Abstract

We present an integrated monolithic, electrostatic 3D MEMS scanner with a compact chip size of 3.2 × 2.9 mm2. Use of parametric excitation near resonance frequencies produced large optical deflection angles up to ± 27° and ± 28.5° in the X- and Y-axes and displacements up to 510 μm in the Z-axis with low drive voltages at atmospheric pressure. When packaged in a dual axes confocal endomicroscope, horizontal and vertical cross-sectional images can be collected seamlessly in tissue with a large field-of-view of >1 × 1 mm2 and 1 × 0.41 mm2, respectively, at 5 frames/sec.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope

Zhen Qiu, Zhongyao Liu, Xiyu Duan, Supang Khondee, Bishnu Joshi, Michael J. Mandella, Kenn Oldham, Katsuo Kurabayashi, and Thomas D. Wang
Biomed. Opt. Express 4(2) 322-330 (2013)

Axial beam scanning in multiphoton microscopy with MEMS-based actuator

Xiyu Duan, Haijun Li, Xue Li, Kenn R. Oldham, and Thomas D. Wang
Opt. Express 25(3) 2195-2205 (2017)

Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography

Ki Hean Kim, B. Hyle Park, Gopi N. Maguluri, Tom W. Lee, Fran J. Rogomentich, Mirela G. Bancu, Brett E. Bouma, Johannes F. de Boer, and Jonathan J. Bernstein
Opt. Express 15(26) 18130-18140 (2007)

References

  • View by:
  • |
  • |
  • |

  1. T. D. Wang, J. Van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, and M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111(5), 1182–1191 (1996).
    [Crossref] [PubMed]
  2. N. Barker, R. A. Ridgway, J. H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers, “Crypt stem cells as the cells-of-origin of intestinal cancer,” Nature 457(7229), 608–611 (2009).
    [Crossref] [PubMed]
  3. M. J. Mandella and T. D. Wang, “Dual axes confocal microscopy,” In Tuchin VV Ed., Handbook of Photonics for Medical Science (CRC Press, 2010), 481–508.
  4. Z. Qiu, Z. Liu, X. Duan, S. Khondee, B. Joshi, M. J. Mandella, K. Oldham, K. Kurabayashi, and T. D. Wang, “Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope,” Biomed. Opt. Express 4(2), 322–330 (2013).
    [Crossref] [PubMed]
  5. S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
    [Crossref] [PubMed]
  6. J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
    [Crossref] [PubMed]
  7. X. Duan, H. Li, Z. Qiu, B. P. Joshi, A. Pant, A. Smith, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “MEMS-based multiphoton endomicroscope for repetitive imaging of mouse colon,” Biomed. Opt. Express 6(8), 3074–3083 (2015).
    [Crossref] [PubMed]
  8. L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215, 89–95 (2014).
    [Crossref] [PubMed]
  9. J. Jeong, M. J. Mandella, G. S. Kino, C. H. Contag, and O. Solgaard, “3-D MEMS scanning system for dual-axis confocal microendoscopy,” 16th International Conference on Optical MEMS and Nanophotonics, 71–72 (2011).
    [Crossref]
  10. Y. Zhu, W. Liu, K. Jia, W. Liao, and H. Xie, “A piezoelectric unimorph actuator based tip-tilt-piston micromirror with high fill factor and small tilt and lateral shift,” Sens. Actuators 167(2), 495–501 (2011).
    [Crossref]
  11. E. E. Aktakka, R. L. Peterson, and K. Najafi, “A 3-DOF piezoelectric micro vibratory stage based on bulk-PZT/silicon crab-leg suspensions,” MEMS IEEE Int. Conf. Micro. Electro. Mech. Syst. 576–579 (2013).
    [Crossref]
  12. J. Choi, Z. Qiu, C.-H. Rhee, T. Wang, and K. Oldham, “A three-degree-of-freedom thin-film PZT-actuated microactuator with large out-of-plane displacement,” J. Micromech. Microeng. 24(7), 1–35 (2014).
    [Crossref] [PubMed]
  13. V. Milanović, G. Matus, and D. T. McCormick, “Gimbal-less monolithic silicon actuators for tip-tilt-piston micromirror applications,” IEEE J. Sel. Top. Quantum Electron. 10(3), 462–471 (2004).
    [Crossref]
  14. W. Liao, W. Liu, Y. Zhu, Y. Tang, B. Wang, and H. Xie, “A tip-tilt-piston micromirror with symmetrical lateral-shift-free piezoelectric actuators,” IEEE Sens. J. 13(8), 2873–2881 (2013).
    [Crossref]
  15. Y. Wu, Y. Zhang, J. Xi, M. J. Li, and X. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation,” J. Biomed. Opt. 15(6), 060506 (2010).
    [Crossref] [PubMed]
  16. K. Lee, K. Krisnamoorthy, K. Yu, and O. Solgaard, “Single-crystalline silicon micromirrors actuated by self-aligned vertical electrostatic comb drives with piston-motion and rotational capabilities,” Sens. Actuators A Phys. 114(2-3), 423–428 (2004).
    [Crossref]
  17. L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators A Phys. 145–146, 371–379 (2008).
    [Crossref]
  18. M. Feldmann, A. Waldschik, and S. Büttgenbach, “Electromagnetic micro-actuators, micro-motors, and micro-robots,” Proc. SPIE 6798, Microelectronics. Design, Technology, and Packaging III, 679811 (2007).
  19. K. Turner, S. Miller, P. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396(6707), 149–152 (1998).
    [Crossref]
  20. K. S. Chen, A. Ayon, and S. M. Spearing, “Controlling and testing the fracture strength of silicon on the mesoscale,” J. Am. Ceram. Soc. 83(6), 1476–1484 (2000).
    [Crossref]
  21. T. Klose, D. Kunze, T. Sandner, H. Schenk, H. Lakner, A. Schneider, and P. Schneider, “Stress optimization of a micromechanical torsional spring,” NSTI-Nanotech 3, 602–605 (2005).
  22. C. Ataman and H. Urey, “Nonlinear frequency response of comb-driven microscanners,” Proc. SPIE 5348, MOEMS Display and Imaging Systems II, 166–174 (2004).
    [Crossref]
  23. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34(22), 4755–4767 (1995).
    [Crossref] [PubMed]
  24. W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
    [Crossref] [PubMed]
  25. J. F. Rhoads, S. W. Shaw, K. L. Turner, J. Moehlis, B. E. DeMartini, and W. Zhang, “Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators,” J. Sound Vibrat. 296(4-5), 797–829 (2006).
    [Crossref]
  26. T. Sandner, T. Grasshoff, and H. Schenk, “Translatory MEMS actuator with extraordinary large stroke for optical path length modulation,” 2010 Int. Conf. Opt. MEMS Nanophotonics 7930, 25–26 (2010).
    [Crossref]

2015 (1)

2014 (2)

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215, 89–95 (2014).
[Crossref] [PubMed]

J. Choi, Z. Qiu, C.-H. Rhee, T. Wang, and K. Oldham, “A three-degree-of-freedom thin-film PZT-actuated microactuator with large out-of-plane displacement,” J. Micromech. Microeng. 24(7), 1–35 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

2011 (1)

Y. Zhu, W. Liu, K. Jia, W. Liao, and H. Xie, “A piezoelectric unimorph actuator based tip-tilt-piston micromirror with high fill factor and small tilt and lateral shift,” Sens. Actuators 167(2), 495–501 (2011).
[Crossref]

2010 (2)

Y. Wu, Y. Zhang, J. Xi, M. J. Li, and X. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation,” J. Biomed. Opt. 15(6), 060506 (2010).
[Crossref] [PubMed]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

2009 (2)

N. Barker, R. A. Ridgway, J. H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers, “Crypt stem cells as the cells-of-origin of intestinal cancer,” Nature 457(7229), 608–611 (2009).
[Crossref] [PubMed]

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

2008 (1)

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators A Phys. 145–146, 371–379 (2008).
[Crossref]

2007 (1)

M. Feldmann, A. Waldschik, and S. Büttgenbach, “Electromagnetic micro-actuators, micro-motors, and micro-robots,” Proc. SPIE 6798, Microelectronics. Design, Technology, and Packaging III, 679811 (2007).

2006 (1)

J. F. Rhoads, S. W. Shaw, K. L. Turner, J. Moehlis, B. E. DeMartini, and W. Zhang, “Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators,” J. Sound Vibrat. 296(4-5), 797–829 (2006).
[Crossref]

2005 (1)

T. Klose, D. Kunze, T. Sandner, H. Schenk, H. Lakner, A. Schneider, and P. Schneider, “Stress optimization of a micromechanical torsional spring,” NSTI-Nanotech 3, 602–605 (2005).

2004 (3)

C. Ataman and H. Urey, “Nonlinear frequency response of comb-driven microscanners,” Proc. SPIE 5348, MOEMS Display and Imaging Systems II, 166–174 (2004).
[Crossref]

K. Lee, K. Krisnamoorthy, K. Yu, and O. Solgaard, “Single-crystalline silicon micromirrors actuated by self-aligned vertical electrostatic comb drives with piston-motion and rotational capabilities,” Sens. Actuators A Phys. 114(2-3), 423–428 (2004).
[Crossref]

V. Milanović, G. Matus, and D. T. McCormick, “Gimbal-less monolithic silicon actuators for tip-tilt-piston micromirror applications,” IEEE J. Sel. Top. Quantum Electron. 10(3), 462–471 (2004).
[Crossref]

2000 (1)

K. S. Chen, A. Ayon, and S. M. Spearing, “Controlling and testing the fracture strength of silicon on the mesoscale,” J. Am. Ceram. Soc. 83(6), 1476–1484 (2000).
[Crossref]

1998 (1)

K. Turner, S. Miller, P. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396(6707), 149–152 (1998).
[Crossref]

1996 (1)

T. D. Wang, J. Van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, and M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111(5), 1182–1191 (1996).
[Crossref] [PubMed]

1995 (1)

Adams, S. G.

K. Turner, S. Miller, P. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396(6707), 149–152 (1998).
[Crossref]

Ahn, Y.-C.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

Ataman, C.

C. Ataman and H. Urey, “Nonlinear frequency response of comb-driven microscanners,” Proc. SPIE 5348, MOEMS Display and Imaging Systems II, 166–174 (2004).
[Crossref]

Ayon, A.

K. S. Chen, A. Ayon, and S. M. Spearing, “Controlling and testing the fracture strength of silicon on the mesoscale,” J. Am. Ceram. Soc. 83(6), 1476–1484 (2000).
[Crossref]

Barker, N.

N. Barker, R. A. Ridgway, J. H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers, “Crypt stem cells as the cells-of-origin of intestinal cancer,” Nature 457(7229), 608–611 (2009).
[Crossref] [PubMed]

Begthel, H.

N. Barker, R. A. Ridgway, J. H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers, “Crypt stem cells as the cells-of-origin of intestinal cancer,” Nature 457(7229), 608–611 (2009).
[Crossref] [PubMed]

Büttgenbach, S.

M. Feldmann, A. Waldschik, and S. Büttgenbach, “Electromagnetic micro-actuators, micro-motors, and micro-robots,” Proc. SPIE 6798, Microelectronics. Design, Technology, and Packaging III, 679811 (2007).

Chen, K. S.

K. S. Chen, A. Ayon, and S. M. Spearing, “Controlling and testing the fracture strength of silicon on the mesoscale,” J. Am. Ceram. Soc. 83(6), 1476–1484 (2000).
[Crossref]

Chen, Z.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

Choe, S. W.

Choi, J.

J. Choi, Z. Qiu, C.-H. Rhee, T. Wang, and K. Oldham, “A three-degree-of-freedom thin-film PZT-actuated microactuator with large out-of-plane displacement,” J. Micromech. Microeng. 24(7), 1–35 (2014).
[Crossref] [PubMed]

Clarke, A. R.

N. Barker, R. A. Ridgway, J. H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers, “Crypt stem cells as the cells-of-origin of intestinal cancer,” Nature 457(7229), 608–611 (2009).
[Crossref] [PubMed]

Clevers, H.

N. Barker, R. A. Ridgway, J. H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers, “Crypt stem cells as the cells-of-origin of intestinal cancer,” Nature 457(7229), 608–611 (2009).
[Crossref] [PubMed]

Contag, C. H.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

J. Jeong, M. J. Mandella, G. S. Kino, C. H. Contag, and O. Solgaard, “3-D MEMS scanning system for dual-axis confocal microendoscopy,” 16th International Conference on Optical MEMS and Nanophotonics, 71–72 (2011).
[Crossref]

Crawford, J. M.

T. D. Wang, J. Van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, and M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111(5), 1182–1191 (1996).
[Crossref] [PubMed]

Danenberg, E.

N. Barker, R. A. Ridgway, J. H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers, “Crypt stem cells as the cells-of-origin of intestinal cancer,” Nature 457(7229), 608–611 (2009).
[Crossref] [PubMed]

DeMartini, B. E.

J. F. Rhoads, S. W. Shaw, K. L. Turner, J. Moehlis, B. E. DeMartini, and W. Zhang, “Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators,” J. Sound Vibrat. 296(4-5), 797–829 (2006).
[Crossref]

Duan, X.

Feld, M. S.

T. D. Wang, J. Van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, and M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111(5), 1182–1191 (1996).
[Crossref] [PubMed]

Feldmann, M.

M. Feldmann, A. Waldschik, and S. Büttgenbach, “Electromagnetic micro-actuators, micro-motors, and micro-robots,” Proc. SPIE 6798, Microelectronics. Design, Technology, and Packaging III, 679811 (2007).

Friedland, S.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Guo, S.

Hartwell, P.

K. Turner, S. Miller, P. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396(6707), 149–152 (1998).
[Crossref]

Jeong, J.

J. Jeong, M. J. Mandella, G. S. Kino, C. H. Contag, and O. Solgaard, “3-D MEMS scanning system for dual-axis confocal microendoscopy,” 16th International Conference on Optical MEMS and Nanophotonics, 71–72 (2011).
[Crossref]

Jia, K.

Y. Zhu, W. Liu, K. Jia, W. Liao, and H. Xie, “A piezoelectric unimorph actuator based tip-tilt-piston micromirror with high fill factor and small tilt and lateral shift,” Sens. Actuators 167(2), 495–501 (2011).
[Crossref]

Joshi, B.

Joshi, B. P.

Jung, W.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

Khondee, S.

Kino, G. S.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

J. Jeong, M. J. Mandella, G. S. Kino, C. H. Contag, and O. Solgaard, “3-D MEMS scanning system for dual-axis confocal microendoscopy,” 16th International Conference on Optical MEMS and Nanophotonics, 71–72 (2011).
[Crossref]

Klose, T.

T. Klose, D. Kunze, T. Sandner, H. Schenk, H. Lakner, A. Schneider, and P. Schneider, “Stress optimization of a micromechanical torsional spring,” NSTI-Nanotech 3, 602–605 (2005).

Krisnamoorthy, K.

K. Lee, K. Krisnamoorthy, K. Yu, and O. Solgaard, “Single-crystalline silicon micromirrors actuated by self-aligned vertical electrostatic comb drives with piston-motion and rotational capabilities,” Sens. Actuators A Phys. 114(2-3), 423–428 (2004).
[Crossref]

Kunze, D.

T. Klose, D. Kunze, T. Sandner, H. Schenk, H. Lakner, A. Schneider, and P. Schneider, “Stress optimization of a micromechanical torsional spring,” NSTI-Nanotech 3, 602–605 (2005).

Kurabayashi, K.

Lakner, H.

T. Klose, D. Kunze, T. Sandner, H. Schenk, H. Lakner, A. Schneider, and P. Schneider, “Stress optimization of a micromechanical torsional spring,” NSTI-Nanotech 3, 602–605 (2005).

Lee, K.

K. Lee, K. Krisnamoorthy, K. Yu, and O. Solgaard, “Single-crystalline silicon micromirrors actuated by self-aligned vertical electrostatic comb drives with piston-motion and rotational capabilities,” Sens. Actuators A Phys. 114(2-3), 423–428 (2004).
[Crossref]

Li, H.

Li, M. J.

Y. Wu, Y. Zhang, J. Xi, M. J. Li, and X. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation,” J. Biomed. Opt. 15(6), 060506 (2010).
[Crossref] [PubMed]

Li, X.

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215, 89–95 (2014).
[Crossref] [PubMed]

Y. Wu, Y. Zhang, J. Xi, M. J. Li, and X. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation,” J. Biomed. Opt. 15(6), 060506 (2010).
[Crossref] [PubMed]

Liang, W.

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215, 89–95 (2014).
[Crossref] [PubMed]

Liao, W.

W. Liao, W. Liu, Y. Zhu, Y. Tang, B. Wang, and H. Xie, “A tip-tilt-piston micromirror with symmetrical lateral-shift-free piezoelectric actuators,” IEEE Sens. J. 13(8), 2873–2881 (2013).
[Crossref]

Y. Zhu, W. Liu, K. Jia, W. Liao, and H. Xie, “A piezoelectric unimorph actuator based tip-tilt-piston micromirror with high fill factor and small tilt and lateral shift,” Sens. Actuators 167(2), 495–501 (2011).
[Crossref]

Liu, J. T. C.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Liu, L.

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215, 89–95 (2014).
[Crossref] [PubMed]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

Liu, W.

W. Liao, W. Liu, Y. Zhu, Y. Tang, B. Wang, and H. Xie, “A tip-tilt-piston micromirror with symmetrical lateral-shift-free piezoelectric actuators,” IEEE Sens. J. 13(8), 2873–2881 (2013).
[Crossref]

Y. Zhu, W. Liu, K. Jia, W. Liao, and H. Xie, “A piezoelectric unimorph actuator based tip-tilt-piston micromirror with high fill factor and small tilt and lateral shift,” Sens. Actuators 167(2), 495–501 (2011).
[Crossref]

Liu, Z.

Loewke, K.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

MacDonald, N. C.

K. Turner, S. Miller, P. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396(6707), 149–152 (1998).
[Crossref]

Mandella, M. J.

Z. Qiu, Z. Liu, X. Duan, S. Khondee, B. Joshi, M. J. Mandella, K. Oldham, K. Kurabayashi, and T. D. Wang, “Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope,” Biomed. Opt. Express 4(2), 322–330 (2013).
[Crossref] [PubMed]

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

J. Jeong, M. J. Mandella, G. S. Kino, C. H. Contag, and O. Solgaard, “3-D MEMS scanning system for dual-axis confocal microendoscopy,” 16th International Conference on Optical MEMS and Nanophotonics, 71–72 (2011).
[Crossref]

Matus, G.

V. Milanović, G. Matus, and D. T. McCormick, “Gimbal-less monolithic silicon actuators for tip-tilt-piston micromirror applications,” IEEE J. Sel. Top. Quantum Electron. 10(3), 462–471 (2004).
[Crossref]

McCormick, D.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

McCormick, D. T.

V. Milanović, G. Matus, and D. T. McCormick, “Gimbal-less monolithic silicon actuators for tip-tilt-piston micromirror applications,” IEEE J. Sel. Top. Quantum Electron. 10(3), 462–471 (2004).
[Crossref]

Milanovic, V.

V. Milanović, G. Matus, and D. T. McCormick, “Gimbal-less monolithic silicon actuators for tip-tilt-piston micromirror applications,” IEEE J. Sel. Top. Quantum Electron. 10(3), 462–471 (2004).
[Crossref]

Miller, S.

K. Turner, S. Miller, P. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396(6707), 149–152 (1998).
[Crossref]

Moehlis, J.

J. F. Rhoads, S. W. Shaw, K. L. Turner, J. Moehlis, B. E. DeMartini, and W. Zhang, “Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators,” J. Sound Vibrat. 296(4-5), 797–829 (2006).
[Crossref]

Oldham, K.

Oldham, K. R.

Pant, A.

Piyawattanametha, W.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Preisinger, E. A.

T. D. Wang, J. Van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, and M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111(5), 1182–1191 (1996).
[Crossref] [PubMed]

Qiu, Z.

X. Duan, H. Li, Z. Qiu, B. P. Joshi, A. Pant, A. Smith, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “MEMS-based multiphoton endomicroscope for repetitive imaging of mouse colon,” Biomed. Opt. Express 6(8), 3074–3083 (2015).
[Crossref] [PubMed]

J. Choi, Z. Qiu, C.-H. Rhee, T. Wang, and K. Oldham, “A three-degree-of-freedom thin-film PZT-actuated microactuator with large out-of-plane displacement,” J. Micromech. Microeng. 24(7), 1–35 (2014).
[Crossref] [PubMed]

Z. Qiu, Z. Liu, X. Duan, S. Khondee, B. Joshi, M. J. Mandella, K. Oldham, K. Kurabayashi, and T. D. Wang, “Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope,” Biomed. Opt. Express 4(2), 322–330 (2013).
[Crossref] [PubMed]

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Ra, H.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Rakic, A. D.

Rhee, C.-H.

J. Choi, Z. Qiu, C.-H. Rhee, T. Wang, and K. Oldham, “A three-degree-of-freedom thin-film PZT-actuated microactuator with large out-of-plane displacement,” J. Micromech. Microeng. 24(7), 1–35 (2014).
[Crossref] [PubMed]

Rhoads, J. F.

J. F. Rhoads, S. W. Shaw, K. L. Turner, J. Moehlis, B. E. DeMartini, and W. Zhang, “Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators,” J. Sound Vibrat. 296(4-5), 797–829 (2006).
[Crossref]

Ridgway, R. A.

N. Barker, R. A. Ridgway, J. H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers, “Crypt stem cells as the cells-of-origin of intestinal cancer,” Nature 457(7229), 608–611 (2009).
[Crossref] [PubMed]

Sandner, T.

T. Klose, D. Kunze, T. Sandner, H. Schenk, H. Lakner, A. Schneider, and P. Schneider, “Stress optimization of a micromechanical torsional spring,” NSTI-Nanotech 3, 602–605 (2005).

Sansom, O. J.

N. Barker, R. A. Ridgway, J. H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers, “Crypt stem cells as the cells-of-origin of intestinal cancer,” Nature 457(7229), 608–611 (2009).
[Crossref] [PubMed]

Schenk, H.

T. Klose, D. Kunze, T. Sandner, H. Schenk, H. Lakner, A. Schneider, and P. Schneider, “Stress optimization of a micromechanical torsional spring,” NSTI-Nanotech 3, 602–605 (2005).

Schneider, A.

T. Klose, D. Kunze, T. Sandner, H. Schenk, H. Lakner, A. Schneider, and P. Schneider, “Stress optimization of a micromechanical torsional spring,” NSTI-Nanotech 3, 602–605 (2005).

Schneider, P.

T. Klose, D. Kunze, T. Sandner, H. Schenk, H. Lakner, A. Schneider, and P. Schneider, “Stress optimization of a micromechanical torsional spring,” NSTI-Nanotech 3, 602–605 (2005).

Shaw, S. W.

J. F. Rhoads, S. W. Shaw, K. L. Turner, J. Moehlis, B. E. DeMartini, and W. Zhang, “Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators,” J. Sound Vibrat. 296(4-5), 797–829 (2006).
[Crossref]

Smith, A.

Solgaard, O.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

K. Lee, K. Krisnamoorthy, K. Yu, and O. Solgaard, “Single-crystalline silicon micromirrors actuated by self-aligned vertical electrostatic comb drives with piston-motion and rotational capabilities,” Sens. Actuators A Phys. 114(2-3), 423–428 (2004).
[Crossref]

J. Jeong, M. J. Mandella, G. S. Kino, C. H. Contag, and O. Solgaard, “3-D MEMS scanning system for dual-axis confocal microendoscopy,” 16th International Conference on Optical MEMS and Nanophotonics, 71–72 (2011).
[Crossref]

Sorg, B. S.

Spearing, S. M.

K. S. Chen, A. Ayon, and S. M. Spearing, “Controlling and testing the fracture strength of silicon on the mesoscale,” J. Am. Ceram. Soc. 83(6), 1476–1484 (2000).
[Crossref]

Strogatz, S. H.

K. Turner, S. Miller, P. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396(6707), 149–152 (1998).
[Crossref]

Su, J.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

Sun, J.

Tang, S.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

Tang, Y.

W. Liao, W. Liu, Y. Zhu, Y. Tang, B. Wang, and H. Xie, “A tip-tilt-piston micromirror with symmetrical lateral-shift-free piezoelectric actuators,” IEEE Sens. J. 13(8), 2873–2881 (2013).
[Crossref]

Tromberg, B. J.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

Turner, K.

K. Turner, S. Miller, P. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396(6707), 149–152 (1998).
[Crossref]

Turner, K. L.

J. F. Rhoads, S. W. Shaw, K. L. Turner, J. Moehlis, B. E. DeMartini, and W. Zhang, “Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators,” J. Sound Vibrat. 296(4-5), 797–829 (2006).
[Crossref]

Urey, H.

C. Ataman and H. Urey, “Nonlinear frequency response of comb-driven microscanners,” Proc. SPIE 5348, MOEMS Display and Imaging Systems II, 166–174 (2004).
[Crossref]

Van Dam, J.

T. D. Wang, J. Van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, and M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111(5), 1182–1191 (1996).
[Crossref] [PubMed]

van de Wetering, M.

N. Barker, R. A. Ridgway, J. H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers, “Crypt stem cells as the cells-of-origin of intestinal cancer,” Nature 457(7229), 608–611 (2009).
[Crossref] [PubMed]

van den Born, M.

N. Barker, R. A. Ridgway, J. H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers, “Crypt stem cells as the cells-of-origin of intestinal cancer,” Nature 457(7229), 608–611 (2009).
[Crossref] [PubMed]

van Es, J. H.

N. Barker, R. A. Ridgway, J. H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers, “Crypt stem cells as the cells-of-origin of intestinal cancer,” Nature 457(7229), 608–611 (2009).
[Crossref] [PubMed]

Waldschik, A.

M. Feldmann, A. Waldschik, and S. Büttgenbach, “Electromagnetic micro-actuators, micro-motors, and micro-robots,” Proc. SPIE 6798, Microelectronics. Design, Technology, and Packaging III, 679811 (2007).

Wang, B.

W. Liao, W. Liu, Y. Zhu, Y. Tang, B. Wang, and H. Xie, “A tip-tilt-piston micromirror with symmetrical lateral-shift-free piezoelectric actuators,” IEEE Sens. J. 13(8), 2873–2881 (2013).
[Crossref]

Wang, E.

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215, 89–95 (2014).
[Crossref] [PubMed]

Wang, T.

J. Choi, Z. Qiu, C.-H. Rhee, T. Wang, and K. Oldham, “A three-degree-of-freedom thin-film PZT-actuated microactuator with large out-of-plane displacement,” J. Micromech. Microeng. 24(7), 1–35 (2014).
[Crossref] [PubMed]

Wang, T. D.

X. Duan, H. Li, Z. Qiu, B. P. Joshi, A. Pant, A. Smith, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “MEMS-based multiphoton endomicroscope for repetitive imaging of mouse colon,” Biomed. Opt. Express 6(8), 3074–3083 (2015).
[Crossref] [PubMed]

Z. Qiu, Z. Liu, X. Duan, S. Khondee, B. Joshi, M. J. Mandella, K. Oldham, K. Kurabayashi, and T. D. Wang, “Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope,” Biomed. Opt. Express 4(2), 322–330 (2013).
[Crossref] [PubMed]

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

T. D. Wang, J. Van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, and M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111(5), 1182–1191 (1996).
[Crossref] [PubMed]

Wang, Y.

T. D. Wang, J. Van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, and M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111(5), 1182–1191 (1996).
[Crossref] [PubMed]

Wu, L.

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators A Phys. 145–146, 371–379 (2008).
[Crossref]

Wu, Y.

Y. Wu, Y. Zhang, J. Xi, M. J. Li, and X. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation,” J. Biomed. Opt. 15(6), 060506 (2010).
[Crossref] [PubMed]

Xi, J.

Y. Wu, Y. Zhang, J. Xi, M. J. Li, and X. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation,” J. Biomed. Opt. 15(6), 060506 (2010).
[Crossref] [PubMed]

Xie, H.

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215, 89–95 (2014).
[Crossref] [PubMed]

W. Liao, W. Liu, Y. Zhu, Y. Tang, B. Wang, and H. Xie, “A tip-tilt-piston micromirror with symmetrical lateral-shift-free piezoelectric actuators,” IEEE Sens. J. 13(8), 2873–2881 (2013).
[Crossref]

Y. Zhu, W. Liu, K. Jia, W. Liao, and H. Xie, “A piezoelectric unimorph actuator based tip-tilt-piston micromirror with high fill factor and small tilt and lateral shift,” Sens. Actuators 167(2), 495–501 (2011).
[Crossref]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators A Phys. 145–146, 371–379 (2008).
[Crossref]

Xie, T.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

Yu, K.

K. Lee, K. Krisnamoorthy, K. Yu, and O. Solgaard, “Single-crystalline silicon micromirrors actuated by self-aligned vertical electrostatic comb drives with piston-motion and rotational capabilities,” Sens. Actuators A Phys. 114(2-3), 423–428 (2004).
[Crossref]

Zhang, W.

J. F. Rhoads, S. W. Shaw, K. L. Turner, J. Moehlis, B. E. DeMartini, and W. Zhang, “Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators,” J. Sound Vibrat. 296(4-5), 797–829 (2006).
[Crossref]

Zhang, X.

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215, 89–95 (2014).
[Crossref] [PubMed]

Zhang, Y.

Y. Wu, Y. Zhang, J. Xi, M. J. Li, and X. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation,” J. Biomed. Opt. 15(6), 060506 (2010).
[Crossref] [PubMed]

Zhu, Y.

W. Liao, W. Liu, Y. Zhu, Y. Tang, B. Wang, and H. Xie, “A tip-tilt-piston micromirror with symmetrical lateral-shift-free piezoelectric actuators,” IEEE Sens. J. 13(8), 2873–2881 (2013).
[Crossref]

Y. Zhu, W. Liu, K. Jia, W. Liao, and H. Xie, “A piezoelectric unimorph actuator based tip-tilt-piston micromirror with high fill factor and small tilt and lateral shift,” Sens. Actuators 167(2), 495–501 (2011).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Gastroenterology (1)

T. D. Wang, J. Van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, and M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111(5), 1182–1191 (1996).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Milanović, G. Matus, and D. T. McCormick, “Gimbal-less monolithic silicon actuators for tip-tilt-piston micromirror applications,” IEEE J. Sel. Top. Quantum Electron. 10(3), 462–471 (2004).
[Crossref]

IEEE Sens. J. (1)

W. Liao, W. Liu, Y. Zhu, Y. Tang, B. Wang, and H. Xie, “A tip-tilt-piston micromirror with symmetrical lateral-shift-free piezoelectric actuators,” IEEE Sens. J. 13(8), 2873–2881 (2013).
[Crossref]

J. Am. Ceram. Soc. (1)

K. S. Chen, A. Ayon, and S. M. Spearing, “Controlling and testing the fracture strength of silicon on the mesoscale,” J. Am. Ceram. Soc. 83(6), 1476–1484 (2000).
[Crossref]

J. Biomed. Opt. (3)

Y. Wu, Y. Zhang, J. Xi, M. J. Li, and X. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation,” J. Biomed. Opt. 15(6), 060506 (2010).
[Crossref] [PubMed]

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

J. Choi, Z. Qiu, C.-H. Rhee, T. Wang, and K. Oldham, “A three-degree-of-freedom thin-film PZT-actuated microactuator with large out-of-plane displacement,” J. Micromech. Microeng. 24(7), 1–35 (2014).
[Crossref] [PubMed]

J. Sound Vibrat. (1)

J. F. Rhoads, S. W. Shaw, K. L. Turner, J. Moehlis, B. E. DeMartini, and W. Zhang, “Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators,” J. Sound Vibrat. 296(4-5), 797–829 (2006).
[Crossref]

Nature (2)

K. Turner, S. Miller, P. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396(6707), 149–152 (1998).
[Crossref]

N. Barker, R. A. Ridgway, J. H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers, “Crypt stem cells as the cells-of-origin of intestinal cancer,” Nature 457(7229), 608–611 (2009).
[Crossref] [PubMed]

NSTI-Nanotech (1)

T. Klose, D. Kunze, T. Sandner, H. Schenk, H. Lakner, A. Schneider, and P. Schneider, “Stress optimization of a micromechanical torsional spring,” NSTI-Nanotech 3, 602–605 (2005).

Opt. Express (1)

Proc. SPIE 5348, MOEMS Display and Imaging Systems (1)

C. Ataman and H. Urey, “Nonlinear frequency response of comb-driven microscanners,” Proc. SPIE 5348, MOEMS Display and Imaging Systems II, 166–174 (2004).
[Crossref]

Proc. SPIE 6798, Microelectronics. Design, Technology, and Packaging (1)

M. Feldmann, A. Waldschik, and S. Büttgenbach, “Electromagnetic micro-actuators, micro-motors, and micro-robots,” Proc. SPIE 6798, Microelectronics. Design, Technology, and Packaging III, 679811 (2007).

Sens. Actuators (1)

Y. Zhu, W. Liu, K. Jia, W. Liao, and H. Xie, “A piezoelectric unimorph actuator based tip-tilt-piston micromirror with high fill factor and small tilt and lateral shift,” Sens. Actuators 167(2), 495–501 (2011).
[Crossref]

Sens. Actuators A Phys. (3)

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215, 89–95 (2014).
[Crossref] [PubMed]

K. Lee, K. Krisnamoorthy, K. Yu, and O. Solgaard, “Single-crystalline silicon micromirrors actuated by self-aligned vertical electrostatic comb drives with piston-motion and rotational capabilities,” Sens. Actuators A Phys. 114(2-3), 423–428 (2004).
[Crossref]

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators A Phys. 145–146, 371–379 (2008).
[Crossref]

Other (4)

J. Jeong, M. J. Mandella, G. S. Kino, C. H. Contag, and O. Solgaard, “3-D MEMS scanning system for dual-axis confocal microendoscopy,” 16th International Conference on Optical MEMS and Nanophotonics, 71–72 (2011).
[Crossref]

E. E. Aktakka, R. L. Peterson, and K. Najafi, “A 3-DOF piezoelectric micro vibratory stage based on bulk-PZT/silicon crab-leg suspensions,” MEMS IEEE Int. Conf. Micro. Electro. Mech. Syst. 576–579 (2013).
[Crossref]

M. J. Mandella and T. D. Wang, “Dual axes confocal microscopy,” In Tuchin VV Ed., Handbook of Photonics for Medical Science (CRC Press, 2010), 481–508.

T. Sandner, T. Grasshoff, and H. Schenk, “Translatory MEMS actuator with extraordinary large stroke for optical path length modulation,” 2010 Int. Conf. Opt. MEMS Nanophotonics 7930, 25–26 (2010).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (3258 KB)      Visualization 1
» Visualization 2: MP4 (2800 KB)      Visualization 2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

– Schematic. Design of integrated monolithic electrostatic scanner with 3 degrees-of-freedom is shown. The mirror has a geometry compatible with use in a dual axes confocal endomicroscope. a) En face view shows front side structures. Side view shows mirror operation in the b) X-, c) Y-, and d) Z-axes. Key: i – islands; is – inner spring; ic – inner comb-drive; ss – serpentine spring; s – suspension; os – outer spring; oc – outer comb-drive; la – lever arm; g – gimbal.

Fig. 2
Fig. 2

– Design of outer springs. a) Schematic show geometry and dimensions of outer springs. b) Results of finite element model (FEM) show regions of maximum stress in overall structure at location of outer springs. c) Expanded view shows details of stress in outer springs.

Fig. 3
Fig. 3

– Scanner fabrication process. a) PECVD oxide (SiO2) layers are deposited on the front side and back side of a SOI wafer for use as hard masks. b) Front side scanner structures are patterned with oxide dry etching and DRIE. c) The back side frame is patterned with oxide dry etching. d) Patterning of the back side islands and first back side DRIE steps are performed. e) Photoresist ashing and second back side DRIE step is performed. f) Oxide release and coating of mirror surfaces with aluminum (Al) for improved reflectivity in the NIR are performed.

Fig. 4
Fig. 4

– SEM of fabricated 3D scanner. a) Complete scanner structure. Expanded views of b) outer trapezoidal, c) inner torsional, and d) serpentine springs, are shown.

Fig. 5
Fig. 5

– Frequency response of monolithic 3D scanner. The optical scan angle in the X-axis is shown with a) drive voltages between 40 and 60Vpp and 50% duty cycle and b) at 40Vpp with 25-75% duty cycle with either an upsweep (low-to-high) or downsweep (high-to-low) of frequency. Results in the Y-axis is shown with c) drive voltages between 30 and 50Vpp and 50% duty cycle and d) at 40Vpp with 25-75% duty cycle. Out-of-plane displacement in the Z-axis is shown with e) drive voltages between 40 and 60Vpp and 20% duty cycle and f) at 60Vpp with 20-40% duty cycle.

Fig. 6
Fig. 6

– 3D scanner motion. Videos were collected with a high speed camera to capture a) angular tilting of the mirror to produce images in the XY-plane (Visualization 1) and b) large out-of-plane motion of the gimbal frame supporting the mirror in the XZ direction (Visualization 2).

Fig. 7
Fig. 7

– Confocal fluorescence images of human colon ex vivo. The 3D scanner was packaged in a 10 mm diameter dual axes endomicroscope to collect NIR confocal fluorescence images in either the a) vertical (XZ) plane with dimensions of 1050 × 410 μm2 or the b) horizontal (XY) plane with dimensions of 1050 × 1050 μm2. Individual crypts can be seen with either a columnar or circular shape, respectively, using IRDye800 for contrast. Image contrast was enhanced using gamma correction with a coefficient of 0.45.

Tables (1)

Tables Icon

Table 1 – Modal analysis for 3D scanner. FEM analysis for the optimized scanner design shows results for first ten eigenmodes. The eigenmodes for n = 2 represent the first set of excitation frequencies used with parametric resonance. Model provides approximate values for exciting the Z (465 Hz), Y (636 Hz), and X (4926 Hz) axes (shown in red). Color legend shows relative displacement.

Metrics