Abstract

The Fresnel incoherent correlation holography (FINCH) method is applicable to various techniques of imaging, including fluorescence microscopy. Recently, a FINCH configuration capable of optical sectioning, using a scanning phase pinhole, has been suggested [Optica 1, 70 (2014)]. This capability is highly important in situations that demand the suppression of out-of-focus information from the hologram reconstruction of a specific plane of interest, such as the imaging of thick samples in biology. In this study, parallel-mode scanning using multiple phase pinholes is suggested as a means to shorten the acquisition time in an optical sectioning FINCH configuration. The parallel-mode scanning is enabled through a phase-shifting procedure that extracts the mixed term of two out of three interfering beams.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

Roy Kelner, Barak Katz, and Joseph Rosen
Optica 1(2) 70-74 (2014)

Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging

Joseph Rosen, Nisan Siegel, and Gary Brooker
Opt. Express 19(27) 26249-26268 (2011)

Coded aperture correlation holography–a new type of incoherent digital holograms

A. Vijayakumar, Yuval Kashter, Roy Kelner, and Joseph Rosen
Opt. Express 24(11) 12430-12441 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32(8), 912–914 (2007).
    [Crossref] [PubMed]
  2. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [Crossref] [PubMed]
  3. A. W. Lohmann, “Wavefront reconstruction for incoherent objects,” J. Opt. Soc. Am. 55(11), 1555–1556 (1965).
    [Crossref]
  4. G. Cochran, “New method of making Fresnel transforms with incoherent light,” J. Opt. Soc. Am. 56(11), 1513–1517 (1966).
    [Crossref]
  5. M. K. Kim, “Full color natural light holographic camera,” Opt. Express 21(8), 9636–9642 (2013).
    [Crossref] [PubMed]
  6. O. Cossairt, N. Matsuda, and M. Gupta, “Digital refocusing with incoherent holography,” in Proceedings of IEEE International Conference on Computational Photography (ICCP, 2014).
  7. B. Katz and J. Rosen, “Could SAFE concept be applied for designing a new synthetic aperture telescope?” Opt. Express 19(6), 4924–4936 (2011).
    [Crossref] [PubMed]
  8. Y. Kashter, Y. Rivenson, A. Stern, and J. Rosen, “Sparse synthetic aperture with Fresnel elements (S-SAFE) using digital incoherent holograms,” Opt. Express 23(16), 20941–20960 (2015).
    [Crossref] [PubMed]
  9. M. K. Kim, “Adaptive optics by incoherent digital holography,” Opt. Lett. 37(13), 2694–2696 (2012).
    [Crossref] [PubMed]
  10. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
    [Crossref]
  11. P. Bouchal and Z. Bouchal, “Wide-field common-path incoherent correlation microscopy with a perfect overlapping of interfering beams,” J. Eur. Opt. Soc: Rapid Pub. 8, 13011 (2013).
  12. T. Yanagawa, R. Abe, and Y. Hayasaki, “Three-dimensional mapping of fluorescent nanoparticles using incoherent digital holography,” Opt. Lett. 40(14), 3312–3315 (2015).
    [Crossref] [PubMed]
  13. J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19(27), 26249–26268 (2011).
    [Crossref] [PubMed]
  14. P. Bouchal, J. Kapitán, R. Chmelík, and Z. Bouchal, “Point spread function and two-point resolution in Fresnel incoherent correlation holography,” Opt. Express 19(16), 15603–15620 (2011).
    [Crossref] [PubMed]
  15. X. Lai, S. Zeng, X. Lv, J. Yuan, and L. Fu, “Violation of the Lagrange invariant in an optical imaging system,” Opt. Lett. 38(11), 1896–1898 (2013).
    [Crossref] [PubMed]
  16. J. Rosen and R. Kelner, “Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems,” Opt. Express 22(23), 29048–29066 (2014).
    [Crossref] [PubMed]
  17. X. Lai, S. Xiao, Y. Guo, X. Lv, and S. Zeng, “Experimentally exploiting the violation of the Lagrange invariant for resolution improvement,” Opt. Express 23(24), 31408–31418 (2015).
    [Crossref] [PubMed]
  18. R. Kelner, J. Rosen, and G. Brooker, “Enhanced resolution in Fourier incoherent single channel holography (FISCH) with reduced optical path difference,” Opt. Express 21(17), 20131–20144 (2013).
    [Crossref] [PubMed]
  19. D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Widefield microscopy with infinite depth of field and enhanced lateral resolution based on an image inverting interferometer,” Opt. Commun. 342, 102–108 (2015).
    [Crossref]
  20. G. Brooker, N. Siegel, J. Rosen, N. Hashimoto, M. Kurihara, and A. Tanabe, “In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens,” Opt. Lett. 38(24), 5264–5267 (2013).
    [Crossref] [PubMed]
  21. P. Bouchal and Z. Bouchal, “Non-iterative holographic axial localization using complex amplitude of diffraction-free vortices,” Opt. Express 22(24), 30200–30216 (2014).
    [Crossref] [PubMed]
  22. R. Kelner, B. Katz, and J. Rosen, “Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system,” Optica 1(2), 70–74 (2014).
    [Crossref] [PubMed]
  23. M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10(4), 128–138 (1988).
    [Crossref]
  24. N. Siegel and G. Brooker, “Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy,” Opt. Express 22(19), 22298–22307 (2014).
    [Crossref] [PubMed]
  25. P. K. Rastogi, “Phase shifting applied to four-wave holographic interferometers,” Appl. Opt. 31(11), 1680–1681 (1992).
    [Crossref] [PubMed]
  26. M. A. Volynsky and I. P. Gurov, “Investigation of three-beam interference fringes with controllable phase shift of two reference waves,” Proc. SPIE 7790, 779015 (2010).
    [Crossref]
  27. E. Shtraikh, M. Zieder, R. Kelner, and J. Rosen, “In-line digital holography using adaptive phase pinhole on the Fourier plane,” Asian J. Phys.24(12) 2015, in press.
  28. P.-C. Sun and E. N. Leith, “Broad-source image plane holography as a confocal imaging process,” Appl. Opt. 33(4), 597–602 (1994).
    [Crossref] [PubMed]
  29. P. C. Sun and E. Arons, “Nonscanning confocal ranging system,” Appl. Opt. 34(7), 1254–1261 (1995).
    [Crossref] [PubMed]
  30. R. Chmelík and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng. 38(10), 1635–1639 (1999).
    [Crossref]

2015 (4)

2014 (4)

2013 (5)

2012 (1)

2011 (3)

2010 (1)

M. A. Volynsky and I. P. Gurov, “Investigation of three-beam interference fringes with controllable phase shift of two reference waves,” Proc. SPIE 7790, 779015 (2010).
[Crossref]

2008 (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

2007 (1)

1999 (1)

R. Chmelík and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng. 38(10), 1635–1639 (1999).
[Crossref]

1997 (1)

1995 (1)

1994 (1)

1992 (1)

1988 (1)

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10(4), 128–138 (1988).
[Crossref]

1966 (1)

1965 (1)

Abe, R.

Arons, E.

Babovsky, H.

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Widefield microscopy with infinite depth of field and enhanced lateral resolution based on an image inverting interferometer,” Opt. Commun. 342, 102–108 (2015).
[Crossref]

Bouchal, P.

Bouchal, Z.

Brooker, G.

Chmelík, R.

Cochran, G.

Cossairt, O.

O. Cossairt, N. Matsuda, and M. Gupta, “Digital refocusing with incoherent holography,” in Proceedings of IEEE International Conference on Computational Photography (ICCP, 2014).

Fu, L.

Guo, Y.

Gupta, M.

O. Cossairt, N. Matsuda, and M. Gupta, “Digital refocusing with incoherent holography,” in Proceedings of IEEE International Conference on Computational Photography (ICCP, 2014).

Gurov, I. P.

M. A. Volynsky and I. P. Gurov, “Investigation of three-beam interference fringes with controllable phase shift of two reference waves,” Proc. SPIE 7790, 779015 (2010).
[Crossref]

Harna, Z.

R. Chmelík and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng. 38(10), 1635–1639 (1999).
[Crossref]

Hashimoto, N.

Hayasaki, Y.

Kapitán, J.

Kashter, Y.

Katz, B.

Kelner, R.

Kiessling, A.

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Widefield microscopy with infinite depth of field and enhanced lateral resolution based on an image inverting interferometer,” Opt. Commun. 342, 102–108 (2015).
[Crossref]

Kim, M. K.

Kowarschik, R.

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Widefield microscopy with infinite depth of field and enhanced lateral resolution based on an image inverting interferometer,” Opt. Commun. 342, 102–108 (2015).
[Crossref]

Kurihara, M.

Lai, X.

Leith, E. N.

Lohmann, A. W.

Lv, X.

Matsuda, N.

O. Cossairt, N. Matsuda, and M. Gupta, “Digital refocusing with incoherent holography,” in Proceedings of IEEE International Conference on Computational Photography (ICCP, 2014).

Minsky, M.

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10(4), 128–138 (1988).
[Crossref]

Rastogi, P. K.

Rivenson, Y.

Rosen, J.

Y. Kashter, Y. Rivenson, A. Stern, and J. Rosen, “Sparse synthetic aperture with Fresnel elements (S-SAFE) using digital incoherent holograms,” Opt. Express 23(16), 20941–20960 (2015).
[Crossref] [PubMed]

J. Rosen and R. Kelner, “Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems,” Opt. Express 22(23), 29048–29066 (2014).
[Crossref] [PubMed]

R. Kelner, B. Katz, and J. Rosen, “Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system,” Optica 1(2), 70–74 (2014).
[Crossref] [PubMed]

G. Brooker, N. Siegel, J. Rosen, N. Hashimoto, M. Kurihara, and A. Tanabe, “In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens,” Opt. Lett. 38(24), 5264–5267 (2013).
[Crossref] [PubMed]

R. Kelner, J. Rosen, and G. Brooker, “Enhanced resolution in Fourier incoherent single channel holography (FISCH) with reduced optical path difference,” Opt. Express 21(17), 20131–20144 (2013).
[Crossref] [PubMed]

J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19(27), 26249–26268 (2011).
[Crossref] [PubMed]

B. Katz and J. Rosen, “Could SAFE concept be applied for designing a new synthetic aperture telescope?” Opt. Express 19(6), 4924–4936 (2011).
[Crossref] [PubMed]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32(8), 912–914 (2007).
[Crossref] [PubMed]

E. Shtraikh, M. Zieder, R. Kelner, and J. Rosen, “In-line digital holography using adaptive phase pinhole on the Fourier plane,” Asian J. Phys.24(12) 2015, in press.

Shtraikh, E.

E. Shtraikh, M. Zieder, R. Kelner, and J. Rosen, “In-line digital holography using adaptive phase pinhole on the Fourier plane,” Asian J. Phys.24(12) 2015, in press.

Siegel, N.

Stern, A.

Sun, P. C.

Sun, P.-C.

Tanabe, A.

Volynsky, M. A.

M. A. Volynsky and I. P. Gurov, “Investigation of three-beam interference fringes with controllable phase shift of two reference waves,” Proc. SPIE 7790, 779015 (2010).
[Crossref]

Weigel, D.

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Widefield microscopy with infinite depth of field and enhanced lateral resolution based on an image inverting interferometer,” Opt. Commun. 342, 102–108 (2015).
[Crossref]

Xiao, S.

Yamaguchi, I.

Yanagawa, T.

Yuan, J.

Zeng, S.

Zhang, T.

Zieder, M.

E. Shtraikh, M. Zieder, R. Kelner, and J. Rosen, “In-line digital holography using adaptive phase pinhole on the Fourier plane,” Asian J. Phys.24(12) 2015, in press.

Appl. Opt. (3)

J. Eur. Opt. Soc: Rapid Pub. (1)

P. Bouchal and Z. Bouchal, “Wide-field common-path incoherent correlation microscopy with a perfect overlapping of interfering beams,” J. Eur. Opt. Soc: Rapid Pub. 8, 13011 (2013).

J. Opt. Soc. Am. (2)

Nat. Photonics (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

Opt. Commun. (1)

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Widefield microscopy with infinite depth of field and enhanced lateral resolution based on an image inverting interferometer,” Opt. Commun. 342, 102–108 (2015).
[Crossref]

Opt. Eng. (1)

R. Chmelík and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng. 38(10), 1635–1639 (1999).
[Crossref]

Opt. Express (10)

B. Katz and J. Rosen, “Could SAFE concept be applied for designing a new synthetic aperture telescope?” Opt. Express 19(6), 4924–4936 (2011).
[Crossref] [PubMed]

P. Bouchal, J. Kapitán, R. Chmelík, and Z. Bouchal, “Point spread function and two-point resolution in Fresnel incoherent correlation holography,” Opt. Express 19(16), 15603–15620 (2011).
[Crossref] [PubMed]

J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19(27), 26249–26268 (2011).
[Crossref] [PubMed]

M. K. Kim, “Full color natural light holographic camera,” Opt. Express 21(8), 9636–9642 (2013).
[Crossref] [PubMed]

R. Kelner, J. Rosen, and G. Brooker, “Enhanced resolution in Fourier incoherent single channel holography (FISCH) with reduced optical path difference,” Opt. Express 21(17), 20131–20144 (2013).
[Crossref] [PubMed]

N. Siegel and G. Brooker, “Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy,” Opt. Express 22(19), 22298–22307 (2014).
[Crossref] [PubMed]

J. Rosen and R. Kelner, “Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems,” Opt. Express 22(23), 29048–29066 (2014).
[Crossref] [PubMed]

P. Bouchal and Z. Bouchal, “Non-iterative holographic axial localization using complex amplitude of diffraction-free vortices,” Opt. Express 22(24), 30200–30216 (2014).
[Crossref] [PubMed]

Y. Kashter, Y. Rivenson, A. Stern, and J. Rosen, “Sparse synthetic aperture with Fresnel elements (S-SAFE) using digital incoherent holograms,” Opt. Express 23(16), 20941–20960 (2015).
[Crossref] [PubMed]

X. Lai, S. Xiao, Y. Guo, X. Lv, and S. Zeng, “Experimentally exploiting the violation of the Lagrange invariant for resolution improvement,” Opt. Express 23(24), 31408–31418 (2015).
[Crossref] [PubMed]

Opt. Lett. (6)

Optica (1)

Proc. SPIE (1)

M. A. Volynsky and I. P. Gurov, “Investigation of three-beam interference fringes with controllable phase shift of two reference waves,” Proc. SPIE 7790, 779015 (2010).
[Crossref]

Scanning (1)

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10(4), 128–138 (1988).
[Crossref]

Other (2)

O. Cossairt, N. Matsuda, and M. Gupta, “Digital refocusing with incoherent holography,” in Proceedings of IEEE International Conference on Computational Photography (ICCP, 2014).

E. Shtraikh, M. Zieder, R. Kelner, and J. Rosen, “In-line digital holography using adaptive phase pinhole on the Fourier plane,” Asian J. Phys.24(12) 2015, in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of an optical sectioning FINCH setup: Lo, objective lens; Lc, converging lens; P1 and P2, polarizers; SLM1 and SLM2, spatial light modulators; ao, point source; a1 and a2, point source images.
Fig. 2
Fig. 2 Principle of optical sectioning using a phase pinhole in FINCH: Leq, an equivalent lens, representing both the objective lens Lo and the converging lens Lc (Fig. 1); P1 and P2, polarizers; SLM1 and SLM2, spatial light modulators; ao, bo, and co, point sources; a1, b1, c1, a2, b2, and c2, point source images.
Fig. 3
Fig. 3 Masks of (a) a single pinhole and (b) a multiple phase pinholes array.
Fig. 4
Fig. 4 Wave interference in optical sectioning FINCH: Leq, an equivalent lens, representing both the objective lens Lo and the converging lens Lc (Fig. 1); P1 and P2, polarizers; SLM1 and SLM2, spatial light modulators; co, a point source; c1 and c2, point source images; C1, the wave that diverges from the image point c1 over the image sensor plane, composed of parts that pass through the phase pinhole [S(C1)C1] and parts that do not {[1 – S(C1)C1}; C2, the wave that converges towards the image point c2 over the image sensor plane and is not modulated by SLM2; C3, the wave that converges towards the image point c2 over the image sensor plane and is modulated by SLM2, composed of parts that pass through the phase pinhole [S(C3)C3] and parts that do not {[1 – S(C3)C3}. For simplicity, only a single phase pinhole is shown.
Fig. 5
Fig. 5 Optical sectioning FINCH experimental setup: Leq, an equivalent lens, representing both the objective lens Lo and the converging lens Lc (Fig. 1); P1 and P2, polarizers; SLM1 and SLM2, spatial light modulators; RC1 and RC2, resolution charts; BS1, BS2 and BS3, beam splitters (BS1 is used as a beam combiner); LEDs, light emitting diodes; Lis, illumination lenses.
Fig. 6
Fig. 6 Reconstructions of non-sectioning FINCH holograms at plane of best focus for 1951 USAF chart [(a) and (c)] and NBS 1963A chart [(b) and (c)]. (a) and (b) were reconstructed from the first hologram, recorded with the 1951 USAF chart imaged to the plane of SLM2. (c) was reconstructed from the second hologram, recorded with the NBS 1963A chart imaged to the plane of SLM2.
Fig. 7
Fig. 7 Reconstructions of optical sectioning FINCH holograms at plane of best focus for the 1951 USAF chart. In (a) a single phase pinhole was used, while in (b)–(l) multiple phase pinholes were used in parallel, where the spacing between adjacent pinholes (in x and y directions) was set to 88 × g μm, starting with g = 1 in (b) and ending with g = 15 in (l). Results for g = 11 .. 14 are not presented, due to lack of visible difference.
Fig. 8
Fig. 8 Amplitude mean squared error (MSE) between the reconstruction in Fig. 7(a), where scanning was performed using a single pinhole, and the reconstructions in Figs. 7(b) through 7(l), where parallel mode scanning was performed using multiple phase pinholes, with g values of 1 through 15, respectively, indicating the gap between adjacent phase pinhole, in integer multiplies of the width of a single pinhole. The result for g value of 0 is against the reconstruction of Fig. 6(a), from a non-sectioning FINCH hologram.
Fig. 9
Fig. 9 Reconstructions of optical sectioning FINCH holograms at plane of best focus for the NBS 1963A chart. In (a) a single phase pinhole was used, while in (b)–(l) multiple phase pinholes were used in parallel, where the spacing between adjacent pinholes (in x and y directions) was set to 88 × g μm, starting with g = 1 in (b) and ending with g = 15 in (l). Results for g = 11 .. 14 are not presented, due to lack of visible difference.
Fig. 10
Fig. 10 Amplitude mean squared error (MSE) between the reconstruction in Fig. 9(a), where scanning was performed using a single pinhole, and the reconstructions in Figs. 9(b) through 9(l), where parallel mode scanning was performed using multiple phase pinholes, with g values of 1 through 15, respectively, indicating the gap between adjacent phase pinhole, in integer multiplies of the width of a single pinhole. The result for g value of 0 is against the reconstruction of Fig. 6(c), from a non-sectioning FINCH hologram.
Fig. 11
Fig. 11 Regular phase-shifting vs. TWIPS in OS-FINCH. In (a) and (b) hologram reconstructions from complex FINCH holograms are shown, each calculated using a regular phase-shifting procedure, based on three different exposures. Each of the holograms was recorded for a single position of multiple phase pinholes, with the distance between adjacent phase pinholes set to 88 × g μm, with g = 15 (a) and g = 1 (b). (c) and (d) are the TWIPS equivalents of (a) and (b), respectively, where each complex FINCH hologram was calculated based on six different exposures. Using regular phase-shifting, it is evident that the larger the number of phase pinholes, comparing (a) and (b), the more prominent are the noise-like artifacts in the reconstructions. In contrast, these artifacts are not noticed in the TWIPS reconstructions of (c) and (d).

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

I( x,y;{ a o , b o , c o } )= | e i θ k A 1 + A 2 | 2 + | e i θ k B 1 + B 2 | 2 + | e i θ k C 1 + C 2 | 2 .
H( x,y;{ a o , b o , c o } )= A 1 A 2 * + B 1 B 2 * + C 1 C 2 * .
I( x,y;{ a o , b o , c o } )= | e i ϕ l A 1 + A 2 | 2 + | B 1 + B 2 | 2 + | e i ϕ l S( C 1 ) C 1 +[ 1S( C 1 ) ] C 1 + C 2 | 2 .
H( x,y;{ a o , b o , c o } )= A 1 A 2 * +S( C 1 ) C 1 C 2 * .
f 1 = d o d s f eq d s f eq + d o f eq d o d s .
d 1 = z h d s , d 2 = d t z h ,
d rec = d 1 d 2 d 2 + d 1 .
h x o , y o , d o (x,y)= H x o , y o , d o (x,y)*Q( 1/ d rec ),
R f = 4 w s / w p 2 4 ( d p + w p ) / w p 2 ( w s d p + w p ) 2 ,
I k = | e i θ k X 1 + X 2 | 2 = | X 1 | 2 + | X 2 | 2 + e i θ k X 1 X 2 * + e i θ k X 1 * X 2 .
I= I 1 ( e i θ 3 e i θ 2 )+ I 2 ( e i θ 1 e i θ 3 )+ I 3 ( e i θ 2 e i θ 1 ),
I=c X 1 X 2 * ,
I= | W 1 + W 2 + W 3 | 2 .
I k,l = | e i θ k W 1 + e i ϕ l W 2 + W 3 | 2 .
I l = X 1 X 2 * = W 1 ( e i ϕ l W 2 + W 3 ) * .
W 1 W 2 * = I 1 I 2 e i ϕ 1 e i ϕ 2 , W 1 W 3 * = e i ϕ 1 I 1 e i ϕ 2 I 2 e i ϕ 1 e i ϕ 2 .
I k,l ( x,y;{ c o } )= | e i φ k { e i ϕ l S( C 1 ) C 1 +[ 1S( C 1 ) ] C 1 }+ C 2 + e i ϕ l S( C 3 ) C 3 +[ 1S( C 3 ) ] C 3 | 2
I k,l ( x,y;{ c o } )= | e i( ϕ l + φ k ) S( C 1 ) C 1 + e i ϕ l S( C 3 ) C 3 + C 2 | 2 .
I k,l = | e i( ϕ l + φ k ) W 1 + e i ϕ l W 2 + W 3 | 2 ,
I k,l = | e i θ l X 1 + X 2 | 2 = | X 1 | 2 + | X 2 | 2 + e i θ l X 1 X 2 * + e i θ l X 1 * X 2 .
I k = X 1 X 2 * =( e i φ k W 1 + W 2 ) W 3 * .
W 1 W 3 * = ( I 1 I 2 ) / ( e i φ 1 e i φ 2 ) , W 2 W 3 * = ( e i φ 1 I 1 e i φ 2 I 2 ) / ( e i φ 1 e i φ 2 ) .
I k,l = | e i θ k X 1 + X 2 | 2 = | X 1 | 2 + | X 2 | 2 + e i θ k X 1 X 2 * + e i θ k X 1 * X 2 .
I l = X 1 X 2 * = e i ϕ l W 1 ( e i ϕ l W 2 + W 3 ) * = W 1 ( W 2 + e i ϕ l W 3 ) * .
W 1 W 2 * = ( e i ϕ 1 I 1 e i ϕ 2 I 2 ) / ( e i ϕ 1 e i ϕ 2 ) , W 1 W 3 * = ( I 1 I 2 ) / ( e i ϕ 1 e i ϕ 2 ) .
I= | W 1 + W 2 +..+ W p | 2 .
I k,l = | W 1 +..+ W m1 + e i θ k W m + W m+1 +..+ W n1 + e i ϕ l W n + W n+1 +..+ W p | 2 .
I l = X 1 X 2 * = W m ( W 1 +..+ W m1 + W m+1 +..+ e i ϕ l W n +..+ W p ) * .
I= ( I 1 I 2 ) / ( e i ϕ 1 e i ϕ 2 ) = W m W n * .

Metrics