R H C + L H C ) [ J 2 ( k s p p r ) e + 2 j θ + J 0 ( k s p p r ) ] + [ J 0 ( k s p p r ) + J 2 ( k s p p r ) e 2 j θ ] J 0 ( k s p p r ) + J 2 ( k s p p r ) cos ( 2 θ )
E H C ( y ^ ) = E A S + 1 ( R H C L H C ) + E A S 1 ( R H C L H C ) [ J 2 ( k s p p r ) e + 2 j θ J 0 ( k s p p r ) ] + [ J 0 ( k s p p r ) J 2 ( k s p p r ) e 2 j θ ] J 2 ( k s p p r ) sin ( 2 θ )

Metrics