Abstract

In this paper, we propose an adjustable liquid aperture to eliminate the undesirable light in a holographic projection. The aperture is based on hydrodynamic actuation. A chamber is formed with a cylindrical tube. A black droplet is filled in the sidewall of the cylinder tube and the outside space is the transparent oil which is immiscible with the black droplet. An ultrathin glass sheet is attached on the bottom substrate of the device and a black shading film is secured to the central area of the glass sheet. By changing the volume of the black droplet, the black droplet will move to the middle or sidewall due to hydrodynamic actuation, so the device can be used as an adjustable aperture. A divergent spherical wave and a solid lens are used to separate the focus planes of the reconstructed image and diffraction beams induced by the liquid crystal on silicon in the holographic projection. Then the aperture is used to eliminate the diffraction beams by adjusting the size of the liquid aperture and the holographic projection does not have undesirable light.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Variable aperture with graded attenuation combined with adjustable focal length lens

Chao Liu, Di Wang, and Qiong-Hua Wang
Opt. Express 27(10) 14075-14084 (2019)

Electrowetting-actuated multifunctional optofluidic lens to improve the quality of computer-generated holography

Chao Liu, Di Wang, Qiong-Hua Wang, and Jiancheng Fang
Opt. Express 27(9) 12963-12975 (2019)

A holographic projection system with an electrically tuning and continuously adjustable optical zoom

Hung-Chun Lin, Neil Collings, Ming-Syuan Chen, and Yi-Hsin Lin
Opt. Express 20(25) 27222-27229 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
    [Crossref] [PubMed]
  2. A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
    [Crossref] [PubMed]
  3. J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52(7), 1404–1412 (2013).
    [Crossref] [PubMed]
  4. B. J. Jackin and T. Yatagai, “Fast calculation of spherical computer generated hologram using spherical wave spectrum method,” Opt. Express 21(1), 935–948 (2013).
    [Crossref] [PubMed]
  5. H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
    [Crossref] [PubMed]
  6. T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Display Technol. 7(7), 382–390 (2011).
    [Crossref]
  7. Y. Takaki and Y. Hayashi, “Elimination of conjugate image for holograms using a resolution redistribution optical system,” Appl. Opt. 47(24), 4302–4308 (2008).
    [Crossref] [PubMed]
  8. M. Agour, E. Kolenovic, C. Falldorf, and C. V. Kopylow, “Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator,” J. Opt. A, Pure Appl. Opt. 11(10), 105405 (2009).
    [Crossref]
  9. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
    [Crossref] [PubMed]
  10. L. Li, Q. H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13(11), 115503 (2011).
    [Crossref]
  11. M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
    [Crossref]
  12. L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
    [Crossref]
  13. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [Crossref]
  14. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011).
    [Crossref] [PubMed]
  15. S. Kuiper and B. H. W. Hendriks, “Variable-focal liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  16. Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “Optofluidic variable aperture,” Opt. Lett. 33(6), 548–550 (2008).
    [Crossref] [PubMed]
  17. J. H. Chang, K. D. Jung, E. Lee, M. Choi, and S. Lee, “Micro-electrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O (2012).
    [Crossref]
  18. D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. Liu, “Color holographic zoom system based on a liquid lens,” Chin. Opt. Lett. 13(7), 072301 (2015).
    [Crossref]

2015 (1)

2014 (2)

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
[Crossref] [PubMed]

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

2013 (3)

2012 (2)

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
[Crossref]

J. H. Chang, K. D. Jung, E. Lee, M. Choi, and S. Lee, “Micro-electrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O (2012).
[Crossref]

2011 (3)

2009 (2)

M. Agour, E. Kolenovic, C. Falldorf, and C. V. Kopylow, “Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator,” J. Opt. A, Pure Appl. Opt. 11(10), 105405 (2009).
[Crossref]

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (1)

2004 (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focal liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Agour, M.

M. Agour, E. Kolenovic, C. Falldorf, and C. V. Kopylow, “Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator,” J. Opt. A, Pure Appl. Opt. 11(10), 105405 (2009).
[Crossref]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Bernet, S.

Chang, J. H.

J. H. Chang, K. D. Jung, E. Lee, M. Choi, and S. Lee, “Micro-electrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O (2012).
[Crossref]

Chen, M. S.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

Choi, M.

J. H. Chang, K. D. Jung, E. Lee, M. Choi, and S. Lee, “Micro-electrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O (2012).
[Crossref]

Collings, N.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

Falldorf, C.

M. Agour, E. Kolenovic, C. Falldorf, and C. V. Kopylow, “Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator,” J. Opt. A, Pure Appl. Opt. 11(10), 105405 (2009).
[Crossref]

Feiwen, L.

Guangya, Z.

Hayashi, Y.

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focal liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Hongbin, Y.

Jackin, B. J.

Jesacher, A.

Jia, J.

Jiang, W.

Jung, K. D.

J. H. Chang, K. D. Jung, E. Lee, M. Choi, and S. Lee, “Micro-electrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O (2012).
[Crossref]

Kolenovic, E.

M. Agour, E. Kolenovic, C. Falldorf, and C. V. Kopylow, “Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator,” J. Opt. A, Pure Appl. Opt. 11(10), 105405 (2009).
[Crossref]

Kopylow, C. V.

M. Agour, E. Kolenovic, C. Falldorf, and C. V. Kopylow, “Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator,” J. Opt. A, Pure Appl. Opt. 11(10), 105405 (2009).
[Crossref]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focal liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Kurita, T.

Lee, E.

J. H. Chang, K. D. Jung, E. Lee, M. Choi, and S. Lee, “Micro-electrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O (2012).
[Crossref]

Lee, S.

J. H. Chang, K. D. Jung, E. Lee, M. Choi, and S. Lee, “Micro-electrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O (2012).
[Crossref]

Li, L.

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
[Crossref]

L. Li, Q. H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13(11), 115503 (2011).
[Crossref]

Li, X.

Lin, H. C.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

Lin, Y. H.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

Liu, C.

Liu, J.

Mishina, T.

Mugele, F.

Murade, C. U.

Oh, J. M.

Oi, R.

Pan, Y.

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Ren, H.

Ritsch-Marte, M.

Senoh, T.

Shen, C.

Siong, C. F.

Sun, Z.

Takaki, Y.

van den Ende, D.

Wang, D.

Wang, Q. H.

D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. Liu, “Color holographic zoom system based on a liquid lens,” Chin. Opt. Lett. 13(7), 072301 (2015).
[Crossref]

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
[Crossref]

L. Li, Q. H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13(11), 115503 (2011).
[Crossref]

Wang, Y.

Wu, S. T.

Xie, J.

Yamamoto, K.

Yatagai, T.

Zhang, B.

Zhang, H.

Zhao, Q.

Zhou, X.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focal liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Chin. Opt. Lett. (1)

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

J. Disp. Technol. (1)

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

J. Display Technol. (1)

J. Opt. (1)

L. Li, Q. H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13(11), 115503 (2011).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

M. Agour, E. Kolenovic, C. Falldorf, and C. V. Kopylow, “Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator,” J. Opt. A, Pure Appl. Opt. 11(10), 105405 (2009).
[Crossref]

Opt. Eng. (1)

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (1)

J. H. Chang, K. D. Jung, E. Lee, M. Choi, and S. Lee, “Micro-electrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic structure of the proposed liquid aperture and its operation mechanism. (a) Schematic cross-sectional structure; (b) top view of the device; (c) state when the black droplet is injected into the bottom chamber.
Fig. 2
Fig. 2 Structure of the holographic projection.
Fig. 3
Fig. 3 Principle of the holographic projection.
Fig. 4
Fig. 4 Changes of the aperture. (a) D = 8.4mm; (b) D = 7.5mm; (c) D = 7.0mm; (d) D = 6.5mm; (e) D = 6.0mm; (f) D = 5.4mm.
Fig. 5
Fig. 5 Relationship between the volume of the black droplet and the diameter of opening aperture.
Fig. 6
Fig. 6 (a) Original object, (b) the reconstructed images with undesired light and (c) the reconstructed image which moves to the center.
Fig. 7
Fig. 7 Reconstructed images using the system with the liquid aperture. (a) D = 8.5mm; (b) D = 7.4mm; (c) D = 6.5mm; (d) D = 6.3mm; (e) D = 6.1mm; (f) D = 5.8mm.
Fig. 8
Fig. 8 Structure of the holographic zoom system using the liquid aperture.
Fig. 9
Fig. 9 Relationship between the response time and the aperture size.
Fig. 10
Fig. 10 Relationship between the transmission and the wavelength.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ s = k 2 r ( x 2 + y 2 ) ,
1 r + d 1 + 1 d 3 = 1 d 2 .
H = f λ d 3 p ( r + d 1 ) ,

Metrics