Abstract

We present a solid-state laser system that generates over 200 mW of continuous-wave, narrowband light, tunable from 316.3 nm – 317.7 nm and 318.0 nm – 319.3 nm. The laser is based on commercially available fiber amplifiers and optical frequency doubling technology, along with sum frequency generation in a periodically poled stoichiometric lithium tantalate crystal. The laser frequency is stabilized to an atomic-referenced high finesse optical transfer cavity. Using a GPS-referenced optical frequency comb we measure a long term frequency instability of < 35 kHz for timescales between 10−3 s and 103 s. As an application we perform spectroscopy of Sr Rydberg states from n = 37 – 81, demonstrating mode-hop-free scans of 24 GHz. In a cold atomic sample we measure Doppler-limited linewidths of 350 kHz.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Development and characterization of a 2.2  W narrow-linewidth 318.6  nm ultraviolet laser

Jieying Wang, Jiandong Bai, Jun He, and Junmin Wang
J. Opt. Soc. Am. B 33(10) 2020-2025 (2016)

Versatile, high-power 460 nm laser system for Rydberg excitation of ultracold potassium

Alda Arias, Stephan Helmrich, Christoph Schweiger, Lynton Ardizzone, Graham Lochead, and Shannon Whitlock
Opt. Express 25(13) 14829-14839 (2017)

Nonlinear polarization spectroscopy of a Rydberg state for laser stabilization

David H. Meyer, Paul D. Kunz, and Neal Solmeyer
Appl. Opt. 56(3) B92-B96 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Bollinger, J. D. Prestage, W. M. Itano, and D. J. Wineland, “Laser-cooled-atomic frequency standard,” Phys. Rev. Lett. 54, 1000 (1985).
    [Crossref] [PubMed]
  2. H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Palchikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett. 100, 053001 (2008).
    [Crossref] [PubMed]
  3. M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
    [Crossref] [PubMed]
  4. J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
    [Crossref]
  5. T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
    [Crossref] [PubMed]
  6. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
    [Crossref] [PubMed]
  7. Y. O. Dudin, L. Li, F. Bariani, and A. Kuzmich, “Observation of coherent many-body Rabi oscillations,” Nat. Phys. 8, 790–794 (2012).
    [Crossref]
  8. R. P. Abel, C. Carr, U. Krohn, and C. S. Adams, “Electrometry near a dielectric surface using Rydberg electromagnetically induced transparency,” Phys. Rev. A 84, 023408 (2011).
    [Crossref]
  9. J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
    [Crossref]
  10. G. Lochead, D. Boddy, D. P. Sadler, C. S. Adams, and M. P. A. Jones, “Number-resolved imaging of excited-state atoms using a scanning autoionization microscope,” Phys. Rev. A 87, 053409 (2013).
    [Crossref]
  11. M. Saffman and T. G. Walker, “Creating single-atom and single-photon sources from entangled atomic ensembles,” Phys. Rev. A 66, 065403 (2002).
    [Crossref]
  12. C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour, “Creation of polar and nonpolar ultra-long-range Rydberg molecules,” Phys. Rev. Lett. 85, 2458 (2000).
    [Crossref] [PubMed]
  13. C. Boisseau, I. Simbotin, and R. Côté, “Macrodimers: Ultralong range Rydberg molecules,” Phys. Rev. Lett. 88, 133004 (2002).
    [Crossref] [PubMed]
  14. V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, and T. Pfau, “Observation of ultralong-range Rydberg molecules,” Nature 458, 1005–1008 (2009).
    [Crossref] [PubMed]
  15. B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, H. R. Sadeghpour, S. Yoshida, and J. Burgdörfer, “Ultra-long-range Rydberg molecules in a divalent atomic system,” Phys. Rev. A 92, 031403R (2015).
    [Crossref]
  16. N. Henkel, R. Nath, and T. Pohl, “Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates,” Phys. Rev. Lett. 104, 195302 (2010).
    [Crossref] [PubMed]
  17. F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, and G. Pupillo, “Supersolid droplet crystal in a dipole-blockaded gas,” Phys. Rev. Lett. 105, 135301 (2010).
    [Crossref]
  18. L. I. R. Gil, R. Mukherjee, E. M. Bridge, M. P. A. Jones, and T. Pohl, “Spin squeezing in a Rydberg lattice clock,” Phys. Rev. Lett. 112, 103601 (2014).
    [Crossref] [PubMed]
  19. T. Keating, R. L. Cook, A. M. Hankin, Y.-Y. Jau, G. W. Biedermann, and I. H. Deutsch, “Robust quantum logic in neutral atoms via adiabatic Rydberg dressing,” Phys. Rev. A 91, 012337 (2015).
    [Crossref]
  20. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
    [Crossref] [PubMed]
  21. J. Deiglmayr, M. Reetz-Lamour, T. Amthor, S. Westermann, A. L. de Oliveira, and M. Weidemüller, “Coherent excitation of Rydberg atoms in an ultracold gas,” Opt. Commun. 264, 293–298 (2006).
    [Crossref]
  22. P. Thoumany, T. Hänsch, G. Stania, L. Urbonas, and Th. Becker, “Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency-doubled dye laser,” Opt. Lett. 34(11), 1621–1623 (2009).
    [Crossref] [PubMed]
  23. A. M. Hankin, Y. -Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong, A. J. Landahl, and G. W. Biedermann, “Two-atom Rydberg blockade using direct 6S to n P excitation,” Phys. Rev. A 89, 033416 (2014).
    [Crossref]
  24. C. L. Vaillant, M. P. A. Jones, and R. M. Potvliege, “Long-range Rydberg-Rydberg interactions in calcium, strontium and ytterbium,” J. Phys. B 45(13), 135004 (2012).
    [Crossref]
  25. V. D. Ovsyanikov, A. Derevianko, and K. Gibble, “Rydberg spectroscopy in an optical lattice: Blackbody thermometry for atomic clocks,” Phys. Rev. Lett. 107, 093003 (2011).
    [Crossref]
  26. B. J. DeSalvo, J. A. Aman, C. Gaul, T. Pohl, S. Yoshida, J. Burgdörfer, K. R. A. Hazzard, F. B. Dunning, and T. C. Killian, “Rydberg-blockade effects in Autler-Townes spectra of ultracold strontium,” http://arxiv.org/abs/1510.08032 .
  27. R. Mukherjee, J. Millen, R. Nath, M. P. A. Jones, and T. Pohl, “Many-body physics with alkaline-earth Rydberg lattices,” J. Phys. B 44(18), 184010 (2011).
    [Crossref]
  28. J. Millen, G. Lochead, and M. P. A. Jones, “Two-electron excitation of an interacting cold Rydberg gas,” Phys. Rev. Lett. 105, 213004 (2010).
    [Crossref]
  29. J. Millen, G. Lochead, G. R. Corbett, R. M. Potvliege, and M. P. A. Jones, “Spectroscopy of a cold strontium Rydberg gas,” J. Phys. B 44(18), 184001 (2011).
    [Crossref]
  30. R. Beigang, K. Lücke, D. Schmidt, A. Timmermann, and P. J. West, “One-photon laser spectroscopy of Rydberg series from metastable levels in calcium and strontium,” Phys. Scripta 26, 183–188 (1982).
    [Crossref]
  31. T. Manthey, T. M. Weber, T. Niederprüm, P. Langer, V. Guarrera, G. Barontini, and H. Ott, “Scanning electron microscopy of Rydberg-excited Bose-Einstein condensates,” New J. Phys. 16 (8), 083034 (2014).
    [Crossref]
  32. A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105(4), 741–748 (2011).
    [Crossref]
  33. R. J. Rengelink, R. P. M. J. W. Notermans, and W. Vassen, “A simple 2 W continuous-wave laser system for trapping ultracold metastable helium atoms at the 319.8 nm magic wavelength,” http://arxiv.org/abs/1511.00443 .
  34. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
    [Crossref]
  35. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
    [Crossref] [PubMed]
  36. D. S. Hum, R. K. Routel, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101, 093108 (2007).
    [Crossref]
  37. K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, “Optical damage and light-induced absorption in near-stoichiometric LiTaO3 crystal,” in Proceedings of Lasers and Electro-Optics 2001 Technical Digest (CLEO, 2001), pp. 138–139.
  38. Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637 (1969).
    [Crossref]
  39. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597 (1968).
    [Crossref]
  40. S. Sinha, D. S. Hum, K. E. Urbanek, L. Yin-wenM, J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Room-temperature stable generation of 19 Watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
    [Crossref]
  41. M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, “Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications,” Opt. Lett. 29(15), 1775–1777 (2004).
    [Crossref] [PubMed]
  42. D. L. Hart, L. Goldberg, and W. K. Burns, “Red light generation by sum frequency mixing of Er/Yb fibre amplifier output in QPM LiNbO3,” Electron. Lett. 35(1), 52–53 (1999).
    [Crossref]
  43. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494 (2000).
    [Crossref]
  44. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(31), 97–105 (1983).
    [Crossref]
  45. D. Boddy, Doctoral Thesis, “First observations of Rydberg blockade in a frozen gas of divalent atoms,” Durham University http://etheses.dur.ac.uk/10740/ (2014).
  46. Y. Li, T. Ido, T. Eichler, and H. Katori, “Narrow-line diode laser system for laser cooling of strontium atoms on the intercombination transition,” Appl. Phys. B 78(3), 315–320 (2004).
    [Crossref]
  47. J. I. Thorpe, K. Numata, and J. Livas, “Laser frequency stabilization and control through offset sideband locking to optical cavities,” Opt. Express 16(20), 15980–15990 (2008).
    [Crossref] [PubMed]
  48. T. Puppe, Toptica Photonics, and AG Lochhamer, Schlag 19, 82166 Graefelfing (Munich), Germany (personal communication, 2015).
  49. F. L. Walls and E. S. Ferre-Pikal, “Frequency standards, characterization,” Wiley Encyclopedia of Electrical and Electronics Engineering12, 767–775 (1999).
  50. J. R. Rubbmark and S. A. Borgström, “Rydberg series in strontium found in absorption by selectively laser-excited atoms,” Phys. Scr. 18(4), 196–208 (1978).
    [Crossref]
  51. J. A. Armstrong, J. J. Wynne, and P. Esherick, “Bound, odd-parity J = 1 spectra of the alkaline earths: Ca, Sr, and Ba,” J. Opt. Soc. Am. 69(2), 211–230 (1979).
    [Crossref]
  52. E. M. Bridge, N. C. Keegan, A. D. Bounds, D. Boddy, D. P. Sadler, and M. P. A. Jones, “A tunable CW UV laser with < 35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states: supporting data,” http://arxiv.org/abs/1512.04888 .

2015 (2)

B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, H. R. Sadeghpour, S. Yoshida, and J. Burgdörfer, “Ultra-long-range Rydberg molecules in a divalent atomic system,” Phys. Rev. A 92, 031403R (2015).
[Crossref]

T. Keating, R. L. Cook, A. M. Hankin, Y.-Y. Jau, G. W. Biedermann, and I. H. Deutsch, “Robust quantum logic in neutral atoms via adiabatic Rydberg dressing,” Phys. Rev. A 91, 012337 (2015).
[Crossref]

2014 (3)

A. M. Hankin, Y. -Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong, A. J. Landahl, and G. W. Biedermann, “Two-atom Rydberg blockade using direct 6S to n P excitation,” Phys. Rev. A 89, 033416 (2014).
[Crossref]

L. I. R. Gil, R. Mukherjee, E. M. Bridge, M. P. A. Jones, and T. Pohl, “Spin squeezing in a Rydberg lattice clock,” Phys. Rev. Lett. 112, 103601 (2014).
[Crossref] [PubMed]

T. Manthey, T. M. Weber, T. Niederprüm, P. Langer, V. Guarrera, G. Barontini, and H. Ott, “Scanning electron microscopy of Rydberg-excited Bose-Einstein condensates,” New J. Phys. 16 (8), 083034 (2014).
[Crossref]

2013 (1)

G. Lochead, D. Boddy, D. P. Sadler, C. S. Adams, and M. P. A. Jones, “Number-resolved imaging of excited-state atoms using a scanning autoionization microscope,” Phys. Rev. A 87, 053409 (2013).
[Crossref]

2012 (3)

Y. O. Dudin, L. Li, F. Bariani, and A. Kuzmich, “Observation of coherent many-body Rabi oscillations,” Nat. Phys. 8, 790–794 (2012).
[Crossref]

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

C. L. Vaillant, M. P. A. Jones, and R. M. Potvliege, “Long-range Rydberg-Rydberg interactions in calcium, strontium and ytterbium,” J. Phys. B 45(13), 135004 (2012).
[Crossref]

2011 (5)

V. D. Ovsyanikov, A. Derevianko, and K. Gibble, “Rydberg spectroscopy in an optical lattice: Blackbody thermometry for atomic clocks,” Phys. Rev. Lett. 107, 093003 (2011).
[Crossref]

R. Mukherjee, J. Millen, R. Nath, M. P. A. Jones, and T. Pohl, “Many-body physics with alkaline-earth Rydberg lattices,” J. Phys. B 44(18), 184010 (2011).
[Crossref]

J. Millen, G. Lochead, G. R. Corbett, R. M. Potvliege, and M. P. A. Jones, “Spectroscopy of a cold strontium Rydberg gas,” J. Phys. B 44(18), 184001 (2011).
[Crossref]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105(4), 741–748 (2011).
[Crossref]

R. P. Abel, C. Carr, U. Krohn, and C. S. Adams, “Electrometry near a dielectric surface using Rydberg electromagnetically induced transparency,” Phys. Rev. A 84, 023408 (2011).
[Crossref]

2010 (6)

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

N. Henkel, R. Nath, and T. Pohl, “Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates,” Phys. Rev. Lett. 104, 195302 (2010).
[Crossref] [PubMed]

F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, and G. Pupillo, “Supersolid droplet crystal in a dipole-blockaded gas,” Phys. Rev. Lett. 105, 135301 (2010).
[Crossref]

J. Millen, G. Lochead, and M. P. A. Jones, “Two-electron excitation of an interacting cold Rydberg gas,” Phys. Rev. Lett. 105, 213004 (2010).
[Crossref]

2009 (2)

P. Thoumany, T. Hänsch, G. Stania, L. Urbonas, and Th. Becker, “Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency-doubled dye laser,” Opt. Lett. 34(11), 1621–1623 (2009).
[Crossref] [PubMed]

V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, and T. Pfau, “Observation of ultralong-range Rydberg molecules,” Nature 458, 1005–1008 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (2)

D. S. Hum, R. K. Routel, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101, 093108 (2007).
[Crossref]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

2006 (1)

J. Deiglmayr, M. Reetz-Lamour, T. Amthor, S. Westermann, A. L. de Oliveira, and M. Weidemüller, “Coherent excitation of Rydberg atoms in an ultracold gas,” Opt. Commun. 264, 293–298 (2006).
[Crossref]

2004 (2)

M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, “Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications,” Opt. Lett. 29(15), 1775–1777 (2004).
[Crossref] [PubMed]

Y. Li, T. Ido, T. Eichler, and H. Katori, “Narrow-line diode laser system for laser cooling of strontium atoms on the intercombination transition,” Appl. Phys. B 78(3), 315–320 (2004).
[Crossref]

2003 (1)

2002 (2)

C. Boisseau, I. Simbotin, and R. Côté, “Macrodimers: Ultralong range Rydberg molecules,” Phys. Rev. Lett. 88, 133004 (2002).
[Crossref] [PubMed]

M. Saffman and T. G. Walker, “Creating single-atom and single-photon sources from entangled atomic ensembles,” Phys. Rev. A 66, 065403 (2002).
[Crossref]

2001 (1)

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

2000 (2)

C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour, “Creation of polar and nonpolar ultra-long-range Rydberg molecules,” Phys. Rev. Lett. 85, 2458 (2000).
[Crossref] [PubMed]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494 (2000).
[Crossref]

1999 (1)

D. L. Hart, L. Goldberg, and W. K. Burns, “Red light generation by sum frequency mixing of Er/Yb fibre amplifier output in QPM LiNbO3,” Electron. Lett. 35(1), 52–53 (1999).
[Crossref]

1997 (1)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

1985 (1)

J. J. Bollinger, J. D. Prestage, W. M. Itano, and D. J. Wineland, “Laser-cooled-atomic frequency standard,” Phys. Rev. Lett. 54, 1000 (1985).
[Crossref] [PubMed]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(31), 97–105 (1983).
[Crossref]

1982 (1)

R. Beigang, K. Lücke, D. Schmidt, A. Timmermann, and P. J. West, “One-photon laser spectroscopy of Rydberg series from metastable levels in calcium and strontium,” Phys. Scripta 26, 183–188 (1982).
[Crossref]

1979 (1)

1978 (1)

J. R. Rubbmark and S. A. Borgström, “Rydberg series in strontium found in absorption by selectively laser-excited atoms,” Phys. Scr. 18(4), 196–208 (1978).
[Crossref]

1969 (1)

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637 (1969).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597 (1968).
[Crossref]

Abel, R. P.

R. P. Abel, C. Carr, U. Krohn, and C. S. Adams, “Electrometry near a dielectric surface using Rydberg electromagnetically induced transparency,” Phys. Rev. A 84, 023408 (2011).
[Crossref]

Adams, C. S.

G. Lochead, D. Boddy, D. P. Sadler, C. S. Adams, and M. P. A. Jones, “Number-resolved imaging of excited-state atoms using a scanning autoionization microscope,” Phys. Rev. A 87, 053409 (2013).
[Crossref]

R. P. Abel, C. Carr, U. Krohn, and C. S. Adams, “Electrometry near a dielectric surface using Rydberg electromagnetically induced transparency,” Phys. Rev. A 84, 023408 (2011).
[Crossref]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

Alexandrovski, A.

D. S. Hum, R. K. Routel, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101, 093108 (2007).
[Crossref]

K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, “Optical damage and light-induced absorption in near-stoichiometric LiTaO3 crystal,” in Proceedings of Lasers and Electro-Optics 2001 Technical Digest (CLEO, 2001), pp. 138–139.

Aman, J. A.

B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, H. R. Sadeghpour, S. Yoshida, and J. Burgdörfer, “Ultra-long-range Rydberg molecules in a divalent atomic system,” Phys. Rev. A 92, 031403R (2015).
[Crossref]

Amthor, T.

J. Deiglmayr, M. Reetz-Lamour, T. Amthor, S. Westermann, A. L. de Oliveira, and M. Weidemüller, “Coherent excitation of Rydberg atoms in an ultracold gas,” Opt. Commun. 264, 293–298 (2006).
[Crossref]

Armstrong, D. J.

A. M. Hankin, Y. -Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong, A. J. Landahl, and G. W. Biedermann, “Two-atom Rydberg blockade using direct 6S to n P excitation,” Phys. Rev. A 89, 033416 (2014).
[Crossref]

Armstrong, J. A.

Bariani, F.

Y. O. Dudin, L. Li, F. Bariani, and A. Kuzmich, “Observation of coherent many-body Rabi oscillations,” Nat. Phys. 8, 790–794 (2012).
[Crossref]

Barontini, G.

T. Manthey, T. M. Weber, T. Niederprüm, P. Langer, V. Guarrera, G. Barontini, and H. Ott, “Scanning electron microscopy of Rydberg-excited Bose-Einstein condensates,” New J. Phys. 16 (8), 083034 (2014).
[Crossref]

Becker, Th.

Beigang, R.

R. Beigang, K. Lücke, D. Schmidt, A. Timmermann, and P. J. West, “One-photon laser spectroscopy of Rydberg series from metastable levels in calcium and strontium,” Phys. Scripta 26, 183–188 (1982).
[Crossref]

Bendkowsky, V.

V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, and T. Pfau, “Observation of ultralong-range Rydberg molecules,” Nature 458, 1005–1008 (2009).
[Crossref] [PubMed]

Biedermann, G. W.

T. Keating, R. L. Cook, A. M. Hankin, Y.-Y. Jau, G. W. Biedermann, and I. H. Deutsch, “Robust quantum logic in neutral atoms via adiabatic Rydberg dressing,” Phys. Rev. A 91, 012337 (2015).
[Crossref]

A. M. Hankin, Y. -Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong, A. J. Landahl, and G. W. Biedermann, “Two-atom Rydberg blockade using direct 6S to n P excitation,” Phys. Rev. A 89, 033416 (2014).
[Crossref]

Blau, P.

Boddy, D.

G. Lochead, D. Boddy, D. P. Sadler, C. S. Adams, and M. P. A. Jones, “Number-resolved imaging of excited-state atoms using a scanning autoionization microscope,” Phys. Rev. A 87, 053409 (2013).
[Crossref]

Boisseau, C.

C. Boisseau, I. Simbotin, and R. Côté, “Macrodimers: Ultralong range Rydberg molecules,” Phys. Rev. Lett. 88, 133004 (2002).
[Crossref] [PubMed]

Bollinger, J. J.

J. J. Bollinger, J. D. Prestage, W. M. Itano, and D. J. Wineland, “Laser-cooled-atomic frequency standard,” Phys. Rev. Lett. 54, 1000 (1985).
[Crossref] [PubMed]

Boninsegni, M.

F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, and G. Pupillo, “Supersolid droplet crystal in a dipole-blockaded gas,” Phys. Rev. Lett. 105, 135301 (2010).
[Crossref]

Borgström, S. A.

J. R. Rubbmark and S. A. Borgström, “Rydberg series in strontium found in absorption by selectively laser-excited atoms,” Phys. Scr. 18(4), 196–208 (1978).
[Crossref]

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597 (1968).
[Crossref]

Bridge, E. M.

L. I. R. Gil, R. Mukherjee, E. M. Bridge, M. P. A. Jones, and T. Pohl, “Spin squeezing in a Rydberg lattice clock,” Phys. Rev. Lett. 112, 103601 (2014).
[Crossref] [PubMed]

Browaeys, A.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

Brown, K. R.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105(4), 741–748 (2011).
[Crossref]

Bruner, A.

Burgdörfer, J.

B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, H. R. Sadeghpour, S. Yoshida, and J. Burgdörfer, “Ultra-long-range Rydberg molecules in a divalent atomic system,” Phys. Rev. A 92, 031403R (2015).
[Crossref]

Burns, W. K.

D. L. Hart, L. Goldberg, and W. K. Burns, “Red light generation by sum frequency mixing of Er/Yb fibre amplifier output in QPM LiNbO3,” Electron. Lett. 35(1), 52–53 (1999).
[Crossref]

Butscher, B.

V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, and T. Pfau, “Observation of ultralong-range Rydberg molecules,” Nature 458, 1005–1008 (2009).
[Crossref] [PubMed]

Byer, R. L.

S. Sinha, D. S. Hum, K. E. Urbanek, L. Yin-wenM, J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Room-temperature stable generation of 19 Watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[Crossref]

D. S. Hum, R. K. Routel, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101, 093108 (2007).
[Crossref]

Carr, C.

R. P. Abel, C. Carr, U. Krohn, and C. S. Adams, “Electrometry near a dielectric surface using Rydberg electromagnetically induced transparency,” Phys. Rev. A 84, 023408 (2011).
[Crossref]

Chou, C. W.

A. M. Hankin, Y. -Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong, A. J. Landahl, and G. W. Biedermann, “Two-atom Rydberg blockade using direct 6S to n P excitation,” Phys. Rev. A 89, 033416 (2014).
[Crossref]

Cinti, F.

F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, and G. Pupillo, “Supersolid droplet crystal in a dipole-blockaded gas,” Phys. Rev. Lett. 105, 135301 (2010).
[Crossref]

Cirac, J. I.

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

Cook, R. L.

T. Keating, R. L. Cook, A. M. Hankin, Y.-Y. Jau, G. W. Biedermann, and I. H. Deutsch, “Robust quantum logic in neutral atoms via adiabatic Rydberg dressing,” Phys. Rev. A 91, 012337 (2015).
[Crossref]

Corbett, G. R.

J. Millen, G. Lochead, G. R. Corbett, R. M. Potvliege, and M. P. A. Jones, “Spectroscopy of a cold strontium Rydberg gas,” J. Phys. B 44(18), 184001 (2011).
[Crossref]

Cote, R.

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

Côté, R.

C. Boisseau, I. Simbotin, and R. Côté, “Macrodimers: Ultralong range Rydberg molecules,” Phys. Rev. Lett. 88, 133004 (2002).
[Crossref] [PubMed]

de Oliveira, A. L.

J. Deiglmayr, M. Reetz-Lamour, T. Amthor, S. Westermann, A. L. de Oliveira, and M. Weidemüller, “Coherent excitation of Rydberg atoms in an ultracold gas,” Opt. Commun. 264, 293–298 (2006).
[Crossref]

Deiglmayr, J.

J. Deiglmayr, M. Reetz-Lamour, T. Amthor, S. Westermann, A. L. de Oliveira, and M. Weidemüller, “Coherent excitation of Rydberg atoms in an ultracold gas,” Opt. Commun. 264, 293–298 (2006).
[Crossref]

Derevianko, A.

V. D. Ovsyanikov, A. Derevianko, and K. Gibble, “Rydberg spectroscopy in an optical lattice: Blackbody thermometry for atomic clocks,” Phys. Rev. Lett. 107, 093003 (2011).
[Crossref]

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Palchikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett. 100, 053001 (2008).
[Crossref] [PubMed]

DeSalvo, B. J.

B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, H. R. Sadeghpour, S. Yoshida, and J. Burgdörfer, “Ultra-long-range Rydberg molecules in a divalent atomic system,” Phys. Rev. A 92, 031403R (2015).
[Crossref]

Deutsch, I. H.

T. Keating, R. L. Cook, A. M. Hankin, Y.-Y. Jau, G. W. Biedermann, and I. H. Deutsch, “Robust quantum logic in neutral atoms via adiabatic Rydberg dressing,” Phys. Rev. A 91, 012337 (2015).
[Crossref]

Dickinson, A. S.

C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour, “Creation of polar and nonpolar ultra-long-range Rydberg molecules,” Phys. Rev. Lett. 85, 2458 (2000).
[Crossref] [PubMed]

Digonnet, J. F.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(31), 97–105 (1983).
[Crossref]

Duan, L. M.

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

Dudin, Y. O.

Y. O. Dudin, L. Li, F. Bariani, and A. Kuzmich, “Observation of coherent many-body Rabi oscillations,” Nat. Phys. 8, 790–794 (2012).
[Crossref]

Dunning, F. B.

B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, H. R. Sadeghpour, S. Yoshida, and J. Burgdörfer, “Ultra-long-range Rydberg molecules in a divalent atomic system,” Phys. Rev. A 92, 031403R (2015).
[Crossref]

Eger, D.

Eichler, T.

Y. Li, T. Ido, T. Eichler, and H. Katori, “Narrow-line diode laser system for laser cooling of strontium atoms on the intercombination transition,” Appl. Phys. B 78(3), 315–320 (2004).
[Crossref]

Esherick, P.

Evellin, C.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

Fejer, M. M.

S. Sinha, D. S. Hum, K. E. Urbanek, L. Yin-wenM, J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Room-temperature stable generation of 19 Watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[Crossref]

D. S. Hum, R. K. Routel, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101, 093108 (2007).
[Crossref]

M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, “Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications,” Opt. Lett. 29(15), 1775–1777 (2004).
[Crossref] [PubMed]

K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, “Optical damage and light-induced absorption in near-stoichiometric LiTaO3 crystal,” in Proceedings of Lasers and Electro-Optics 2001 Technical Digest (CLEO, 2001), pp. 138–139.

Ferre-Pikal, E. S.

F. L. Walls and E. S. Ferre-Pikal, “Frequency standards, characterization,” Wiley Encyclopedia of Electrical and Electronics Engineering12, 767–775 (1999).

Fleischhauer, M.

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(31), 97–105 (1983).
[Crossref]

Furukawa, Y.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494 (2000).
[Crossref]

K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, “Optical damage and light-induced absorption in near-stoichiometric LiTaO3 crystal,” in Proceedings of Lasers and Electro-Optics 2001 Technical Digest (CLEO, 2001), pp. 138–139.

Gaëtan, A.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

Gauguet, A.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

Gibble, K.

V. D. Ovsyanikov, A. Derevianko, and K. Gibble, “Rydberg spectroscopy in an optical lattice: Blackbody thermometry for atomic clocks,” Phys. Rev. Lett. 107, 093003 (2011).
[Crossref]

Gil, L. I. R.

L. I. R. Gil, R. Mukherjee, E. M. Bridge, M. P. A. Jones, and T. Pohl, “Spin squeezing in a Rydberg lattice clock,” Phys. Rev. Lett. 112, 103601 (2014).
[Crossref] [PubMed]

Gill, A. T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Goldberg, L.

D. L. Hart, L. Goldberg, and W. K. Burns, “Red light generation by sum frequency mixing of Er/Yb fibre amplifier output in QPM LiNbO3,” Electron. Lett. 35(1), 52–53 (1999).
[Crossref]

Grangier, P.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

Greene, C. H.

C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour, “Creation of polar and nonpolar ultra-long-range Rydberg molecules,” Phys. Rev. Lett. 85, 2458 (2000).
[Crossref] [PubMed]

Guarrera, V.

T. Manthey, T. M. Weber, T. Niederprüm, P. Langer, V. Guarrera, G. Barontini, and H. Ott, “Scanning electron microscopy of Rydberg-excited Bose-Einstein condensates,” New J. Phys. 16 (8), 083034 (2014).
[Crossref]

Hachisu, H.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Palchikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett. 100, 053001 (2008).
[Crossref] [PubMed]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(31), 97–105 (1983).
[Crossref]

Hankin, A. M.

T. Keating, R. L. Cook, A. M. Hankin, Y.-Y. Jau, G. W. Biedermann, and I. H. Deutsch, “Robust quantum logic in neutral atoms via adiabatic Rydberg dressing,” Phys. Rev. A 91, 012337 (2015).
[Crossref]

A. M. Hankin, Y. -Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong, A. J. Landahl, and G. W. Biedermann, “Two-atom Rydberg blockade using direct 6S to n P excitation,” Phys. Rev. A 89, 033416 (2014).
[Crossref]

Hänsch, T.

Hart, D. L.

D. L. Hart, L. Goldberg, and W. K. Burns, “Red light generation by sum frequency mixing of Er/Yb fibre amplifier output in QPM LiNbO3,” Electron. Lett. 35(1), 52–53 (1999).
[Crossref]

Henage, T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Henkel, N.

N. Henkel, R. Nath, and T. Pohl, “Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates,” Phys. Rev. Lett. 104, 195302 (2010).
[Crossref] [PubMed]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(31), 97–105 (1983).
[Crossref]

Huang, J.

D. S. Hum, R. K. Routel, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101, 093108 (2007).
[Crossref]

Hum, D. S.

Ido, T.

Y. Li, T. Ido, T. Eichler, and H. Katori, “Narrow-line diode laser system for laser cooling of strontium atoms on the intercombination transition,” Appl. Phys. B 78(3), 315–320 (2004).
[Crossref]

Isenhower, L.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Itano, W. M.

J. J. Bollinger, J. D. Prestage, W. M. Itano, and D. J. Wineland, “Laser-cooled-atomic frequency standard,” Phys. Rev. Lett. 54, 1000 (1985).
[Crossref] [PubMed]

Jackson, T. R.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

Jain, P.

F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, and G. Pupillo, “Supersolid droplet crystal in a dipole-blockaded gas,” Phys. Rev. Lett. 105, 135301 (2010).
[Crossref]

Jaksch, D.

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

Jau, Y. -Y.

A. M. Hankin, Y. -Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong, A. J. Landahl, and G. W. Biedermann, “Two-atom Rydberg blockade using direct 6S to n P excitation,” Phys. Rev. A 89, 033416 (2014).
[Crossref]

Jau, Y.-Y.

T. Keating, R. L. Cook, A. M. Hankin, Y.-Y. Jau, G. W. Biedermann, and I. H. Deutsch, “Robust quantum logic in neutral atoms via adiabatic Rydberg dressing,” Phys. Rev. A 91, 012337 (2015).
[Crossref]

Johnson, T. A.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Jones, M. P. A.

L. I. R. Gil, R. Mukherjee, E. M. Bridge, M. P. A. Jones, and T. Pohl, “Spin squeezing in a Rydberg lattice clock,” Phys. Rev. Lett. 112, 103601 (2014).
[Crossref] [PubMed]

G. Lochead, D. Boddy, D. P. Sadler, C. S. Adams, and M. P. A. Jones, “Number-resolved imaging of excited-state atoms using a scanning autoionization microscope,” Phys. Rev. A 87, 053409 (2013).
[Crossref]

C. L. Vaillant, M. P. A. Jones, and R. M. Potvliege, “Long-range Rydberg-Rydberg interactions in calcium, strontium and ytterbium,” J. Phys. B 45(13), 135004 (2012).
[Crossref]

J. Millen, G. Lochead, G. R. Corbett, R. M. Potvliege, and M. P. A. Jones, “Spectroscopy of a cold strontium Rydberg gas,” J. Phys. B 44(18), 184001 (2011).
[Crossref]

R. Mukherjee, J. Millen, R. Nath, M. P. A. Jones, and T. Pohl, “Many-body physics with alkaline-earth Rydberg lattices,” J. Phys. B 44(18), 184010 (2011).
[Crossref]

J. Millen, G. Lochead, and M. P. A. Jones, “Two-electron excitation of an interacting cold Rydberg gas,” Phys. Rev. Lett. 105, 213004 (2010).
[Crossref]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

Katori, H.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Palchikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett. 100, 053001 (2008).
[Crossref] [PubMed]

Y. Li, T. Ido, T. Eichler, and H. Katori, “Narrow-line diode laser system for laser cooling of strontium atoms on the intercombination transition,” Appl. Phys. B 78(3), 315–320 (2004).
[Crossref]

Katz, M.

Keating, T.

T. Keating, R. L. Cook, A. M. Hankin, Y.-Y. Jau, G. W. Biedermann, and I. H. Deutsch, “Robust quantum logic in neutral atoms via adiabatic Rydberg dressing,” Phys. Rev. A 91, 012337 (2015).
[Crossref]

Killian, T. C.

B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, H. R. Sadeghpour, S. Yoshida, and J. Burgdörfer, “Ultra-long-range Rydberg molecules in a divalent atomic system,” Phys. Rev. A 92, 031403R (2015).
[Crossref]

Kim, Y. S.

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637 (1969).
[Crossref]

Kitamura, K.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494 (2000).
[Crossref]

K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, “Optical damage and light-induced absorption in near-stoichiometric LiTaO3 crystal,” in Proceedings of Lasers and Electro-Optics 2001 Technical Digest (CLEO, 2001), pp. 138–139.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597 (1968).
[Crossref]

Kondilenko, V.

D. S. Hum, R. K. Routel, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101, 093108 (2007).
[Crossref]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(31), 97–105 (1983).
[Crossref]

Krohn, U.

R. P. Abel, C. Carr, U. Krohn, and C. S. Adams, “Electrometry near a dielectric surface using Rydberg electromagnetically induced transparency,” Phys. Rev. A 84, 023408 (2011).
[Crossref]

Kübler, H.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Kuzmich, A.

Y. O. Dudin, L. Li, F. Bariani, and A. Kuzmich, “Observation of coherent many-body Rabi oscillations,” Nat. Phys. 8, 790–794 (2012).
[Crossref]

Landahl, A. J.

A. M. Hankin, Y. -Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong, A. J. Landahl, and G. W. Biedermann, “Two-atom Rydberg blockade using direct 6S to n P excitation,” Phys. Rev. A 89, 033416 (2014).
[Crossref]

Langer, P.

T. Manthey, T. M. Weber, T. Niederprüm, P. Langer, V. Guarrera, G. Barontini, and H. Ott, “Scanning electron microscopy of Rydberg-excited Bose-Einstein condensates,” New J. Phys. 16 (8), 083034 (2014).
[Crossref]

Leibfried, D.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105(4), 741–748 (2011).
[Crossref]

Li, L.

Y. O. Dudin, L. Li, F. Bariani, and A. Kuzmich, “Observation of coherent many-body Rabi oscillations,” Nat. Phys. 8, 790–794 (2012).
[Crossref]

Li, Y.

Y. Li, T. Ido, T. Eichler, and H. Katori, “Narrow-line diode laser system for laser cooling of strontium atoms on the intercombination transition,” Appl. Phys. B 78(3), 315–320 (2004).
[Crossref]

Livas, J.

Lochead, G.

G. Lochead, D. Boddy, D. P. Sadler, C. S. Adams, and M. P. A. Jones, “Number-resolved imaging of excited-state atoms using a scanning autoionization microscope,” Phys. Rev. A 87, 053409 (2013).
[Crossref]

J. Millen, G. Lochead, G. R. Corbett, R. M. Potvliege, and M. P. A. Jones, “Spectroscopy of a cold strontium Rydberg gas,” J. Phys. B 44(18), 184001 (2011).
[Crossref]

J. Millen, G. Lochead, and M. P. A. Jones, “Two-electron excitation of an interacting cold Rydberg gas,” Phys. Rev. Lett. 105, 213004 (2010).
[Crossref]

Lochhamer, AG

T. Puppe, Toptica Photonics, and AG Lochhamer, Schlag 19, 82166 Graefelfing (Munich), Germany (personal communication, 2015).

Löw, R.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, and T. Pfau, “Observation of ultralong-range Rydberg molecules,” Nature 458, 1005–1008 (2009).
[Crossref] [PubMed]

Lücke, K.

R. Beigang, K. Lücke, D. Schmidt, A. Timmermann, and P. J. West, “One-photon laser spectroscopy of Rydberg series from metastable levels in calcium and strontium,” Phys. Scripta 26, 183–188 (1982).
[Crossref]

Lukin, M. D.

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

Manthey, T.

T. Manthey, T. M. Weber, T. Niederprüm, P. Langer, V. Guarrera, G. Barontini, and H. Ott, “Scanning electron microscopy of Rydberg-excited Bose-Einstein condensates,” New J. Phys. 16 (8), 083034 (2014).
[Crossref]

Maxwell, D.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

Micheli, A.

F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, and G. Pupillo, “Supersolid droplet crystal in a dipole-blockaded gas,” Phys. Rev. Lett. 105, 135301 (2010).
[Crossref]

Millen, J.

J. Millen, G. Lochead, G. R. Corbett, R. M. Potvliege, and M. P. A. Jones, “Spectroscopy of a cold strontium Rydberg gas,” J. Phys. B 44(18), 184001 (2011).
[Crossref]

R. Mukherjee, J. Millen, R. Nath, M. P. A. Jones, and T. Pohl, “Many-body physics with alkaline-earth Rydberg lattices,” J. Phys. B 44(18), 184010 (2011).
[Crossref]

J. Millen, G. Lochead, and M. P. A. Jones, “Two-electron excitation of an interacting cold Rydberg gas,” Phys. Rev. Lett. 105, 213004 (2010).
[Crossref]

Miller, G. D.

D. S. Hum, R. K. Routel, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101, 093108 (2007).
[Crossref]

M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, “Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications,” Opt. Lett. 29(15), 1775–1777 (2004).
[Crossref] [PubMed]

Miroshnychenko, Y.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

Miyagishi, K.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Palchikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett. 100, 053001 (2008).
[Crossref] [PubMed]

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494 (2000).
[Crossref]

Mlynek, J. A.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105(4), 741–748 (2011).
[Crossref]

Mohapatra, A. K.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

Mukherjee, R.

L. I. R. Gil, R. Mukherjee, E. M. Bridge, M. P. A. Jones, and T. Pohl, “Spin squeezing in a Rydberg lattice clock,” Phys. Rev. Lett. 112, 103601 (2014).
[Crossref] [PubMed]

R. Mukherjee, J. Millen, R. Nath, M. P. A. Jones, and T. Pohl, “Many-body physics with alkaline-earth Rydberg lattices,” J. Phys. B 44(18), 184010 (2011).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(31), 97–105 (1983).
[Crossref]

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

Nakamura, M.

K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, “Optical damage and light-induced absorption in near-stoichiometric LiTaO3 crystal,” in Proceedings of Lasers and Electro-Optics 2001 Technical Digest (CLEO, 2001), pp. 138–139.

Nath, R.

R. Mukherjee, J. Millen, R. Nath, M. P. A. Jones, and T. Pohl, “Many-body physics with alkaline-earth Rydberg lattices,” J. Phys. B 44(18), 184010 (2011).
[Crossref]

N. Henkel, R. Nath, and T. Pohl, “Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates,” Phys. Rev. Lett. 104, 195302 (2010).
[Crossref] [PubMed]

Niederprüm, T.

T. Manthey, T. M. Weber, T. Niederprüm, P. Langer, V. Guarrera, G. Barontini, and H. Ott, “Scanning electron microscopy of Rydberg-excited Bose-Einstein condensates,” New J. Phys. 16 (8), 083034 (2014).
[Crossref]

Nipper, J.

V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, and T. Pfau, “Observation of ultralong-range Rydberg molecules,” Nature 458, 1005–1008 (2009).
[Crossref] [PubMed]

Numata, K.

Oron, M. B.

Ospelkaus, C.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105(4), 741–748 (2011).
[Crossref]

Ott, H.

T. Manthey, T. M. Weber, T. Niederprüm, P. Langer, V. Guarrera, G. Barontini, and H. Ott, “Scanning electron microscopy of Rydberg-excited Bose-Einstein condensates,” New J. Phys. 16 (8), 083034 (2014).
[Crossref]

Ovsiannikov, V. D.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Palchikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett. 100, 053001 (2008).
[Crossref] [PubMed]

Ovsyanikov, V. D.

V. D. Ovsyanikov, A. Derevianko, and K. Gibble, “Rydberg spectroscopy in an optical lattice: Blackbody thermometry for atomic clocks,” Phys. Rev. Lett. 107, 093003 (2011).
[Crossref]

Palchikov, V. G.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Palchikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett. 100, 053001 (2008).
[Crossref] [PubMed]

Parameswaran, K. R.

Parazzoli, L. P.

A. M. Hankin, Y. -Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong, A. J. Landahl, and G. W. Biedermann, “Two-atom Rydberg blockade using direct 6S to n P excitation,” Phys. Rev. A 89, 033416 (2014).
[Crossref]

Pfau, T.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, and T. Pfau, “Observation of ultralong-range Rydberg molecules,” Nature 458, 1005–1008 (2009).
[Crossref] [PubMed]

Photonics, Toptica

T. Puppe, Toptica Photonics, and AG Lochhamer, Schlag 19, 82166 Graefelfing (Munich), Germany (personal communication, 2015).

Pohl, T.

L. I. R. Gil, R. Mukherjee, E. M. Bridge, M. P. A. Jones, and T. Pohl, “Spin squeezing in a Rydberg lattice clock,” Phys. Rev. Lett. 112, 103601 (2014).
[Crossref] [PubMed]

R. Mukherjee, J. Millen, R. Nath, M. P. A. Jones, and T. Pohl, “Many-body physics with alkaline-earth Rydberg lattices,” J. Phys. B 44(18), 184010 (2011).
[Crossref]

N. Henkel, R. Nath, and T. Pohl, “Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates,” Phys. Rev. Lett. 104, 195302 (2010).
[Crossref] [PubMed]

Porsev, S. G.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Palchikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett. 100, 053001 (2008).
[Crossref] [PubMed]

Potvliege, R. M.

C. L. Vaillant, M. P. A. Jones, and R. M. Potvliege, “Long-range Rydberg-Rydberg interactions in calcium, strontium and ytterbium,” J. Phys. B 45(13), 135004 (2012).
[Crossref]

J. Millen, G. Lochead, G. R. Corbett, R. M. Potvliege, and M. P. A. Jones, “Spectroscopy of a cold strontium Rydberg gas,” J. Phys. B 44(18), 184001 (2011).
[Crossref]

Prestage, J. D.

J. J. Bollinger, J. D. Prestage, W. M. Itano, and D. J. Wineland, “Laser-cooled-atomic frequency standard,” Phys. Rev. Lett. 54, 1000 (1985).
[Crossref] [PubMed]

Pritchard, J. D.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

Pupillo, G.

F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, and G. Pupillo, “Supersolid droplet crystal in a dipole-blockaded gas,” Phys. Rev. Lett. 105, 135301 (2010).
[Crossref]

Puppe, T.

T. Puppe, Toptica Photonics, and AG Lochhamer, Schlag 19, 82166 Graefelfing (Munich), Germany (personal communication, 2015).

Reetz-Lamour, M.

J. Deiglmayr, M. Reetz-Lamour, T. Amthor, S. Westermann, A. L. de Oliveira, and M. Weidemüller, “Coherent excitation of Rydberg atoms in an ultracold gas,” Opt. Commun. 264, 293–298 (2006).
[Crossref]

Route, R. K.

Routel, R. K.

D. S. Hum, R. K. Routel, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101, 093108 (2007).
[Crossref]

Rubbmark, J. R.

J. R. Rubbmark and S. A. Borgström, “Rydberg series in strontium found in absorption by selectively laser-excited atoms,” Phys. Scr. 18(4), 196–208 (1978).
[Crossref]

Ruschin, S.

Sadeghpour, H. R.

B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, H. R. Sadeghpour, S. Yoshida, and J. Burgdörfer, “Ultra-long-range Rydberg molecules in a divalent atomic system,” Phys. Rev. A 92, 031403R (2015).
[Crossref]

C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour, “Creation of polar and nonpolar ultra-long-range Rydberg molecules,” Phys. Rev. Lett. 85, 2458 (2000).
[Crossref] [PubMed]

Sadler, D. P.

G. Lochead, D. Boddy, D. P. Sadler, C. S. Adams, and M. P. A. Jones, “Number-resolved imaging of excited-state atoms using a scanning autoionization microscope,” Phys. Rev. A 87, 053409 (2013).
[Crossref]

Saffman, M.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

M. Saffman and T. G. Walker, “Creating single-atom and single-photon sources from entangled atomic ensembles,” Phys. Rev. A 66, 065403 (2002).
[Crossref]

Schmidt, D.

R. Beigang, K. Lücke, D. Schmidt, A. Timmermann, and P. J. West, “One-photon laser spectroscopy of Rydberg series from metastable levels in calcium and strontium,” Phys. Scripta 26, 183–188 (1982).
[Crossref]

Schwettmann, A.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Sedlacek, J. A.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Shaffer, J. P.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, and T. Pfau, “Observation of ultralong-range Rydberg molecules,” Nature 458, 1005–1008 (2009).
[Crossref] [PubMed]

Simbotin, I.

C. Boisseau, I. Simbotin, and R. Côté, “Macrodimers: Ultralong range Rydberg molecules,” Phys. Rev. Lett. 88, 133004 (2002).
[Crossref] [PubMed]

Sinha, S.

Smith, R. T.

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637 (1969).
[Crossref]

Stania, G.

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494 (2000).
[Crossref]

Takamoto, M.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Palchikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett. 100, 053001 (2008).
[Crossref] [PubMed]

Takekawa, S.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494 (2000).
[Crossref]

K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, “Optical damage and light-induced absorption in near-stoichiometric LiTaO3 crystal,” in Proceedings of Lasers and Electro-Optics 2001 Technical Digest (CLEO, 2001), pp. 138–139.

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494 (2000).
[Crossref]

Thorpe, J. I.

Thoumany, P.

Timmermann, A.

R. Beigang, K. Lücke, D. Schmidt, A. Timmermann, and P. J. West, “One-photon laser spectroscopy of Rydberg series from metastable levels in calcium and strontium,” Phys. Scripta 26, 183–188 (1982).
[Crossref]

Urban, E.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Urbanek, K.

D. S. Hum, R. K. Routel, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101, 093108 (2007).
[Crossref]

Urbanek, K. E.

Urbonas, L.

Vaillant, C. L.

C. L. Vaillant, M. P. A. Jones, and R. M. Potvliege, “Long-range Rydberg-Rydberg interactions in calcium, strontium and ytterbium,” J. Phys. B 45(13), 135004 (2012).
[Crossref]

VanDevender, A. P.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105(4), 741–748 (2011).
[Crossref]

Walker, T. G.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

M. Saffman and T. G. Walker, “Creating single-atom and single-photon sources from entangled atomic ensembles,” Phys. Rev. A 66, 065403 (2002).
[Crossref]

Walls, F. L.

F. L. Walls and E. S. Ferre-Pikal, “Frequency standards, characterization,” Wiley Encyclopedia of Electrical and Electronics Engineering12, 767–775 (1999).

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(31), 97–105 (1983).
[Crossref]

Weatherill, K. J.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

Weber, T. M.

T. Manthey, T. M. Weber, T. Niederprüm, P. Langer, V. Guarrera, G. Barontini, and H. Ott, “Scanning electron microscopy of Rydberg-excited Bose-Einstein condensates,” New J. Phys. 16 (8), 083034 (2014).
[Crossref]

Weidemüller, M.

J. Deiglmayr, M. Reetz-Lamour, T. Amthor, S. Westermann, A. L. de Oliveira, and M. Weidemüller, “Coherent excitation of Rydberg atoms in an ultracold gas,” Opt. Commun. 264, 293–298 (2006).
[Crossref]

West, P. J.

R. Beigang, K. Lücke, D. Schmidt, A. Timmermann, and P. J. West, “One-photon laser spectroscopy of Rydberg series from metastable levels in calcium and strontium,” Phys. Scripta 26, 183–188 (1982).
[Crossref]

Westermann, S.

J. Deiglmayr, M. Reetz-Lamour, T. Amthor, S. Westermann, A. L. de Oliveira, and M. Weidemüller, “Coherent excitation of Rydberg atoms in an ultracold gas,” Opt. Commun. 264, 293–298 (2006).
[Crossref]

Wilk, T.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

Wilson, A. C.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105(4), 741–748 (2011).
[Crossref]

Wineland, D. J.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105(4), 741–748 (2011).
[Crossref]

J. J. Bollinger, J. D. Prestage, W. M. Itano, and D. J. Wineland, “Laser-cooled-atomic frequency standard,” Phys. Rev. Lett. 54, 1000 (1985).
[Crossref] [PubMed]

Wolters, J.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

Wynne, J. J.

Yin-wenM, L.

Yoshida, S.

B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, H. R. Sadeghpour, S. Yoshida, and J. Burgdörfer, “Ultra-long-range Rydberg molecules in a divalent atomic system,” Phys. Rev. A 92, 031403R (2015).
[Crossref]

Zhang, X. L.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Zoller, P.

F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, and G. Pupillo, “Supersolid droplet crystal in a dipole-blockaded gas,” Phys. Rev. Lett. 105, 135301 (2010).
[Crossref]

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

Appl. Phys. B (3)

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105(4), 741–748 (2011).
[Crossref]

Y. Li, T. Ido, T. Eichler, and H. Katori, “Narrow-line diode laser system for laser cooling of strontium atoms on the intercombination transition,” Appl. Phys. B 78(3), 315–320 (2004).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(31), 97–105 (1983).
[Crossref]

Appl. Phys. Lett. (1)

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494 (2000).
[Crossref]

Electron. Lett. (1)

D. L. Hart, L. Goldberg, and W. K. Burns, “Red light generation by sum frequency mixing of Er/Yb fibre amplifier output in QPM LiNbO3,” Electron. Lett. 35(1), 52–53 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

J. Appl. Phys. (3)

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637 (1969).
[Crossref]

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597 (1968).
[Crossref]

D. S. Hum, R. K. Routel, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101, 093108 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Phys. B (3)

C. L. Vaillant, M. P. A. Jones, and R. M. Potvliege, “Long-range Rydberg-Rydberg interactions in calcium, strontium and ytterbium,” J. Phys. B 45(13), 135004 (2012).
[Crossref]

R. Mukherjee, J. Millen, R. Nath, M. P. A. Jones, and T. Pohl, “Many-body physics with alkaline-earth Rydberg lattices,” J. Phys. B 44(18), 184010 (2011).
[Crossref]

J. Millen, G. Lochead, G. R. Corbett, R. M. Potvliege, and M. P. A. Jones, “Spectroscopy of a cold strontium Rydberg gas,” J. Phys. B 44(18), 184001 (2011).
[Crossref]

Nat. Phys. (2)

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Y. O. Dudin, L. Li, F. Bariani, and A. Kuzmich, “Observation of coherent many-body Rabi oscillations,” Nat. Phys. 8, 790–794 (2012).
[Crossref]

Nature (1)

V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, and T. Pfau, “Observation of ultralong-range Rydberg molecules,” Nature 458, 1005–1008 (2009).
[Crossref] [PubMed]

New J. Phys. (1)

T. Manthey, T. M. Weber, T. Niederprüm, P. Langer, V. Guarrera, G. Barontini, and H. Ott, “Scanning electron microscopy of Rydberg-excited Bose-Einstein condensates,” New J. Phys. 16 (8), 083034 (2014).
[Crossref]

Opt. Commun. (1)

J. Deiglmayr, M. Reetz-Lamour, T. Amthor, S. Westermann, A. L. de Oliveira, and M. Weidemüller, “Coherent excitation of Rydberg atoms in an ultracold gas,” Opt. Commun. 264, 293–298 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (6)

A. M. Hankin, Y. -Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong, A. J. Landahl, and G. W. Biedermann, “Two-atom Rydberg blockade using direct 6S to n P excitation,” Phys. Rev. A 89, 033416 (2014).
[Crossref]

B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, H. R. Sadeghpour, S. Yoshida, and J. Burgdörfer, “Ultra-long-range Rydberg molecules in a divalent atomic system,” Phys. Rev. A 92, 031403R (2015).
[Crossref]

R. P. Abel, C. Carr, U. Krohn, and C. S. Adams, “Electrometry near a dielectric surface using Rydberg electromagnetically induced transparency,” Phys. Rev. A 84, 023408 (2011).
[Crossref]

T. Keating, R. L. Cook, A. M. Hankin, Y.-Y. Jau, G. W. Biedermann, and I. H. Deutsch, “Robust quantum logic in neutral atoms via adiabatic Rydberg dressing,” Phys. Rev. A 91, 012337 (2015).
[Crossref]

G. Lochead, D. Boddy, D. P. Sadler, C. S. Adams, and M. P. A. Jones, “Number-resolved imaging of excited-state atoms using a scanning autoionization microscope,” Phys. Rev. A 87, 053409 (2013).
[Crossref]

M. Saffman and T. G. Walker, “Creating single-atom and single-photon sources from entangled atomic ensembles,” Phys. Rev. A 66, 065403 (2002).
[Crossref]

Phys. Rev. Lett. (14)

C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour, “Creation of polar and nonpolar ultra-long-range Rydberg molecules,” Phys. Rev. Lett. 85, 2458 (2000).
[Crossref] [PubMed]

C. Boisseau, I. Simbotin, and R. Côté, “Macrodimers: Ultralong range Rydberg molecules,” Phys. Rev. Lett. 88, 133004 (2002).
[Crossref] [PubMed]

J. J. Bollinger, J. D. Prestage, W. M. Itano, and D. J. Wineland, “Laser-cooled-atomic frequency standard,” Phys. Rev. Lett. 54, 1000 (1985).
[Crossref] [PubMed]

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Palchikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett. 100, 053001 (2008).
[Crossref] [PubMed]

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

N. Henkel, R. Nath, and T. Pohl, “Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates,” Phys. Rev. Lett. 104, 195302 (2010).
[Crossref] [PubMed]

F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, and G. Pupillo, “Supersolid droplet crystal in a dipole-blockaded gas,” Phys. Rev. Lett. 105, 135301 (2010).
[Crossref]

L. I. R. Gil, R. Mukherjee, E. M. Bridge, M. P. A. Jones, and T. Pohl, “Spin squeezing in a Rydberg lattice clock,” Phys. Rev. Lett. 112, 103601 (2014).
[Crossref] [PubMed]

V. D. Ovsyanikov, A. Derevianko, and K. Gibble, “Rydberg spectroscopy in an optical lattice: Blackbody thermometry for atomic clocks,” Phys. Rev. Lett. 107, 093003 (2011).
[Crossref]

J. Millen, G. Lochead, and M. P. A. Jones, “Two-electron excitation of an interacting cold Rydberg gas,” Phys. Rev. Lett. 105, 213004 (2010).
[Crossref]

Phys. Scr. (1)

J. R. Rubbmark and S. A. Borgström, “Rydberg series in strontium found in absorption by selectively laser-excited atoms,” Phys. Scr. 18(4), 196–208 (1978).
[Crossref]

Phys. Scripta (1)

R. Beigang, K. Lücke, D. Schmidt, A. Timmermann, and P. J. West, “One-photon laser spectroscopy of Rydberg series from metastable levels in calcium and strontium,” Phys. Scripta 26, 183–188 (1982).
[Crossref]

Other (7)

B. J. DeSalvo, J. A. Aman, C. Gaul, T. Pohl, S. Yoshida, J. Burgdörfer, K. R. A. Hazzard, F. B. Dunning, and T. C. Killian, “Rydberg-blockade effects in Autler-Townes spectra of ultracold strontium,” http://arxiv.org/abs/1510.08032 .

R. J. Rengelink, R. P. M. J. W. Notermans, and W. Vassen, “A simple 2 W continuous-wave laser system for trapping ultracold metastable helium atoms at the 319.8 nm magic wavelength,” http://arxiv.org/abs/1511.00443 .

D. Boddy, Doctoral Thesis, “First observations of Rydberg blockade in a frozen gas of divalent atoms,” Durham University http://etheses.dur.ac.uk/10740/ (2014).

E. M. Bridge, N. C. Keegan, A. D. Bounds, D. Boddy, D. P. Sadler, and M. P. A. Jones, “A tunable CW UV laser with < 35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states: supporting data,” http://arxiv.org/abs/1512.04888 .

T. Puppe, Toptica Photonics, and AG Lochhamer, Schlag 19, 82166 Graefelfing (Munich), Germany (personal communication, 2015).

F. L. Walls and E. S. Ferre-Pikal, “Frequency standards, characterization,” Wiley Encyclopedia of Electrical and Electronics Engineering12, 767–775 (1999).

K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, “Optical damage and light-induced absorption in near-stoichiometric LiTaO3 crystal,” in Proceedings of Lasers and Electro-Optics 2001 Technical Digest (CLEO, 2001), pp. 138–139.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Energy level diagram of relevant transitions in atomic Sr. The primary cooling transition at 461 nm is used for Zeeman slowing and cooling the atoms in a magneto-optical trap (MOT). Two-photon excitation with the 461 nm and 413 nm lasers drives atoms up to the singlet Rydberg series, as was used for our previous work [10,28,29]. The second-stage cooling transition at 689 nm is used to cool the atoms to ~ 1 – 10µK in a MOT. Two-photon excitation with 689 nm and 319 nm, or 698 nm and 316 nm drives the atoms up to the triplet Rydberg series. (b) Schematic of the laser system. A PPSLT crystal is used to sum the frequencies of two infra-red lasers at wavelengths of λ1 and λ2. The resulting light at λ3 is frequency doubled to produce > 200mW in the UV (λ4). The laser frequency is locked to an optical transfer cavity stabilized to the 5s2 1S0 5s5p 3P1 intercombination line in Sr at 689 nm. A wideband electro-optic modulator (EOM) is used to bridge the frequency gap between the cavity mode and the Rydberg transition. The laser frequency is measured on a GPS-referenced optical frequency comb. (EDFA = Er-doped fiber amplifier, YDFA = Yb-doped fiber amplifier. D1 − D4 = dichroic mirrors).

Fig. 2
Fig. 2

(a) Dependence of the SFG efficiency on PPSLT crystal temperature T. Measured data are shown in red (a temperature independent background due to non-phase-matched SHG has been removed), with the prediction from Eq. (1) and Eq. (2) shown in black dashes. A small temperature offset (0.55 °C) has been added to the prediction plot to match the experimental data. (b) Output power (P3) of the SFG process for a range of input powers (P1 × P2). Data points are shown as red circles, and the blue line shows the least-squares linear fit to the data.

Fig. 3
Fig. 3

Allan deviation plots showing the fractional frequency instability of the 638 nm (red squares) and 689 nm (blue diamonds) lasers as measured by the optical frequency comb. Measurements were made with either a 1 ms or 1 s frequency counter gate time, as indicated by filled and empty symbols respectively. The black line shows the specified instability of the GPSDO, reproduced with permission from Jackson Labs.

Fig. 4
Fig. 4

(a) Ion signal obtained from continuous scans of the UV detuning (measured relative to the start of the scan) in the regions around n ≈ 50 and n ≈ 80. The intensities used for the excitation are ~ 20 mW cm−2 and ~ 1 W cm−2 for the 689 nm and UV beams respectively, and each beam is larger than the size of the atom cloud. The variation in signal height across the scan is largely due to depletion of atoms from the MOT and is not an indication of transition strength. The frequency axis of the scans is calibrated on a 10 MHz resolution wavemeter (High Finesse). The offset frequencies are are ~ 940.649 THz (n ≈ 50) and ~ 941.616 THz (n ≈ 80). (b) High resolution scan of the 5s5p3P1, mJ = −1 → 5s37s3S1, mJ = 0 transition. The solid blue line shows the Voigt profile fit. The intensities used for the excitation are ~ 0.1 mW cm−2 and ~ 250 mW cm−2 for the 689 nm and UV beams respectively, and each beam is larger than the size of the atom cloud. The central frequency of this feature is at ~ 939.274 THz.

Tables (1)

Tables Icon

Table 1 Wavelengths achievable with our laser system and the corresponding principal quantum numbers n of the Sr Rydberg states we can access. Wavelengths λ1 and λ2 are combined using SFG to produce λ3, which is frequency doubled to give the desired wavelength, λ4.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ k ( T ) 2 π = n e , λ 3 ( T ) λ 3 n e , λ 2 ( T ) λ 2 n e , λ 1 ( T ) λ 1 1 Λ c ( T ) .
η ( T ) sin 2 ( Δ k ( T ) L / 2 ) ( Δ k ( T ) L / 2 ) 2 .
η = P 3 P 1 P 2 L = ( 0.53 ± 0.02 ) % W 1 cm 1 ,

Metrics