Abstract

The optical activity of fabricated metallic nanostructures is investigated by complete polarimetry. While lattices decorated with nanoscale gammadia etched in thin metallic films have been described as two dimensional, planar nanostructures, they are better described as quasi-planar structures with some three dimensional character. We find that the optical activity of these structures arises not only from the dissymmetric backing by a substrate but, more importantly, from the selective rounding of the nanostructure edges. A true chiroptical response in the far-field is only allowed when the gammadia contain these non-planar features. This is demonstrated by polarimetric measurements in conjunction with electrodynamical simulations based on the discrete dipole approximation that consider non-ideal gammadia. It is also shown that subtle planar dissymmetries in gammadia are sufficient to generate asymmetric transmission of circular polarized light.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical chirality without optical activity: How surface plasmons give a twist to light

Aurélien Drezet, Cyriaque Genet, Jean-Yves Laluet, and Thomas W. Ebbesen
Opt. Express 16(17) 12559-12570 (2008)

Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene

Tun Cao, Chen-Wei Wei, Li-Bang Mao, and Shuai Wang
Opt. Express 23(14) 18620-18629 (2015)

Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami
Opt. Express 15(15) 9575-9583 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
    [Crossref] [PubMed]
  2. W. Zhang, A. Potts, and D. M. Bagnall, “Giant optical activity in dielectric planar metamaterials with two-dimensional chirality,” J. Opt. A: Pure Appl. Opt. 8, 878–890 (2006).
    [Crossref]
  3. K. Jefimovs, N. Saito, Y. Ino, T. Vallius, P. Vahimaa, J. Turunen, R. Shimano, M. Kauranen, Y. Svirko, and M. Kuwata-Gonokami, “Optical activity in chiral gold nanogratings,” Microelectron. Eng. 78–79, 448–451 (2005).
    [Crossref]
  4. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
    [Crossref] [PubMed]
  5. A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42, 7028–7041 (2013).
    [Crossref] [PubMed]
  6. Y. J. Liu, S. Wu, D. Popp, E. S. P. Leong, Y. L. Hor, W. K. Phua, K. L. Mok, J. H. Teng, R. Robinson, E. P. Li, and E. H. Khoo, “Effect of asymmetrical nanostructures on detecting the optical rotational properties of large biofilament structures,” Proc. SPIE,  8809, 88090D (2013).
    [Crossref]
  7. K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planar chiral photonic crystals,” Opt. Express 16, 7189–7196 (2008).
    [Crossref] [PubMed]
  8. M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 031010 (2012).
  9. T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21, 27841–27851 (2013).
    [Crossref]
  10. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Light-induced terahertz optical activity,” Opt. Lett. 34, 3000–3002 (2009).
    [Crossref] [PubMed]
  11. D.-H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16, 11802–11807 (2008).
    [Crossref] [PubMed]
  12. B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: theoretical study,” Phys. Rev. A 76, 023811 (2007).
    [Crossref]
  13. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and X. Luo, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
    [Crossref] [PubMed]
  14. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13, 024006 (2011).
    [Crossref]
  15. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
    [Crossref]
  16. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N.I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
    [Crossref] [PubMed]
  17. Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mat. 1, 482–488 (2013).
    [Crossref]
  18. X. Ma, C. Huang, M. Pu, Y. Wang, Z. Zhao, C. Wang, and X. Luo, “Dual-band asymmetry chiral metamaterial based on planar spiral structure,” Appl. Phys. Lett. 101, 161901 (2012).
    [Crossref]
  19. O. Arteaga, J. Freudenthal, B. Wang, and B. Kahr, “Mueller matrix polarimetry with four photoelastic modulators: theory and calibration,” Appl. Opt. 51, 6805–6817 (2012).
    [Crossref] [PubMed]
  20. O. Arteaga and A. Canillas, “Analytic inversion of the Mueller-Jones polarization matrices for homogeneous media,” Opt. Lett. 35, 559–561 (2010).
    [Crossref] [PubMed]
  21. R. Ossivokski, “Differential matrix formalism for depolarizing anisotropic media,” Opt. Lett. 36, 2330–2332 (2011).
    [Crossref]
  22. O. Arteaga and B. Kahr, “Characterization of homogenous depolarizing media based on Mueller matrix differential decomposition,” Opt. Lett. 38, 1134–1136 (2013).
    [Crossref] [PubMed]
  23. O. Arteaga, “Mueller matrix polarimetry of anisotropic chiral media,” Phd Thesis, Universitat de Barcelona (2010).
  24. O. Arteaga, “A note on optical activity and extrinsic chirality,” 2015, http://arxiv.org/abs/1508.02422 .
  25. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [Crossref]
  26. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25, 2693–2703 (2008).
    [Crossref]
  27. O. Arteaga, B. M. Maoz, S. Nichols, G. Markovich, and B. Kahr, “Complete polarimetry on the asymmetric transmission through subwavelength hole arrays,” Opt. Express 22, 13719–13732 (2014).
    [Crossref] [PubMed]
  28. O. Arteaga, “Number of independent parameters in the Mueller matrix representation of homogeneous depolar-izing media,” Opt. Lett. 38, 1131–1133 (2013).
    [Crossref] [PubMed]
  29. S.I. Maslovski, D. K. Morits, and S. A. Tretyakov, “Symmetry and reciprocity constraints on diffraction by gratings of quasi-planar particles,” J. Opt. A: Pure Appl. Opt. 11, 074004 (2009).
    [Crossref]

2014 (1)

2013 (6)

O. Arteaga, “Number of independent parameters in the Mueller matrix representation of homogeneous depolar-izing media,” Opt. Lett. 38, 1131–1133 (2013).
[Crossref] [PubMed]

O. Arteaga and B. Kahr, “Characterization of homogenous depolarizing media based on Mueller matrix differential decomposition,” Opt. Lett. 38, 1134–1136 (2013).
[Crossref] [PubMed]

T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21, 27841–27851 (2013).
[Crossref]

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42, 7028–7041 (2013).
[Crossref] [PubMed]

Y. J. Liu, S. Wu, D. Popp, E. S. P. Leong, Y. L. Hor, W. K. Phua, K. L. Mok, J. H. Teng, R. Robinson, E. P. Li, and E. H. Khoo, “Effect of asymmetrical nanostructures on detecting the optical rotational properties of large biofilament structures,” Proc. SPIE,  8809, 88090D (2013).
[Crossref]

Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mat. 1, 482–488 (2013).
[Crossref]

2012 (3)

X. Ma, C. Huang, M. Pu, Y. Wang, Z. Zhao, C. Wang, and X. Luo, “Dual-band asymmetry chiral metamaterial based on planar spiral structure,” Appl. Phys. Lett. 101, 161901 (2012).
[Crossref]

O. Arteaga, J. Freudenthal, B. Wang, and B. Kahr, “Mueller matrix polarimetry with four photoelastic modulators: theory and calibration,” Appl. Opt. 51, 6805–6817 (2012).
[Crossref] [PubMed]

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 031010 (2012).

2011 (2)

R. Ossivokski, “Differential matrix formalism for depolarizing anisotropic media,” Opt. Lett. 36, 2330–2332 (2011).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13, 024006 (2011).
[Crossref]

2010 (2)

O. Arteaga and A. Canillas, “Analytic inversion of the Mueller-Jones polarization matrices for homogeneous media,” Opt. Lett. 35, 559–561 (2010).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

2009 (2)

N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Light-induced terahertz optical activity,” Opt. Lett. 34, 3000–3002 (2009).
[Crossref] [PubMed]

S.I. Maslovski, D. K. Morits, and S. A. Tretyakov, “Symmetry and reciprocity constraints on diffraction by gratings of quasi-planar particles,” J. Opt. A: Pure Appl. Opt. 11, 074004 (2009).
[Crossref]

2008 (3)

2007 (2)

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: theoretical study,” Phys. Rev. A 76, 023811 (2007).
[Crossref]

2006 (2)

W. Zhang, A. Potts, and D. M. Bagnall, “Giant optical activity in dielectric planar metamaterials with two-dimensional chirality,” J. Opt. A: Pure Appl. Opt. 8, 878–890 (2006).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N.I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

2005 (2)

K. Jefimovs, N. Saito, Y. Ino, T. Vallius, P. Vahimaa, J. Turunen, R. Shimano, M. Kauranen, Y. Svirko, and M. Kuwata-Gonokami, “Optical activity in chiral gold nanogratings,” Microelectron. Eng. 78–79, 448–451 (2005).
[Crossref]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and X. Luo, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

2003 (1)

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

1994 (1)

Arteaga, O.

Bagnall, D. M.

W. Zhang, A. Potts, and D. M. Bagnall, “Giant optical activity in dielectric planar metamaterials with two-dimensional chirality,” J. Opt. A: Pure Appl. Opt. 8, 878–890 (2006).
[Crossref]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Bai, B.

Barron, L. D.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Ben-Moshe, A.

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42, 7028–7041 (2013).
[Crossref] [PubMed]

Canillas, A.

Cao, T.

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Chen, Y.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N.I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Cryan, M. J.

Draine, B. T.

Dregely, D.

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 031010 (2012).

Fedotov, V. A.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13, 024006 (2011).
[Crossref]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N.I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Flatau, P. J.

Freudenthal, J.

Gadegaard, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Giessen, H.

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 031010 (2012).

Gokkavas, M.

Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mat. 1, 482–488 (2013).
[Crossref]

Govorov, A. O.

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42, 7028–7041 (2013).
[Crossref] [PubMed]

Hendry, E.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Hentschel, M.

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 031010 (2012).

Hor, Y. L.

Y. J. Liu, S. Wu, D. Popp, E. S. P. Leong, Y. L. Hor, W. K. Phua, K. L. Mok, J. H. Teng, R. Robinson, E. P. Li, and E. H. Khoo, “Effect of asymmetrical nanostructures on detecting the optical rotational properties of large biofilament structures,” Proc. SPIE,  8809, 88090D (2013).
[Crossref]

Huang, C.

X. Ma, C. Huang, M. Pu, Y. Wang, Z. Zhao, C. Wang, and X. Luo, “Dual-band asymmetry chiral metamaterial based on planar spiral structure,” Appl. Phys. Lett. 101, 161901 (2012).
[Crossref]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and X. Luo, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

K. Jefimovs, N. Saito, Y. Ino, T. Vallius, P. Vahimaa, J. Turunen, R. Shimano, M. Kauranen, Y. Svirko, and M. Kuwata-Gonokami, “Optical activity in chiral gold nanogratings,” Microelectron. Eng. 78–79, 448–451 (2005).
[Crossref]

Jefimovs, K.

K. Jefimovs, N. Saito, Y. Ino, T. Vallius, P. Vahimaa, J. Turunen, R. Shimano, M. Kauranen, Y. Svirko, and M. Kuwata-Gonokami, “Optical activity in chiral gold nanogratings,” Microelectron. Eng. 78–79, 448–451 (2005).
[Crossref]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and X. Luo, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Kadodwala, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Kahr, B.

Kanda, N.

Karvinen, P.

Kauranen, M.

K. Jefimovs, N. Saito, Y. Ino, T. Vallius, P. Vahimaa, J. Turunen, R. Shimano, M. Kauranen, Y. Svirko, and M. Kuwata-Gonokami, “Optical activity in chiral gold nanogratings,” Microelectron. Eng. 78–79, 448–451 (2005).
[Crossref]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and X. Luo, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Khardikov, V. V.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

Khoo, E. H.

Y. J. Liu, S. Wu, D. Popp, E. S. P. Leong, Y. L. Hor, W. K. Phua, K. L. Mok, J. H. Teng, R. Robinson, E. P. Li, and E. H. Khoo, “Effect of asymmetrical nanostructures on detecting the optical rotational properties of large biofilament structures,” Proc. SPIE,  8809, 88090D (2013).
[Crossref]

Konishi, K.

Kuwata-Gonokami, M.

N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Light-induced terahertz optical activity,” Opt. Lett. 34, 3000–3002 (2009).
[Crossref] [PubMed]

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planar chiral photonic crystals,” Opt. Express 16, 7189–7196 (2008).
[Crossref] [PubMed]

K. Jefimovs, N. Saito, Y. Ino, T. Vallius, P. Vahimaa, J. Turunen, R. Shimano, M. Kauranen, Y. Svirko, and M. Kuwata-Gonokami, “Optical activity in chiral gold nanogratings,” Microelectron. Eng. 78–79, 448–451 (2005).
[Crossref]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and X. Luo, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

Kwon, D.-H.

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Leong, E. S. P.

Y. J. Liu, S. Wu, D. Popp, E. S. P. Leong, Y. L. Hor, W. K. Phua, K. L. Mok, J. H. Teng, R. Robinson, E. P. Li, and E. H. Khoo, “Effect of asymmetrical nanostructures on detecting the optical rotational properties of large biofilament structures,” Proc. SPIE,  8809, 88090D (2013).
[Crossref]

Li, E. P.

Y. J. Liu, S. Wu, D. Popp, E. S. P. Leong, Y. L. Hor, W. K. Phua, K. L. Mok, J. H. Teng, R. Robinson, E. P. Li, and E. H. Khoo, “Effect of asymmetrical nanostructures on detecting the optical rotational properties of large biofilament structures,” Proc. SPIE,  8809, 88090D (2013).
[Crossref]

Li, Z.

Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mat. 1, 482–488 (2013).
[Crossref]

Liu, Y. J.

Y. J. Liu, S. Wu, D. Popp, E. S. P. Leong, Y. L. Hor, W. K. Phua, K. L. Mok, J. H. Teng, R. Robinson, E. P. Li, and E. H. Khoo, “Effect of asymmetrical nanostructures on detecting the optical rotational properties of large biofilament structures,” Proc. SPIE,  8809, 88090D (2013).
[Crossref]

Luo, X.

X. Ma, C. Huang, M. Pu, Y. Wang, Z. Zhao, C. Wang, and X. Luo, “Dual-band asymmetry chiral metamaterial based on planar spiral structure,” Appl. Phys. Lett. 101, 161901 (2012).
[Crossref]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and X. Luo, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

Ma, X.

X. Ma, C. Huang, M. Pu, Y. Wang, Z. Zhao, C. Wang, and X. Luo, “Dual-band asymmetry chiral metamaterial based on planar spiral structure,” Appl. Phys. Lett. 101, 161901 (2012).
[Crossref]

Maoz, B. M.

O. Arteaga, B. M. Maoz, S. Nichols, G. Markovich, and B. Kahr, “Complete polarimetry on the asymmetric transmission through subwavelength hole arrays,” Opt. Express 22, 13719–13732 (2014).
[Crossref] [PubMed]

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42, 7028–7041 (2013).
[Crossref] [PubMed]

Markovich, G.

O. Arteaga, B. M. Maoz, S. Nichols, G. Markovich, and B. Kahr, “Complete polarimetry on the asymmetric transmission through subwavelength hole arrays,” Opt. Express 22, 13719–13732 (2014).
[Crossref] [PubMed]

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42, 7028–7041 (2013).
[Crossref] [PubMed]

Maslovski, S.I.

S.I. Maslovski, D. K. Morits, and S. A. Tretyakov, “Symmetry and reciprocity constraints on diffraction by gratings of quasi-planar particles,” J. Opt. A: Pure Appl. Opt. 11, 074004 (2009).
[Crossref]

Meng, X.

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N.I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Mok, K. L.

Y. J. Liu, S. Wu, D. Popp, E. S. P. Leong, Y. L. Hor, W. K. Phua, K. L. Mok, J. H. Teng, R. Robinson, E. P. Li, and E. H. Khoo, “Effect of asymmetrical nanostructures on detecting the optical rotational properties of large biofilament structures,” Proc. SPIE,  8809, 88090D (2013).
[Crossref]

Morits, D. K.

S.I. Maslovski, D. K. Morits, and S. A. Tretyakov, “Symmetry and reciprocity constraints on diffraction by gratings of quasi-planar particles,” J. Opt. A: Pure Appl. Opt. 11, 074004 (2009).
[Crossref]

Nichols, S.

Ossivokski, R.

Ozbay, E.

Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mat. 1, 482–488 (2013).
[Crossref]

Papakostas, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Phua, W. K.

Y. J. Liu, S. Wu, D. Popp, E. S. P. Leong, Y. L. Hor, W. K. Phua, K. L. Mok, J. H. Teng, R. Robinson, E. P. Li, and E. H. Khoo, “Effect of asymmetrical nanostructures on detecting the optical rotational properties of large biofilament structures,” Proc. SPIE,  8809, 88090D (2013).
[Crossref]

Plum, E.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13, 024006 (2011).
[Crossref]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Popp, D.

Y. J. Liu, S. Wu, D. Popp, E. S. P. Leong, Y. L. Hor, W. K. Phua, K. L. Mok, J. H. Teng, R. Robinson, E. P. Li, and E. H. Khoo, “Effect of asymmetrical nanostructures on detecting the optical rotational properties of large biofilament structures,” Proc. SPIE,  8809, 88090D (2013).
[Crossref]

Potts, A.

W. Zhang, A. Potts, and D. M. Bagnall, “Giant optical activity in dielectric planar metamaterials with two-dimensional chirality,” J. Opt. A: Pure Appl. Opt. 8, 878–890 (2006).
[Crossref]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N.I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Pu, M.

X. Ma, C. Huang, M. Pu, Y. Wang, Z. Zhao, C. Wang, and X. Luo, “Dual-band asymmetry chiral metamaterial based on planar spiral structure,” Appl. Phys. Lett. 101, 161901 (2012).
[Crossref]

Robinson, R.

Y. J. Liu, S. Wu, D. Popp, E. S. P. Leong, Y. L. Hor, W. K. Phua, K. L. Mok, J. H. Teng, R. Robinson, E. P. Li, and E. H. Khoo, “Effect of asymmetrical nanostructures on detecting the optical rotational properties of large biofilament structures,” Proc. SPIE,  8809, 88090D (2013).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N.I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and X. Luo, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

K. Jefimovs, N. Saito, Y. Ino, T. Vallius, P. Vahimaa, J. Turunen, R. Shimano, M. Kauranen, Y. Svirko, and M. Kuwata-Gonokami, “Optical activity in chiral gold nanogratings,” Microelectron. Eng. 78–79, 448–451 (2005).
[Crossref]

Schaferling, M.

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 031010 (2012).

Schwanecke, A. S.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

Shimano, R.

K. Jefimovs, N. Saito, Y. Ino, T. Vallius, P. Vahimaa, J. Turunen, R. Shimano, M. Kauranen, Y. Svirko, and M. Kuwata-Gonokami, “Optical activity in chiral gold nanogratings,” Microelectron. Eng. 78–79, 448–451 (2005).
[Crossref]

Simpson, R. E.

Svirko, Y.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: theoretical study,” Phys. Rev. A 76, 023811 (2007).
[Crossref]

K. Jefimovs, N. Saito, Y. Ino, T. Vallius, P. Vahimaa, J. Turunen, R. Shimano, M. Kauranen, Y. Svirko, and M. Kuwata-Gonokami, “Optical activity in chiral gold nanogratings,” Microelectron. Eng. 78–79, 448–451 (2005).
[Crossref]

Svirko, Y. P.

Teng, J. H.

Y. J. Liu, S. Wu, D. Popp, E. S. P. Leong, Y. L. Hor, W. K. Phua, K. L. Mok, J. H. Teng, R. Robinson, E. P. Li, and E. H. Khoo, “Effect of asymmetrical nanostructures on detecting the optical rotational properties of large biofilament structures,” Proc. SPIE,  8809, 88090D (2013).
[Crossref]

Tretyakov, S. A.

S.I. Maslovski, D. K. Morits, and S. A. Tretyakov, “Symmetry and reciprocity constraints on diffraction by gratings of quasi-planar particles,” J. Opt. A: Pure Appl. Opt. 11, 074004 (2009).
[Crossref]

Turunen, J.

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planar chiral photonic crystals,” Opt. Express 16, 7189–7196 (2008).
[Crossref] [PubMed]

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: theoretical study,” Phys. Rev. A 76, 023811 (2007).
[Crossref]

K. Jefimovs, N. Saito, Y. Ino, T. Vallius, P. Vahimaa, J. Turunen, R. Shimano, M. Kauranen, Y. Svirko, and M. Kuwata-Gonokami, “Optical activity in chiral gold nanogratings,” Microelectron. Eng. 78–79, 448–451 (2005).
[Crossref]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and X. Luo, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

Vahimaa, P.

K. Jefimovs, N. Saito, Y. Ino, T. Vallius, P. Vahimaa, J. Turunen, R. Shimano, M. Kauranen, Y. Svirko, and M. Kuwata-Gonokami, “Optical activity in chiral gold nanogratings,” Microelectron. Eng. 78–79, 448–451 (2005).
[Crossref]

Vallius, T.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: theoretical study,” Phys. Rev. A 76, 023811 (2007).
[Crossref]

K. Jefimovs, N. Saito, Y. Ino, T. Vallius, P. Vahimaa, J. Turunen, R. Shimano, M. Kauranen, Y. Svirko, and M. Kuwata-Gonokami, “Optical activity in chiral gold nanogratings,” Microelectron. Eng. 78–79, 448–451 (2005).
[Crossref]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and X. Luo, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

Wang, B.

Wang, C.

X. Ma, C. Huang, M. Pu, Y. Wang, Z. Zhao, C. Wang, and X. Luo, “Dual-band asymmetry chiral metamaterial based on planar spiral structure,” Appl. Phys. Lett. 101, 161901 (2012).
[Crossref]

Wang, Y.

X. Ma, C. Huang, M. Pu, Y. Wang, Z. Zhao, C. Wang, and X. Luo, “Dual-band asymmetry chiral metamaterial based on planar spiral structure,” Appl. Phys. Lett. 101, 161901 (2012).
[Crossref]

Wei, C.

Werner, D. H.

Werner, P. L.

Wu, S.

Y. J. Liu, S. Wu, D. Popp, E. S. P. Leong, Y. L. Hor, W. K. Phua, K. L. Mok, J. H. Teng, R. Robinson, E. P. Li, and E. H. Khoo, “Effect of asymmetrical nanostructures on detecting the optical rotational properties of large biofilament structures,” Proc. SPIE,  8809, 88090D (2013).
[Crossref]

Zhang, L.

Zhang, W.

W. Zhang, A. Potts, and D. M. Bagnall, “Giant optical activity in dielectric planar metamaterials with two-dimensional chirality,” J. Opt. A: Pure Appl. Opt. 8, 878–890 (2006).
[Crossref]

Zhao, Z.

X. Ma, C. Huang, M. Pu, Y. Wang, Z. Zhao, C. Wang, and X. Luo, “Dual-band asymmetry chiral metamaterial based on planar spiral structure,” Appl. Phys. Lett. 101, 161901 (2012).
[Crossref]

Zheludev, N. I.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13, 024006 (2011).
[Crossref]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Zheludev, N.I.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N.I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Adv. Opt. Mat. (1)

Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mat. 1, 482–488 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Ma, C. Huang, M. Pu, Y. Wang, Z. Zhao, C. Wang, and X. Luo, “Dual-band asymmetry chiral metamaterial based on planar spiral structure,” Appl. Phys. Lett. 101, 161901 (2012).
[Crossref]

Chem. Soc. Rev. (1)

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42, 7028–7041 (2013).
[Crossref] [PubMed]

J. Opt. (1)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13, 024006 (2011).
[Crossref]

J. Opt. A: Pure Appl. Opt. (2)

W. Zhang, A. Potts, and D. M. Bagnall, “Giant optical activity in dielectric planar metamaterials with two-dimensional chirality,” J. Opt. A: Pure Appl. Opt. 8, 878–890 (2006).
[Crossref]

S.I. Maslovski, D. K. Morits, and S. A. Tretyakov, “Symmetry and reciprocity constraints on diffraction by gratings of quasi-planar particles,” J. Opt. A: Pure Appl. Opt. 11, 074004 (2009).
[Crossref]

J. Opt. Soc. Am. A (2)

Microelectron. Eng. (1)

K. Jefimovs, N. Saito, Y. Ino, T. Vallius, P. Vahimaa, J. Turunen, R. Shimano, M. Kauranen, Y. Svirko, and M. Kuwata-Gonokami, “Optical activity in chiral gold nanogratings,” Microelectron. Eng. 78–79, 448–451 (2005).
[Crossref]

Nano Lett. (1)

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

Nat. Nanotechnol. (1)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. A (1)

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: theoretical study,” Phys. Rev. A 76, 023811 (2007).
[Crossref]

Phys. Rev. Lett. (3)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and X. Luo, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N.I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 031010 (2012).

Proc. SPIE (1)

Y. J. Liu, S. Wu, D. Popp, E. S. P. Leong, Y. L. Hor, W. K. Phua, K. L. Mok, J. H. Teng, R. Robinson, E. P. Li, and E. H. Khoo, “Effect of asymmetrical nanostructures on detecting the optical rotational properties of large biofilament structures,” Proc. SPIE,  8809, 88090D (2013).
[Crossref]

Other (2)

O. Arteaga, “Mueller matrix polarimetry of anisotropic chiral media,” Phd Thesis, Universitat de Barcelona (2010).

O. Arteaga, “A note on optical activity and extrinsic chirality,” 2015, http://arxiv.org/abs/1508.02422 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Pictorial comparison between 2D and 3D chirality. An object (that is not necessarily 2D) is “2D chiral” when it can be brought into congruence with its mirror image when it is lifted from the plane.

Fig. 2
Fig. 2

Scaning electron micrographs of gold gammadia. Panels (a) and (b) show a top view of the left- and right-handed arrays, while panel (c) shows a detail of the 3D character of the gammadia not evident from the top views.

Fig. 3
Fig. 3

The measured CD and CB spectra of the two gammadia samples with opposite handedness in the forward and backward configurations.

Fig. 4
Fig. 4

(a) Spectroscopic simulation of the scattering and absorption cross-section of the 500×500 nm2 the gammadion nanostructure. (b) Surface charge density on the nanostructures at an arbitrary time point. This corresponds to excitation with horizontal linear polarization.

Fig. 5
Fig. 5

Simulated Mueller matrices for four different types of gammadion nanostructures: an ideal gammadion with 4/m symmetry (a), a planar gammadion with one of the four arms narrowed (b) and two non-planar gammadia due to a substrate (c) or rounded edges (d).

Fig. 6
Fig. 6

Comparison of an experimental Mueller matrix measurement in the gammadion array (a) with two simulations (b). The same scale is used for both plots. The simulation in blue corresponds to a single realistic gammadion with narrowed vertical arms, rounded top edges, and backed by a thin Cr layer. The simulation in orange corresponds to a square array of gammadia with each gammadion having the same characteristic as that isolated but spaced by 100 nm from neighbors. All Mueller matrices have been normalized to their element M00.

Fig. 7
Fig. 7

Calculated electric field intensities at a distance of 40 nm from the base of an ideal 500×500 nm2 gold gammadion for unpolarized (a), right circularly polarized (b) and left circularly polarized (c) light of 550 nm. The ratio between the intensity difference for right-and left-CPL illumination with respect to their sum is presented in (d).

Tables (1)

Tables Icon

Table 1 Summary of optical effects in gammadia.

Metrics