Abstract

An improved coherent optical receiver architecture that compensates for a random drift in the state of polarization (SOP) of both the signal and the local oscillator (LO) is presented for the first time. The proposed architecture comprises two conventional coherent optical receiver front-ends in tandem, where the SOP of the LO is first divided into its two orthogonal components and then distributed to each coherent optical receiver front-end module. Two distinct methods of polarization diversity recovery of the modulation based on the MRC technique and an eigenvalue–eigenvector decomposition of the covariance matrix have been used to effectively recover the transmitted signal. The concept is validated by numerical simulations, where a differential quadrature phase-shift keyed (DQPSK) modulated signal with a random time-varying SOP is first generated. After its mixing with a LO also possessing a random time-varying SOP, the algorithms that have been developed are provided with eight input variables to be digitally processed. The constellation diagrams corresponding to the recovered DQPSK modulation obtained using the two polarization diversity methods are presented.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A self-coherent receiver for detection of
PolMUX coherent signals

Jingshi Li, Rene Schmogrow, David Hillerkuss, Philipp C. Schindler, Moshe Nazarathy, Carsten Schmidt-Langhorst, Shalva-Ben Ezra, Igor Tselniker, Christian Koos, Wolfgang Freude, and Juerg Leuthold
Opt. Express 20(19) 21413-21433 (2012)

Compact polarization diversity Kramers-Kronig coherent receiver on silicon chip

Fan Zhang, Xiaoke Ruan, Yixiao Zhu, Zeyu Chen, Xiaoming Qiu, Fan Yang, Ke Li, and Yanping Li
Opt. Express 27(17) 23654-23660 (2019)

Blind, fast and SOP independent polarization recovery for square dual polarization–MQAM formats and optical coherent receivers

Mathieu Chagnon, Mohamed Osman, Xian Xu, Qunbi Zhuge, and David V. Plant
Opt. Express 20(25) 27847-27865 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. P. T. Lau, Y. Gao, Q. Sui, D. Wang, Q. Zhuge, M. H. Morsy-Osman, M. Chagnon, X. Xu, C. Lu, and D. V. Plant, “Advanced DSP techniques enabling high spectral efficiency and flexible transmissions: toward elastic optical networks,” IEEE Signal Process. Mag. 31(2), 82–92 (2014).
    [Crossref]
  2. G. Goldfarb and G. Li, “Chromatic Dispersion Compensation Using Digital IIR Filtering With Coherent Detection,” IEEE Photonics Technol. Lett. 19(13), 969–971 (2007).
    [Crossref]
  3. S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated 20-Gbit/s QPSK transmission over standard single-mode fibre using homodyne detection and digital signal processing for dispersion compensation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (Optical Society of America, 2006), paper OWB4.
  4. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
    [Crossref] [PubMed]
  5. T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
    [Crossref] [PubMed]
  6. M. Birk, P. Gerard, R. Curto, L. E. Nelson, X. Zhou, P. Magill, T. J. Schmidt, C. Malouin, B. Zhang, E. Ibragimov, S. Khatana, M. Glavanovic, R. Lofland, R. Marcoccia, R. Saunders, G. Nicholl, M. Nowell, and F. Forghieri, “Real-time single-carrier coherent 100 Gb/s PM-QPSK field trial,” J. Lightwave Technol. 29(4), 417–425 (2011).
    [Crossref]
  7. J. C. Rasmussen, T. Hoshida, and H. Nakashima, “Digital coherent receiver technology for 100-Gb/s optical transport systems,” Fujitsu Sci. Tech. J. 46(1), 63–71 (2010).
  8. R. Borkowski, P. Johannisson, H. Wymeersch, V. Arlunno, A. Caballero, D. Zibar, and I. T. Monroy, “Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers,” J. Opt. Fiber Tech. 20(2), 158–162 (2014).
    [Crossref]
  9. P. J. Winzer, G. Raybon, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, D. A. Fishman, C. R. Doerr, S. Chandrasekhar, L. L. Buhl, T. J. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, and Y. Painchaud, “100-Gb/s DQPSK transmission: From laboratory experiments to field trials,” J. Lightwave Technol. 26(20), 3388–3402 (2008).
    [Crossref]
  10. R. Elschner, F. Frey, C. Meuer, J. K. Fischer, S. Alreesh, C. Schmidt-Langhorst, L. Molle, T. Tanimura, and C. Schubert, “Experimental demonstration of a format-flexible single-carrier coherent receiver using data-aided digital signal processing,” Opt. Express 20(27), 28786–28791 (2012).
    [Crossref] [PubMed]
  11. T. Xu, J. Li, G. Jacobsenc, S. Popov, A. Djupsjöbacka, R. Schatz, and Y. Zhang, “Field trial over 820km installed SSMF and its potential Terabit/s superchannel application with up to 57.5-Gbaud DP-QPSK transmission,” Opt. Commun. 353, 133–138 (2015).
    [Crossref]
  12. H. Bulow, “Experimental demonstration of optical signal detection using nonlinear fourier transform,” J. Lightwave Technol. 33(7), 1433–1439 (2015).
    [Crossref]
  13. A. Leven, N. Kaneda, and S. Corteselli, “Real-time implementation of digital signal processing for coherent optical digital communication systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1227–1234 (2010).
    [Crossref]
  14. J.-X. Cai, H. G. Batshon, H. Zhang, C. R. Davidson, Y. Sun, M. Mazurczyk, D. G. Foursa, O. Sinkin, A. Pilipetskii, G. Mohs, and N. S. Bergano, “25 Tb/s transmission over 5,530 km using 16QAM at 5.2 b/s/Hz spectral efficiency,” Opt. Express 21(2), 1555–1560 (2013).
    [Crossref] [PubMed]
  15. Y.-K. Huang, E. Ip, Z. Wang, M.-F. Huang, Y. Shao, and T. Wang, “Transmission of spectral efficient super-channels using all-optical OFDM and digital coherent receiver technologies,” J. Lightwave Technol. 29(24), 3838–3844 (2011).
    [Crossref]
  16. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access,” in Optical Fiber Communication Conference, (Optical Society of America, 2009), paper PDPC1.
  17. C. Liu, J. Pan, T. Detwiler, A. Stark, Y.-T. Hsueh, G.-K. Chang, and S. E. Ralph, “Joint digital signal processing for superchannel coherent optical communication systems,” Opt. Express 21(7), 8342–8356 (2013).
    [Crossref] [PubMed]
  18. I. Roudas, A. Vgenis, C. S. Petrou, D. Toumpakaris, J. Hurley, M. Sauer, J. Downie, J. C. Mauro, and S. Raghavan, “Optimal polarisation demultiplexing for coherent optical communications systems,” J. Lightwave Technol. 28(7), 1121–1134 (2010).
    [Crossref]
  19. K. Kikuchi, “Optical Homodyne Receiver Comprising Phase and Polarisation Diversities with Digital Signal Processing,” in IEEE/LEOS Summer Topical Meetings (2007), pp. 55–56.
  20. Y. H. Cheng, T. Okoshi, and O. Ishida, “Performance analysis and experiment of a homodyne receiver insensitive to both polarisation and phase fluctuations,” J. Lightwave Technol. 7(2), 368–374 (1989).
    [Crossref]
  21. K. Kikuchi and S. Tsukamoto, “Evaluation of sensitivity of the digital coherent receiver,” J. Lightwave Technol. 26(13), 1817–1822 (2008).
    [Crossref]
  22. K. Kikuchi, “Coherent optical communications: historical perspectives and future directions,” in High Spectral Density Optical Communication Technology, M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds. (Springer, 2010), Ch. 2.
  23. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref] [PubMed]
  24. N. Nabavi and T. J. Hall, “Recovering symmetry in optical digital coherent polarization diversity receiver,” in Proceedings of Photonics Conference (IEEE, 2015), pp. 289–290.
    [Crossref]
  25. N. Nabavi, S. Abdul-Majid, and T. J. Hall, “Symmetric dual polarization diverse digital optical coherent receiver,” in Proceedings of Photonics North 2015 (IEEE, 2015), in press.
  26. Y. Painchaud, M. Poulin, M. Morin, and M. Têtu, “Performance of balanced detection in a coherent receiver,” Opt. Express 17(5), 3659–3672 (2009).
    [Crossref] [PubMed]
  27. A. Meiyappan, P.-Y. Kam, and H. Kim, “A complex-weighted, decision-aided, maximum-likelihood carrier phase and frequency-offset estimation algorithm for coherent optical detection,” Opt. Express 20(18), 20102–20114 (2012).
    [Crossref] [PubMed]
  28. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6), 4815–4823 (2009).
    [Crossref] [PubMed]
  29. A. J. Stark, P. Isautier, J. Pan, S. K. Pavan, M. Filer, S. Tibuleac, R. Lingle, R. de Salvo, and S. E. Ralph, “Advanced signaling technologies for high-speed digital fiber-optic links,” Appl. Opt. 53(25), 5824–5840 (2014).
    [Crossref] [PubMed]
  30. D. M. Pataca, L. H. H. de Carvalho, C. B. F. Adami, F. D. Simões, M. de. L. Rocha, and J. C. R. F. Oliveira, “Transmission of a 1.12Tb/s superchannel over 452 km fiber,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 524–532 (2013).
  31. H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express 16(2), 873–879 (2008).
    [Crossref] [PubMed]
  32. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarisation dispersion in long single-mode fibres,” Electron. Lett. 22(19), 1029–1030 (1986).
    [Crossref]
  33. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
    [Crossref] [PubMed]
  34. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photonics 1(2), 279–307 (2009).
    [Crossref]
  35. R. Hui, B. Zhu, R. Huang, C. T. Allen, K. Demarest, and D. Richards, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightwave Technol. 20(3), 417–427 (2002).
    [Crossref]
  36. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref] [PubMed]
  37. A. J. Viterbi and A. N. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [Crossref]
  38. M. M. G. Krishna, J. Samuel, and S. Sinha, “Brownian motion on a sphere: distribution of solid angles,” J. Phys. Math. Gen. 33(34), 5965–5971 (2000).
    [Crossref]
  39. J. Nissfolk, T. Ekholm, and C. Elvingson, “Brownian dynamics simulations on a hypersphere in 4-space,” J. Chem. Phys. 119(13), 6423–6432 (2003).
    [Crossref]
  40. T. Carlsson, T. Ekholm, and C. Elvingson, “Algorithm for generating a Brownian motion on a sphere,” J. Phys. A Math. Theor. 43(50), 505001 (2010).
    [Crossref]
  41. A. Ghosh, J. Samuel, and S. Sinha, “A ‘Gaussian’ for diffusion on the sphere,” Europhys. Lett. 98(3), 30003 (2012).
    [Crossref]

2015 (2)

T. Xu, J. Li, G. Jacobsenc, S. Popov, A. Djupsjöbacka, R. Schatz, and Y. Zhang, “Field trial over 820km installed SSMF and its potential Terabit/s superchannel application with up to 57.5-Gbaud DP-QPSK transmission,” Opt. Commun. 353, 133–138 (2015).
[Crossref]

H. Bulow, “Experimental demonstration of optical signal detection using nonlinear fourier transform,” J. Lightwave Technol. 33(7), 1433–1439 (2015).
[Crossref]

2014 (3)

A. P. T. Lau, Y. Gao, Q. Sui, D. Wang, Q. Zhuge, M. H. Morsy-Osman, M. Chagnon, X. Xu, C. Lu, and D. V. Plant, “Advanced DSP techniques enabling high spectral efficiency and flexible transmissions: toward elastic optical networks,” IEEE Signal Process. Mag. 31(2), 82–92 (2014).
[Crossref]

R. Borkowski, P. Johannisson, H. Wymeersch, V. Arlunno, A. Caballero, D. Zibar, and I. T. Monroy, “Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers,” J. Opt. Fiber Tech. 20(2), 158–162 (2014).
[Crossref]

A. J. Stark, P. Isautier, J. Pan, S. K. Pavan, M. Filer, S. Tibuleac, R. Lingle, R. de Salvo, and S. E. Ralph, “Advanced signaling technologies for high-speed digital fiber-optic links,” Appl. Opt. 53(25), 5824–5840 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (3)

2011 (2)

2010 (5)

A. Leven, N. Kaneda, and S. Corteselli, “Real-time implementation of digital signal processing for coherent optical digital communication systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1227–1234 (2010).
[Crossref]

I. Roudas, A. Vgenis, C. S. Petrou, D. Toumpakaris, J. Hurley, M. Sauer, J. Downie, J. C. Mauro, and S. Raghavan, “Optimal polarisation demultiplexing for coherent optical communications systems,” J. Lightwave Technol. 28(7), 1121–1134 (2010).
[Crossref]

J. C. Rasmussen, T. Hoshida, and H. Nakashima, “Digital coherent receiver technology for 100-Gb/s optical transport systems,” Fujitsu Sci. Tech. J. 46(1), 63–71 (2010).

T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
[Crossref] [PubMed]

T. Carlsson, T. Ekholm, and C. Elvingson, “Algorithm for generating a Brownian motion on a sphere,” J. Phys. A Math. Theor. 43(50), 505001 (2010).
[Crossref]

2009 (3)

2008 (5)

2007 (2)

G. Goldfarb and G. Li, “Chromatic Dispersion Compensation Using Digital IIR Filtering With Coherent Detection,” IEEE Photonics Technol. Lett. 19(13), 969–971 (2007).
[Crossref]

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
[Crossref] [PubMed]

2003 (1)

J. Nissfolk, T. Ekholm, and C. Elvingson, “Brownian dynamics simulations on a hypersphere in 4-space,” J. Chem. Phys. 119(13), 6423–6432 (2003).
[Crossref]

2002 (1)

2000 (2)

M. M. G. Krishna, J. Samuel, and S. Sinha, “Brownian motion on a sphere: distribution of solid angles,” J. Phys. Math. Gen. 33(34), 5965–5971 (2000).
[Crossref]

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[Crossref] [PubMed]

1989 (1)

Y. H. Cheng, T. Okoshi, and O. Ishida, “Performance analysis and experiment of a homodyne receiver insensitive to both polarisation and phase fluctuations,” J. Lightwave Technol. 7(2), 368–374 (1989).
[Crossref]

1986 (1)

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarisation dispersion in long single-mode fibres,” Electron. Lett. 22(19), 1029–1030 (1986).
[Crossref]

1983 (1)

A. J. Viterbi and A. N. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Adami, C. B. F.

D. M. Pataca, L. H. H. de Carvalho, C. B. F. Adami, F. D. Simões, M. de. L. Rocha, and J. C. R. F. Oliveira, “Transmission of a 1.12Tb/s superchannel over 452 km fiber,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 524–532 (2013).

Adamiecki, A.

Allen, C. T.

Alreesh, S.

Arlunno, V.

R. Borkowski, P. Johannisson, H. Wymeersch, V. Arlunno, A. Caballero, D. Zibar, and I. T. Monroy, “Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers,” J. Opt. Fiber Tech. 20(2), 158–162 (2014).
[Crossref]

Basch, B.

Batshon, H. G.

Bayvel, P.

Bergano, N. S.

Birk, M.

Borkowski, R.

R. Borkowski, P. Johannisson, H. Wymeersch, V. Arlunno, A. Caballero, D. Zibar, and I. T. Monroy, “Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers,” J. Opt. Fiber Tech. 20(2), 158–162 (2014).
[Crossref]

Buhl, L. L.

Bulow, H.

Caballero, A.

R. Borkowski, P. Johannisson, H. Wymeersch, V. Arlunno, A. Caballero, D. Zibar, and I. T. Monroy, “Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers,” J. Opt. Fiber Tech. 20(2), 158–162 (2014).
[Crossref]

Cai, J.-X.

Carlsson, T.

T. Carlsson, T. Ekholm, and C. Elvingson, “Algorithm for generating a Brownian motion on a sphere,” J. Phys. A Math. Theor. 43(50), 505001 (2010).
[Crossref]

Chagnon, M.

A. P. T. Lau, Y. Gao, Q. Sui, D. Wang, Q. Zhuge, M. H. Morsy-Osman, M. Chagnon, X. Xu, C. Lu, and D. V. Plant, “Advanced DSP techniques enabling high spectral efficiency and flexible transmissions: toward elastic optical networks,” IEEE Signal Process. Mag. 31(2), 82–92 (2014).
[Crossref]

Chandrasekhar, S.

Chang, G.-K.

Cheng, Y. H.

Y. H. Cheng, T. Okoshi, and O. Ishida, “Performance analysis and experiment of a homodyne receiver insensitive to both polarisation and phase fluctuations,” J. Lightwave Technol. 7(2), 368–374 (1989).
[Crossref]

Corteselli, S.

Curto, R.

Davidson, C. R.

de Carvalho, L. H. H.

D. M. Pataca, L. H. H. de Carvalho, C. B. F. Adami, F. D. Simões, M. de. L. Rocha, and J. C. R. F. Oliveira, “Transmission of a 1.12Tb/s superchannel over 452 km fiber,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 524–532 (2013).

de Salvo, R.

Demarest, K.

Detwiler, T.

Djupsjöbacka, A.

T. Xu, J. Li, G. Jacobsenc, S. Popov, A. Djupsjöbacka, R. Schatz, and Y. Zhang, “Field trial over 820km installed SSMF and its potential Terabit/s superchannel application with up to 57.5-Gbaud DP-QPSK transmission,” Opt. Commun. 353, 133–138 (2015).
[Crossref]

Doerr, C. R.

Downie, J.

Ekholm, T.

T. Carlsson, T. Ekholm, and C. Elvingson, “Algorithm for generating a Brownian motion on a sphere,” J. Phys. A Math. Theor. 43(50), 505001 (2010).
[Crossref]

J. Nissfolk, T. Ekholm, and C. Elvingson, “Brownian dynamics simulations on a hypersphere in 4-space,” J. Chem. Phys. 119(13), 6423–6432 (2003).
[Crossref]

Elschner, R.

Elvingson, C.

T. Carlsson, T. Ekholm, and C. Elvingson, “Algorithm for generating a Brownian motion on a sphere,” J. Phys. A Math. Theor. 43(50), 505001 (2010).
[Crossref]

J. Nissfolk, T. Ekholm, and C. Elvingson, “Brownian dynamics simulations on a hypersphere in 4-space,” J. Chem. Phys. 119(13), 6423–6432 (2003).
[Crossref]

Filer, M.

Fischer, J. K.

Fishman, D. A.

Forghieri, F.

Foursa, D. G.

Frey, F.

Friberg, A. T.

Gao, Y.

A. P. T. Lau, Y. Gao, Q. Sui, D. Wang, Q. Zhuge, M. H. Morsy-Osman, M. Chagnon, X. Xu, C. Lu, and D. V. Plant, “Advanced DSP techniques enabling high spectral efficiency and flexible transmissions: toward elastic optical networks,” IEEE Signal Process. Mag. 31(2), 82–92 (2014).
[Crossref]

Gavioli, G.

Gerard, P.

Ghosh, A.

A. Ghosh, J. Samuel, and S. Sinha, “A ‘Gaussian’ for diffusion on the sphere,” Europhys. Lett. 98(3), 30003 (2012).
[Crossref]

Glavanovic, M.

Gnauck, A. H.

Goldfarb, G.

G. Goldfarb and G. Li, “Chromatic Dispersion Compensation Using Digital IIR Filtering With Coherent Detection,” IEEE Photonics Technol. Lett. 19(13), 969–971 (2007).
[Crossref]

Gordon, J. P.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[Crossref] [PubMed]

Hall, T. J.

N. Nabavi and T. J. Hall, “Recovering symmetry in optical digital coherent polarization diversity receiver,” in Proceedings of Photonics Conference (IEEE, 2015), pp. 289–290.
[Crossref]

Higuma, K.

Hoshida, T.

J. C. Rasmussen, T. Hoshida, and H. Nakashima, “Digital coherent receiver technology for 100-Gb/s optical transport systems,” Fujitsu Sci. Tech. J. 46(1), 63–71 (2010).

Hsueh, Y.-T.

Huang, M.-F.

Huang, R.

Huang, Y.-K.

Hui, R.

Hurley, J.

Ibragimov, E.

Ip, E.

Isautier, P.

Ishida, O.

Y. H. Cheng, T. Okoshi, and O. Ishida, “Performance analysis and experiment of a homodyne receiver insensitive to both polarisation and phase fluctuations,” J. Lightwave Technol. 7(2), 368–374 (1989).
[Crossref]

Jacobsen, G.

Jacobsenc, G.

T. Xu, J. Li, G. Jacobsenc, S. Popov, A. Djupsjöbacka, R. Schatz, and Y. Zhang, “Field trial over 820km installed SSMF and its potential Terabit/s superchannel application with up to 57.5-Gbaud DP-QPSK transmission,” Opt. Commun. 353, 133–138 (2015).
[Crossref]

Johannisson, P.

R. Borkowski, P. Johannisson, H. Wymeersch, V. Arlunno, A. Caballero, D. Zibar, and I. T. Monroy, “Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers,” J. Opt. Fiber Tech. 20(2), 158–162 (2014).
[Crossref]

Kam, P.-Y.

Kaneda, N.

A. Leven, N. Kaneda, and S. Corteselli, “Real-time implementation of digital signal processing for coherent optical digital communication systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1227–1234 (2010).
[Crossref]

Kawanishi, T.

Khatana, S.

Kikuchi, K.

Killey, R. I.

Kim, H.

Kogelnik, H.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[Crossref] [PubMed]

Krishna, M. M. G.

M. M. G. Krishna, J. Samuel, and S. Sinha, “Brownian motion on a sphere: distribution of solid angles,” J. Phys. Math. Gen. 33(34), 5965–5971 (2000).
[Crossref]

Lau, A. P. T.

A. P. T. Lau, Y. Gao, Q. Sui, D. Wang, Q. Zhuge, M. H. Morsy-Osman, M. Chagnon, X. Xu, C. Lu, and D. V. Plant, “Advanced DSP techniques enabling high spectral efficiency and flexible transmissions: toward elastic optical networks,” IEEE Signal Process. Mag. 31(2), 82–92 (2014).
[Crossref]

Lee, W.

Leven, A.

A. Leven, N. Kaneda, and S. Corteselli, “Real-time implementation of digital signal processing for coherent optical digital communication systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1227–1234 (2010).
[Crossref]

Li, G.

G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photonics 1(2), 279–307 (2009).
[Crossref]

G. Goldfarb and G. Li, “Chromatic Dispersion Compensation Using Digital IIR Filtering With Coherent Detection,” IEEE Photonics Technol. Lett. 19(13), 969–971 (2007).
[Crossref]

Li, J.

T. Xu, J. Li, G. Jacobsenc, S. Popov, A. Djupsjöbacka, R. Schatz, and Y. Zhang, “Field trial over 820km installed SSMF and its potential Terabit/s superchannel application with up to 57.5-Gbaud DP-QPSK transmission,” Opt. Commun. 353, 133–138 (2015).
[Crossref]

T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
[Crossref] [PubMed]

Lingle, R.

Liu, C.

Lofland, R.

Lu, C.

A. P. T. Lau, Y. Gao, Q. Sui, D. Wang, Q. Zhuge, M. H. Morsy-Osman, M. Chagnon, X. Xu, C. Lu, and D. V. Plant, “Advanced DSP techniques enabling high spectral efficiency and flexible transmissions: toward elastic optical networks,” IEEE Signal Process. Mag. 31(2), 82–92 (2014).
[Crossref]

Magill, P.

Malouin, C.

Marcoccia, R.

Mauro, J. C.

Mazurczyk, M.

Meiyappan, A.

Meuer, C.

Mohs, G.

Molle, L.

Monroy, I. T.

R. Borkowski, P. Johannisson, H. Wymeersch, V. Arlunno, A. Caballero, D. Zibar, and I. T. Monroy, “Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers,” J. Opt. Fiber Tech. 20(2), 158–162 (2014).
[Crossref]

Morin, M.

Morsy-Osman, M. H.

A. P. T. Lau, Y. Gao, Q. Sui, D. Wang, Q. Zhuge, M. H. Morsy-Osman, M. Chagnon, X. Xu, C. Lu, and D. V. Plant, “Advanced DSP techniques enabling high spectral efficiency and flexible transmissions: toward elastic optical networks,” IEEE Signal Process. Mag. 31(2), 82–92 (2014).
[Crossref]

Nabavi, N.

N. Nabavi and T. J. Hall, “Recovering symmetry in optical digital coherent polarization diversity receiver,” in Proceedings of Photonics Conference (IEEE, 2015), pp. 289–290.
[Crossref]

Nakashima, H.

J. C. Rasmussen, T. Hoshida, and H. Nakashima, “Digital coherent receiver technology for 100-Gb/s optical transport systems,” Fujitsu Sci. Tech. J. 46(1), 63–71 (2010).

Nelson, L. E.

Nicholl, G.

Nissfolk, J.

J. Nissfolk, T. Ekholm, and C. Elvingson, “Brownian dynamics simulations on a hypersphere in 4-space,” J. Chem. Phys. 119(13), 6423–6432 (2003).
[Crossref]

Nowell, M.

Okoshi, T.

Y. H. Cheng, T. Okoshi, and O. Ishida, “Performance analysis and experiment of a homodyne receiver insensitive to both polarisation and phase fluctuations,” J. Lightwave Technol. 7(2), 368–374 (1989).
[Crossref]

Oliveira, J. C. R. F.

D. M. Pataca, L. H. H. de Carvalho, C. B. F. Adami, F. D. Simões, M. de. L. Rocha, and J. C. R. F. Oliveira, “Transmission of a 1.12Tb/s superchannel over 452 km fiber,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 524–532 (2013).

Painchaud, Y.

Pan, J.

Pataca, D. M.

D. M. Pataca, L. H. H. de Carvalho, C. B. F. Adami, F. D. Simões, M. de. L. Rocha, and J. C. R. F. Oliveira, “Transmission of a 1.12Tb/s superchannel over 452 km fiber,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 524–532 (2013).

Pavan, S. K.

Petrou, C. S.

Pilipetskii, A.

Plant, D. V.

A. P. T. Lau, Y. Gao, Q. Sui, D. Wang, Q. Zhuge, M. H. Morsy-Osman, M. Chagnon, X. Xu, C. Lu, and D. V. Plant, “Advanced DSP techniques enabling high spectral efficiency and flexible transmissions: toward elastic optical networks,” IEEE Signal Process. Mag. 31(2), 82–92 (2014).
[Crossref]

Poole, C. D.

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarisation dispersion in long single-mode fibres,” Electron. Lett. 22(19), 1029–1030 (1986).
[Crossref]

Popov, S.

T. Xu, J. Li, G. Jacobsenc, S. Popov, A. Djupsjöbacka, R. Schatz, and Y. Zhang, “Field trial over 820km installed SSMF and its potential Terabit/s superchannel application with up to 57.5-Gbaud DP-QPSK transmission,” Opt. Commun. 353, 133–138 (2015).
[Crossref]

T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
[Crossref] [PubMed]

Poulin, M.

Raghavan, S.

Ralph, S. E.

Rasmussen, J. C.

J. C. Rasmussen, T. Hoshida, and H. Nakashima, “Digital coherent receiver technology for 100-Gb/s optical transport systems,” Fujitsu Sci. Tech. J. 46(1), 63–71 (2010).

Raybon, G.

Richards, D.

Roberts, K.

Rocha, M. de. L.

D. M. Pataca, L. H. H. de Carvalho, C. B. F. Adami, F. D. Simões, M. de. L. Rocha, and J. C. R. F. Oliveira, “Transmission of a 1.12Tb/s superchannel over 452 km fiber,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 524–532 (2013).

Roudas, I.

Samuel, J.

A. Ghosh, J. Samuel, and S. Sinha, “A ‘Gaussian’ for diffusion on the sphere,” Europhys. Lett. 98(3), 30003 (2012).
[Crossref]

M. M. G. Krishna, J. Samuel, and S. Sinha, “Brownian motion on a sphere: distribution of solid angles,” J. Phys. Math. Gen. 33(34), 5965–5971 (2000).
[Crossref]

Sauer, M.

Saunders, R.

Savory, S. J.

Schatz, R.

T. Xu, J. Li, G. Jacobsenc, S. Popov, A. Djupsjöbacka, R. Schatz, and Y. Zhang, “Field trial over 820km installed SSMF and its potential Terabit/s superchannel application with up to 57.5-Gbaud DP-QPSK transmission,” Opt. Commun. 353, 133–138 (2015).
[Crossref]

Schmidt, T. J.

Schmidt-Langhorst, C.

Schubert, C.

Shao, Y.

Simões, F. D.

D. M. Pataca, L. H. H. de Carvalho, C. B. F. Adami, F. D. Simões, M. de. L. Rocha, and J. C. R. F. Oliveira, “Transmission of a 1.12Tb/s superchannel over 452 km fiber,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 524–532 (2013).

Sinha, S.

A. Ghosh, J. Samuel, and S. Sinha, “A ‘Gaussian’ for diffusion on the sphere,” Europhys. Lett. 98(3), 30003 (2012).
[Crossref]

M. M. G. Krishna, J. Samuel, and S. Sinha, “Brownian motion on a sphere: distribution of solid angles,” J. Phys. Math. Gen. 33(34), 5965–5971 (2000).
[Crossref]

Sinkin, O.

Song, H.

Stark, A.

Stark, A. J.

Sui, Q.

A. P. T. Lau, Y. Gao, Q. Sui, D. Wang, Q. Zhuge, M. H. Morsy-Osman, M. Chagnon, X. Xu, C. Lu, and D. V. Plant, “Advanced DSP techniques enabling high spectral efficiency and flexible transmissions: toward elastic optical networks,” IEEE Signal Process. Mag. 31(2), 82–92 (2014).
[Crossref]

Sun, H.

Sun, Y.

Tanimura, T.

Têtu, M.

Tibuleac, S.

Toumpakaris, D.

Tsukamoto, S.

Vanin, E.

Vgenis, A.

Viterbi, A. J.

A. J. Viterbi and A. N. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Viterbi, A. N.

A. J. Viterbi and A. N. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Wagner, R. E.

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarisation dispersion in long single-mode fibres,” Electron. Lett. 22(19), 1029–1030 (1986).
[Crossref]

Wang, D.

A. P. T. Lau, Y. Gao, Q. Sui, D. Wang, Q. Zhuge, M. H. Morsy-Osman, M. Chagnon, X. Xu, C. Lu, and D. V. Plant, “Advanced DSP techniques enabling high spectral efficiency and flexible transmissions: toward elastic optical networks,” IEEE Signal Process. Mag. 31(2), 82–92 (2014).
[Crossref]

Wang, K.

Wang, T.

Wang, Z.

Wellbrock, G.

Winzer, P. J.

Wu, K.-T.

Wymeersch, H.

R. Borkowski, P. Johannisson, H. Wymeersch, V. Arlunno, A. Caballero, D. Zibar, and I. T. Monroy, “Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers,” J. Opt. Fiber Tech. 20(2), 158–162 (2014).
[Crossref]

Xia, T. J.

Xie, C.

Xu, T.

T. Xu, J. Li, G. Jacobsenc, S. Popov, A. Djupsjöbacka, R. Schatz, and Y. Zhang, “Field trial over 820km installed SSMF and its potential Terabit/s superchannel application with up to 57.5-Gbaud DP-QPSK transmission,” Opt. Commun. 353, 133–138 (2015).
[Crossref]

T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
[Crossref] [PubMed]

Xu, X.

A. P. T. Lau, Y. Gao, Q. Sui, D. Wang, Q. Zhuge, M. H. Morsy-Osman, M. Chagnon, X. Xu, C. Lu, and D. V. Plant, “Advanced DSP techniques enabling high spectral efficiency and flexible transmissions: toward elastic optical networks,” IEEE Signal Process. Mag. 31(2), 82–92 (2014).
[Crossref]

Zhang, B.

Zhang, H.

Zhang, Y.

T. Xu, J. Li, G. Jacobsenc, S. Popov, A. Djupsjöbacka, R. Schatz, and Y. Zhang, “Field trial over 820km installed SSMF and its potential Terabit/s superchannel application with up to 57.5-Gbaud DP-QPSK transmission,” Opt. Commun. 353, 133–138 (2015).
[Crossref]

T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
[Crossref] [PubMed]

Zhou, X.

Zhu, B.

Zhuge, Q.

A. P. T. Lau, Y. Gao, Q. Sui, D. Wang, Q. Zhuge, M. H. Morsy-Osman, M. Chagnon, X. Xu, C. Lu, and D. V. Plant, “Advanced DSP techniques enabling high spectral efficiency and flexible transmissions: toward elastic optical networks,” IEEE Signal Process. Mag. 31(2), 82–92 (2014).
[Crossref]

Zibar, D.

R. Borkowski, P. Johannisson, H. Wymeersch, V. Arlunno, A. Caballero, D. Zibar, and I. T. Monroy, “Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers,” J. Opt. Fiber Tech. 20(2), 158–162 (2014).
[Crossref]

Adv. Opt. Photonics (1)

G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photonics 1(2), 279–307 (2009).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarisation dispersion in long single-mode fibres,” Electron. Lett. 22(19), 1029–1030 (1986).
[Crossref]

Europhys. Lett. (1)

A. Ghosh, J. Samuel, and S. Sinha, “A ‘Gaussian’ for diffusion on the sphere,” Europhys. Lett. 98(3), 30003 (2012).
[Crossref]

Fujitsu Sci. Tech. J. (1)

J. C. Rasmussen, T. Hoshida, and H. Nakashima, “Digital coherent receiver technology for 100-Gb/s optical transport systems,” Fujitsu Sci. Tech. J. 46(1), 63–71 (2010).

IEEE J. Sel. Top. Quantum Electron. (1)

A. Leven, N. Kaneda, and S. Corteselli, “Real-time implementation of digital signal processing for coherent optical digital communication systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1227–1234 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. Goldfarb and G. Li, “Chromatic Dispersion Compensation Using Digital IIR Filtering With Coherent Detection,” IEEE Photonics Technol. Lett. 19(13), 969–971 (2007).
[Crossref]

IEEE Signal Process. Mag. (1)

A. P. T. Lau, Y. Gao, Q. Sui, D. Wang, Q. Zhuge, M. H. Morsy-Osman, M. Chagnon, X. Xu, C. Lu, and D. V. Plant, “Advanced DSP techniques enabling high spectral efficiency and flexible transmissions: toward elastic optical networks,” IEEE Signal Process. Mag. 31(2), 82–92 (2014).
[Crossref]

IEEE Trans. Inf. Theory (1)

A. J. Viterbi and A. N. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

J. Chem. Phys. (1)

J. Nissfolk, T. Ekholm, and C. Elvingson, “Brownian dynamics simulations on a hypersphere in 4-space,” J. Chem. Phys. 119(13), 6423–6432 (2003).
[Crossref]

J. Lightwave Technol. (8)

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. Demarest, and D. Richards, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightwave Technol. 20(3), 417–427 (2002).
[Crossref]

I. Roudas, A. Vgenis, C. S. Petrou, D. Toumpakaris, J. Hurley, M. Sauer, J. Downie, J. C. Mauro, and S. Raghavan, “Optimal polarisation demultiplexing for coherent optical communications systems,” J. Lightwave Technol. 28(7), 1121–1134 (2010).
[Crossref]

Y. H. Cheng, T. Okoshi, and O. Ishida, “Performance analysis and experiment of a homodyne receiver insensitive to both polarisation and phase fluctuations,” J. Lightwave Technol. 7(2), 368–374 (1989).
[Crossref]

K. Kikuchi and S. Tsukamoto, “Evaluation of sensitivity of the digital coherent receiver,” J. Lightwave Technol. 26(13), 1817–1822 (2008).
[Crossref]

M. Birk, P. Gerard, R. Curto, L. E. Nelson, X. Zhou, P. Magill, T. J. Schmidt, C. Malouin, B. Zhang, E. Ibragimov, S. Khatana, M. Glavanovic, R. Lofland, R. Marcoccia, R. Saunders, G. Nicholl, M. Nowell, and F. Forghieri, “Real-time single-carrier coherent 100 Gb/s PM-QPSK field trial,” J. Lightwave Technol. 29(4), 417–425 (2011).
[Crossref]

Y.-K. Huang, E. Ip, Z. Wang, M.-F. Huang, Y. Shao, and T. Wang, “Transmission of spectral efficient super-channels using all-optical OFDM and digital coherent receiver technologies,” J. Lightwave Technol. 29(24), 3838–3844 (2011).
[Crossref]

P. J. Winzer, G. Raybon, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, D. A. Fishman, C. R. Doerr, S. Chandrasekhar, L. L. Buhl, T. J. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, and Y. Painchaud, “100-Gb/s DQPSK transmission: From laboratory experiments to field trials,” J. Lightwave Technol. 26(20), 3388–3402 (2008).
[Crossref]

H. Bulow, “Experimental demonstration of optical signal detection using nonlinear fourier transform,” J. Lightwave Technol. 33(7), 1433–1439 (2015).
[Crossref]

J. Microw. Optoelectron. Electromagn. Appl. (1)

D. M. Pataca, L. H. H. de Carvalho, C. B. F. Adami, F. D. Simões, M. de. L. Rocha, and J. C. R. F. Oliveira, “Transmission of a 1.12Tb/s superchannel over 452 km fiber,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 524–532 (2013).

J. Opt. Fiber Tech. (1)

R. Borkowski, P. Johannisson, H. Wymeersch, V. Arlunno, A. Caballero, D. Zibar, and I. T. Monroy, “Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers,” J. Opt. Fiber Tech. 20(2), 158–162 (2014).
[Crossref]

J. Phys. A Math. Theor. (1)

T. Carlsson, T. Ekholm, and C. Elvingson, “Algorithm for generating a Brownian motion on a sphere,” J. Phys. A Math. Theor. 43(50), 505001 (2010).
[Crossref]

J. Phys. Math. Gen. (1)

M. M. G. Krishna, J. Samuel, and S. Sinha, “Brownian motion on a sphere: distribution of solid angles,” J. Phys. Math. Gen. 33(34), 5965–5971 (2000).
[Crossref]

Opt. Commun. (1)

T. Xu, J. Li, G. Jacobsenc, S. Popov, A. Djupsjöbacka, R. Schatz, and Y. Zhang, “Field trial over 820km installed SSMF and its potential Terabit/s superchannel application with up to 57.5-Gbaud DP-QPSK transmission,” Opt. Commun. 353, 133–138 (2015).
[Crossref]

Opt. Express (11)

R. Elschner, F. Frey, C. Meuer, J. K. Fischer, S. Alreesh, C. Schmidt-Langhorst, L. Molle, T. Tanimura, and C. Schubert, “Experimental demonstration of a format-flexible single-carrier coherent receiver using data-aided digital signal processing,” Opt. Express 20(27), 28786–28791 (2012).
[Crossref] [PubMed]

J.-X. Cai, H. G. Batshon, H. Zhang, C. R. Davidson, Y. Sun, M. Mazurczyk, D. G. Foursa, O. Sinkin, A. Pilipetskii, G. Mohs, and N. S. Bergano, “25 Tb/s transmission over 5,530 km using 16QAM at 5.2 b/s/Hz spectral efficiency,” Opt. Express 21(2), 1555–1560 (2013).
[Crossref] [PubMed]

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
[Crossref] [PubMed]

T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
[Crossref] [PubMed]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
[Crossref] [PubMed]

H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express 16(2), 873–879 (2008).
[Crossref] [PubMed]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
[Crossref] [PubMed]

Y. Painchaud, M. Poulin, M. Morin, and M. Têtu, “Performance of balanced detection in a coherent receiver,” Opt. Express 17(5), 3659–3672 (2009).
[Crossref] [PubMed]

A. Meiyappan, P.-Y. Kam, and H. Kim, “A complex-weighted, decision-aided, maximum-likelihood carrier phase and frequency-offset estimation algorithm for coherent optical detection,” Opt. Express 20(18), 20102–20114 (2012).
[Crossref] [PubMed]

C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6), 4815–4823 (2009).
[Crossref] [PubMed]

C. Liu, J. Pan, T. Detwiler, A. Stark, Y.-T. Hsueh, G.-K. Chang, and S. E. Ralph, “Joint digital signal processing for superchannel coherent optical communication systems,” Opt. Express 21(7), 8342–8356 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[Crossref] [PubMed]

Other (6)

N. Nabavi and T. J. Hall, “Recovering symmetry in optical digital coherent polarization diversity receiver,” in Proceedings of Photonics Conference (IEEE, 2015), pp. 289–290.
[Crossref]

N. Nabavi, S. Abdul-Majid, and T. J. Hall, “Symmetric dual polarization diverse digital optical coherent receiver,” in Proceedings of Photonics North 2015 (IEEE, 2015), in press.

K. Kikuchi, “Coherent optical communications: historical perspectives and future directions,” in High Spectral Density Optical Communication Technology, M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds. (Springer, 2010), Ch. 2.

K. Kikuchi, “Optical Homodyne Receiver Comprising Phase and Polarisation Diversities with Digital Signal Processing,” in IEEE/LEOS Summer Topical Meetings (2007), pp. 55–56.

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated 20-Gbit/s QPSK transmission over standard single-mode fibre using homodyne detection and digital signal processing for dispersion compensation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (Optical Society of America, 2006), paper OWB4.

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access,” in Optical Fiber Communication Conference, (Optical Society of America, 2009), paper PDPC1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of a conventional polarization diverse coherent receiver. Polarization diversity refers to the input signal. TE (horizontal) and TM (vertical) polarization components are illustrated in green and blue, respectively.
Fig. 2
Fig. 2 Proposed schematic of a symmetric polarization diverse coherent receiver for both signal and local oscillator. Modules making use of the TE (horizontal) and TM (vertical) polarizations of the local oscillator are illustrated in green and blue, respectively.
Fig. 3
Fig. 3 Maximal ratio combining is deployed as the polarization diversity technique to combine the multiple received signals. Tx: transmitter, X: transmitted signal, Y: received signal, wi: weights, S: weighted sum.
Fig. 4
Fig. 4 Architecture of DSP module at the end of coherent receiver.
Fig. 5
Fig. 5 Carrier phase estimation and timing synchronization subsystems.
Fig. 6
Fig. 6 DQPSK demodulation histogram and error visualization.
Fig. 7
Fig. 7 Simulated states of polarization projected onto the Poincaré sphere. (a) Illustration of 1 × 103 samples and (b) 1 × 106 samples. The solid line in (a) shows the trajectory followed by consecutive simulated states of polarization.
Fig. 8
Fig. 8 (a)-(d) Normalized magnitude of the coherently detected signals x 11 and x 21 before the constrained MRC approach. (e)-(h) Normalized magnitude of the weighted signal.
Fig. 9
Fig. 9 Combined signal power from the MRC combiner without dispersion compensation using (a) constrained method and (b) unconstrained method for 300 km of dispersive single mode fiber. Signal powers in (c) and (d) are the counterparts of (a) and (b) for the back-to-back system.
Fig. 10
Fig. 10 Constellation of the demodulated signal using (a) constrained method and (b) unconstrained method without dispersion compensation for 300 km of dispersive single mode fiber. Constellations in (c) and (d) are the counterparts of (a) and (b) for the back-to-back system.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

= | s( x ) | 2 | s( ε ) | 2 = w xx w w εε w ,
( ε ε 1/2 x ) ( ε ε 1/2 x ) u=λu.
= w yy w+λ( 1 w w ),
w n+1 =( w n , w ¯ n+1 ) w ¯ n+1 ,
=[ W,W ]+λ{ 1[ W,W ] },
Y Yv=λv Y Y u=λu .
Y Y=[ y 11 * y 11 + y 21 * y 21 y 11 * y 12 + y 21 * y 22 y 12 * y 11 + y 22 * y 21 y 12 * y 12 + y 22 * y 22 ],
Y Y =[ y 11 y 11 * + y 12 y 12 * y 11 y 21 * + y 12 y 22 * y 21 y 11 * + y 22 y 12 * y 21 y 21 * + y 22 y 22 * ].
F( z,ω )=exp( j D λ 2 z 4πc ω 2 +j S λ 4 z 24 π 2 c 2 ω 3 ),  

Metrics