Abstract

Multimode squeezed states are essential resources in quantum information processing and quantum metrology with continuous variables. Here we present the experimental generation of squeezed vacuum via the degenerate four wave mixing realized by pumping a piece of dispersion shifted fiber with mode-locked ultrafast pulse trains. The noise fluctuation is lower than the shot noise limit by 1.1 ± 0.08 dB (1.95 ± 0.17 dB after correction for detection losses). The detailed investigation illustrates that the results can be further improved by suppressing Raman scattering and by reshaping the spectrum of the local oscillator to achieve the required mode-matching of the homodyne detection system. Our study is useful for developing a compact fiber source of multi-mode squeezed vacuum.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation

Xueshi Guo, Nannan Liu, Xiaoying Li, and Z. Y. Ou
Opt. Express 23(23) 29369-29383 (2015)

Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification

Jérôme Wenger, Rosa Tualle-Brouri, and Philippe Grangier
Opt. Lett. 29(11) 1267-1269 (2004)

Generation of continuous variable quantum entanglement using a fiber optical parametric amplifier

Xueshi Guo, Nannan Liu, Yuhong Liu, Xiaoying Li, and Z. Y. Ou
Opt. Lett. 41(3) 653-656 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
    [Crossref]
  2. A. I. Lvovsky, “Squeezed light,” arXiv: 1401.4118 (2014).
  3. N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
    [Crossref] [PubMed]
  4. S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
    [Crossref]
  5. S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
    [Crossref] [PubMed]
  6. W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
    [Crossref]
  7. B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
    [Crossref] [PubMed]
  8. O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
    [Crossref] [PubMed]
  9. R. Shelby, M. Levenson, S. Perlmutter, R. DeVoe, and D. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
    [Crossref] [PubMed]
  10. K. Bergman and H. A. Haus, “Squeezing in fibers with optical pulses,” Opt. Lett. 16, 663–665 (1991).
    [Crossref] [PubMed]
  11. K. Bergman, H. A. Haus, E. P. Ippen, and M. Shirasaki, “Squeezing in a fiber interferometer with a gigahertz pump,” Opt. Lett. 19, 290–292 (1994).
    [Crossref] [PubMed]
  12. C. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable einstein-podolsky-rosen entanglement via the kerr nonlinear in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
    [Crossref] [PubMed]
  13. R. Dong, J. Heersink, J. F. Corney, P. D. Drummond, U. L. Andersen, and G. Leuchs, “Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers,” Opt. Lett. 33, 116–118 (2008).
    [Crossref] [PubMed]
  14. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
    [Crossref]
  15. J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001).
    [Crossref]
  16. X. Guo, X. Li, N. Liu, L. Yang, and Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
    [Crossref]
  17. X. Guo, X. Li, N. Liu, and Z. Y. Ou, “Multi-mode theory of generating pulsed twin beams from a high gain fiber optical parametric amplifier,” Phys. Rev. A 88, 023841 (2013).
    [Crossref]
  18. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” Photonics Technol. Lett. 14, 983–985 (2002).
    [Crossref]
  19. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
    [Crossref] [PubMed]
  20. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
    [Crossref] [PubMed]
  21. M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
    [Crossref] [PubMed]
  22. J. Fan, A. Dogariu, and L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 1530–1532 (2005).
    [Crossref] [PubMed]
  23. J. Chen, K. F. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed hong-ou-mandel interference,” Phys. Rev. A 76, 031804 (2007).
    [Crossref]
  24. L. Yang, F. Sun, N. Zhao, and X. Li, “Generation of frequency degenerate twin photons in pulse pumped fiber optical parametric amplifiers: Influence of background noise,” Opt. Express 22, 2553–2561 (2014).
    [Crossref] [PubMed]
  25. H. P. Yuen and J. H. Shapiro, “Generation and detection of two-photon coherent states in degenerate four-wave mixing,” Opt. Lett. 4, 334–336 (1979).
    [Crossref] [PubMed]
  26. X. Guo, N. Liu, X. Li, and Z. Y. Ou, “Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation,” Opt. Express 23, 29369–29384 (2015).
    [Crossref] [PubMed]
  27. R. Neo, J. Schröder, Y. Paquot, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Phase-sensitive amplification of light in a χ(3) photonic chip using a dispersion engineered chalcogenide ridge waveguide,” Opt. Express 21, 7926–7933 (2013).
    [Crossref] [PubMed]
  28. X. Li, P. Voss, J. Chen, K. Lee, and P. Kumar, “Measurement of co- and cross-polarized raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005).
    [Crossref] [PubMed]
  29. H. Takesue and K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7840 (2005).
    [Crossref] [PubMed]
  30. R. M. de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
    [Crossref]

2015 (3)

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
[Crossref] [PubMed]

X. Guo, N. Liu, X. Li, and Z. Y. Ou, “Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation,” Opt. Express 23, 29369–29384 (2015).
[Crossref] [PubMed]

2014 (2)

L. Yang, F. Sun, N. Zhao, and X. Li, “Generation of frequency degenerate twin photons in pulse pumped fiber optical parametric amplifiers: Influence of background noise,” Opt. Express 22, 2553–2561 (2014).
[Crossref] [PubMed]

R. M. de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

2013 (3)

R. Neo, J. Schröder, Y. Paquot, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Phase-sensitive amplification of light in a χ(3) photonic chip using a dispersion engineered chalcogenide ridge waveguide,” Opt. Express 21, 7926–7933 (2013).
[Crossref] [PubMed]

X. Guo, X. Li, N. Liu, and Z. Y. Ou, “Multi-mode theory of generating pulsed twin beams from a high gain fiber optical parametric amplifier,” Phys. Rev. A 88, 023841 (2013).
[Crossref]

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

2012 (2)

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

X. Guo, X. Li, N. Liu, L. Yang, and Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[Crossref]

2008 (3)

B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[Crossref] [PubMed]

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
[Crossref] [PubMed]

R. Dong, J. Heersink, J. F. Corney, P. D. Drummond, U. L. Andersen, and G. Leuchs, “Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers,” Opt. Lett. 33, 116–118 (2008).
[Crossref] [PubMed]

2007 (1)

J. Chen, K. F. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed hong-ou-mandel interference,” Phys. Rev. A 76, 031804 (2007).
[Crossref]

2006 (1)

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

2005 (6)

2002 (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” Photonics Technol. Lett. 14, 983–985 (2002).
[Crossref]

2001 (2)

C. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable einstein-podolsky-rosen entanglement via the kerr nonlinear in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001).
[Crossref]

1994 (1)

1991 (1)

1986 (1)

R. Shelby, M. Levenson, S. Perlmutter, R. DeVoe, and D. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
[Crossref] [PubMed]

1985 (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

1979 (1)

Andersen, U. L.

Armstrong, S. C.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Banaszek, K.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Bergman, K.

Braunstein, S. L.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

Cai, Y.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

R. M. de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

Chalopin, B.

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

Chekhova, M. V.

M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
[Crossref] [PubMed]

Chen, J.

J. Chen, K. F. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed hong-ou-mandel interference,” Phys. Rev. A 76, 031804 (2007).
[Crossref]

X. Li, P. Voss, J. Chen, K. Lee, and P. Kumar, “Measurement of co- and cross-polarized raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005).
[Crossref] [PubMed]

Choi, D. Y.

Corney, J. F.

de Araújo, R. M.

R. M. de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

DeVoe, R.

R. Shelby, M. Levenson, S. Perlmutter, R. DeVoe, and D. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
[Crossref] [PubMed]

Dogariu, A.

Dong, R.

Drummond, P. D.

Duligall, J.

Eggleton, B. J.

Fabre, C.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

R. M. de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[Crossref] [PubMed]

Fan, J.

Feng, J.

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

Ferrini, G.

R. M. de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

Finger, M. A.

M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
[Crossref] [PubMed]

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” Photonics Technol. Lett. 14, 983–985 (2002).
[Crossref]

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001).
[Crossref]

Flammia, S. T.

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
[Crossref] [PubMed]

Fulconis, J.

Furusawa, A.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Gerke, S.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

Guo, X.

X. Guo, N. Liu, X. Li, and Z. Y. Ou, “Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation,” Opt. Express 23, 29369–29384 (2015).
[Crossref] [PubMed]

X. Guo, X. Li, N. Liu, and Z. Y. Ou, “Multi-mode theory of generating pulsed twin beams from a high gain fiber optical parametric amplifier,” Phys. Rev. A 88, 023841 (2013).
[Crossref]

X. Guo, X. Li, N. Liu, L. Yang, and Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[Crossref]

Haus, H. A.

Heersink, J.

Inoue, K.

Ippen, E. P.

Iskhakov, T. S.

M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
[Crossref] [PubMed]

Jian, P.

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

Joly, N. Y.

M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
[Crossref] [PubMed]

Kaji, T.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

König, F.

C. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable einstein-podolsky-rosen entanglement via the kerr nonlinear in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Korolkova, N.

C. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable einstein-podolsky-rosen entanglement via the kerr nonlinear in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Kumar, P.

J. Chen, K. F. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed hong-ou-mandel interference,” Phys. Rev. A 76, 031804 (2007).
[Crossref]

X. Li, P. Voss, J. Chen, K. Lee, and P. Kumar, “Measurement of co- and cross-polarized raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005).
[Crossref] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” Photonics Technol. Lett. 14, 983–985 (2002).
[Crossref]

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001).
[Crossref]

Lam, P. K.

C. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable einstein-podolsky-rosen entanglement via the kerr nonlinear in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Lamine, B.

B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[Crossref] [PubMed]

Lee, K.

Lee, K. F.

J. Chen, K. F. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed hong-ou-mandel interference,” Phys. Rev. A 76, 031804 (2007).
[Crossref]

Leuchs, G.

R. Dong, J. Heersink, J. F. Corney, P. D. Drummond, U. L. Andersen, and G. Leuchs, “Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers,” Opt. Lett. 33, 116–118 (2008).
[Crossref] [PubMed]

C. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable einstein-podolsky-rosen entanglement via the kerr nonlinear in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Levenson, M.

R. Shelby, M. Levenson, S. Perlmutter, R. DeVoe, and D. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
[Crossref] [PubMed]

Levenson, M. D.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Li, X.

X. Guo, N. Liu, X. Li, and Z. Y. Ou, “Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation,” Opt. Express 23, 29369–29384 (2015).
[Crossref] [PubMed]

L. Yang, F. Sun, N. Zhao, and X. Li, “Generation of frequency degenerate twin photons in pulse pumped fiber optical parametric amplifiers: Influence of background noise,” Opt. Express 22, 2553–2561 (2014).
[Crossref] [PubMed]

X. Guo, X. Li, N. Liu, and Z. Y. Ou, “Multi-mode theory of generating pulsed twin beams from a high gain fiber optical parametric amplifier,” Phys. Rev. A 88, 023841 (2013).
[Crossref]

X. Guo, X. Li, N. Liu, L. Yang, and Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[Crossref]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

X. Li, P. Voss, J. Chen, K. Lee, and P. Kumar, “Measurement of co- and cross-polarized raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005).
[Crossref] [PubMed]

Liu, N.

X. Guo, N. Liu, X. Li, and Z. Y. Ou, “Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation,” Opt. Express 23, 29369–29384 (2015).
[Crossref] [PubMed]

X. Guo, X. Li, N. Liu, and Z. Y. Ou, “Multi-mode theory of generating pulsed twin beams from a high gain fiber optical parametric amplifier,” Phys. Rev. A 88, 023841 (2013).
[Crossref]

X. Guo, X. Li, N. Liu, L. Yang, and Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[Crossref]

Luther-Davies, B.

Lvovsky, A. I.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

A. I. Lvovsky, “Squeezed light,” arXiv: 1401.4118 (2014).

Madden, S.

Menicucci, N. C.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
[Crossref] [PubMed]

Neo, R.

Ou, Z. Y.

X. Guo, N. Liu, X. Li, and Z. Y. Ou, “Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation,” Opt. Express 23, 29369–29384 (2015).
[Crossref] [PubMed]

X. Guo, X. Li, N. Liu, and Z. Y. Ou, “Multi-mode theory of generating pulsed twin beams from a high gain fiber optical parametric amplifier,” Phys. Rev. A 88, 023841 (2013).
[Crossref]

X. Guo, X. Li, N. Liu, L. Yang, and Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[Crossref]

Paquot, Y.

Perlmutter, S.

R. Shelby, M. Levenson, S. Perlmutter, R. DeVoe, and D. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
[Crossref] [PubMed]

Pfister, O.

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
[Crossref] [PubMed]

Pinel, O.

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

Radzewicz, C.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

Rarity, J. G.

Roslund, J.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

R. M. de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

Russell, P. S. J.

M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
[Crossref] [PubMed]

J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
[Crossref] [PubMed]

Schröder, J.

Shapiro, J. H.

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” Photonics Technol. Lett. 14, 983–985 (2002).
[Crossref]

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001).
[Crossref]

Shelby, R.

R. Shelby, M. Levenson, S. Perlmutter, R. DeVoe, and D. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
[Crossref] [PubMed]

Shelby, R. M.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Shirasaki, M.

Silberhorn, C.

C. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable einstein-podolsky-rosen entanglement via the kerr nonlinear in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Sornphiphatphong, C.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Sperling, J.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

Sun, F.

Suzuki, S.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Takesue, H.

Treps, N.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

R. M. de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[Crossref] [PubMed]

Ukai, R.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

van Loock, P.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

Vogel, W.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

Voss, P.

Voss, P. L.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” Photonics Technol. Lett. 14, 983–985 (2002).
[Crossref]

Wadsworth, W. J.

Walls, D.

R. Shelby, M. Levenson, S. Perlmutter, R. DeVoe, and D. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
[Crossref] [PubMed]

Wang, L. J.

Wasilewski, W.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

Weiß, O.

C. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable einstein-podolsky-rosen entanglement via the kerr nonlinear in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Yang, L.

Yokoyama, S.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Yonezawa, H.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Yoshikawa, J.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Yuen, H. P.

Zhao, N.

Appl. Phys. Lett. (1)

X. Guo, X. Li, N. Liu, L. Yang, and Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[Crossref]

Nat. Photonics (1)

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Photonics Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” Photonics Technol. Lett. 14, 983–985 (2002).
[Crossref]

Phys. Rev. A (4)

J. Chen, K. F. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed hong-ou-mandel interference,” Phys. Rev. A 76, 031804 (2007).
[Crossref]

R. M. de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

X. Guo, X. Li, N. Liu, and Z. Y. Ou, “Multi-mode theory of generating pulsed twin beams from a high gain fiber optical parametric amplifier,” Phys. Rev. A 88, 023841 (2013).
[Crossref]

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

Phys. Rev. B (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Phys. Rev. Lett. (8)

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
[Crossref] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
[Crossref] [PubMed]

B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[Crossref] [PubMed]

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

R. Shelby, M. Levenson, S. Perlmutter, R. DeVoe, and D. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
[Crossref] [PubMed]

C. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable einstein-podolsky-rosen entanglement via the kerr nonlinear in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

Other (1)

A. I. Lvovsky, “Squeezed light,” arXiv: 1401.4118 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup. G1–G4, gratings; FC1–FC2, fiber couplers; EDFA1–EDFA3, erbium-doped fiber amplifiers; F1–F3, double grating filters; FPC1–FPC6, fiber polarization controllers; PBS1–PBS3, polarization beam splitters; LO, local oscillator; Ref., reference light; P1, pump pulses centering at λp1; P2, pump pulses centering at λp2; CWDM, coarse wavelength division multiplexer; DSF, dispersion shift fiber; PZT, piezoelectric transducer; BS, 50/50 beam splitter; PD1–PD2, photodiode; ESA, electrical spectrum analyzer.

Fig. 2
Fig. 2

Classical gain of DFWM in DSF versus the total power of the pumps P1+P2. The circles represent the data for P1 and P2 well overlapped to achieve the maximized gain, the diamonds represent data for P1 and P2 with delay of 5 ps. In the measurement, the DSF is placed at room temperature (300 K).

Fig. 3
Fig. 3

Observed noise levels when the pumps P1 and P2 are well overlapped for achieving the maximized gain. (a) Measurement of the noise variance when the pump powers of both P1 and P2 are 0.2 mW. (b) The minimum relative noise of the squeezed vacuum as a function of the total pump power P1+P2. Trace (i), the electronic noise of HD system; trace (ii), the shot noise limit (SNL); trace (iii), the noise variance of the squeezed vacuum for the pumps with total power of 0.4 mW. In the measurement, the temperature of DFS is 300 K; the central frequency, RBW and VBW of the ESA at zero span are set to 5MHz, 1MHz and 1kHz, respectively; and the data in plot (b) has been corrected by the electronic noise of HD system.

Fig. 4
Fig. 4

Observed noise levels when the delay between the pumps P1 and P2 is 5 ps. (a) Measurement of the noise variance when the pump powers of both P1 and P2 are 0.4 mW. (b) The minimum relative noise of the squeezed vacuum as a function of the total pump power P1+P2. Trace (i), the electronic noise of HD system; trace (ii), the shot noise limit (SNL); trace (iii), the noise variance of the squeezed vacuum for the pumps P1 and P2 with total power of 0.8 mW. In the measurement, the temperature of DSF is 300 K; the central frequency, RBW and VBW of the ESA at zero span are set to 5MHz, 1MHz and 1kHz, respectively; and the data in plot (b) has been corrected by the electronic noise of the HD system.

Fig. 5
Fig. 5

The excess noise of the field generated by individual pumps P1 and P2. Plot (a) is obtained when the P1 and P2 are well overlapped for achieving the maximized gain. Plots (b) and (c) are obtained when the delay between P1 and P2 is 5 ps. In the measurement, the delay between LO and the measured fields is always set for obtaining the optimized noise reduction.

Fig. 6
Fig. 6

The minimum relative noise of the squeezed vacuum as a function of the total pump power P1+P2. In the measurement, the delay between P1 and P2 is 5 ps, and the temperature of DSF is 77K.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

b ^ = μ a ^ + ν a ^ ,
Δ 2 X ^ = X ^ 2 X ^ 2 = ( | μ | + | ν | ) 2 = g
Δ 2 Y ^ = Y ^ 2 Y ^ 2 = ( | μ | | ν | ) 2 = 1 g ,

Metrics