Abstract

A depth-of-field enhancement method for integral imaging microscopy system using a spatial multiplexing structure consisting of a beamsplitter with dual video channels and micro lens arrays is proposed. A computational integral imaging reconstruction algorithm generates two sets of depth-sliced images for the acquired depth information of the captured elemental image arrays and the well-focused depth-slices of both image sets are combined where each is focused on a different depth plane of the specimen. A prototype is implemented, and the experimental results demonstrate that the depth-of-field of the reconstructed images in the proposed integral imaging microscopy is significantly increased compared with conventional integral imaging microscopy systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced depth-of-field of an integral imaging microscope using a bifocal holographic optical element-micro lens array

Ki-Chul Kwon, Young-Tae Lim, Chang-Won Shin, Munkh-Uchral Erdenebat, Jae-Moon Hwang, and Nam Kim
Opt. Lett. 42(16) 3209-3212 (2017)

Resolution-enhancement for an orthographic-view image display in an integral imaging microscope system

Ki-Chul Kwon, Ji-Seong Jeong, Munkh-Uchral Erdenebat, Yan-Ling Piao, Kwan-Hee Yoo, and Nam Kim
Biomed. Opt. Express 6(3) 736-746 (2015)

Real-time interactive display for integral imaging microscopy

Ki-Chul Kwon, Ji-Seong Jeong, Munkh-Uchral Erdenebat, Young-Tae Lim, Kwan-Hee Yoo, and Nam Kim
Appl. Opt. 53(20) 4450-4459 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J.-S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29(11), 1230–1232 (2004).
    [Crossref] [PubMed]
  2. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” Proc. SIGGRAPH‘06, 924–934 (2006).
  3. Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17(21), 19253–19263 (2009).
    [Crossref] [PubMed]
  4. K.-C. Kwon, J.-S. Jeong, M.-U. Erdenebat, Y.-T. Lim, K.-H. Yoo, and N. Kim, “Real-time interactive display for integral imaging microscopy,” Appl. Opt. 53(20), 4450–4459 (2014).
    [Crossref] [PubMed]
  5. K.-C. Kwon, J.-S. Jeong, M.-U. Erdenebat, Y.-L. Piao, K.-H. Yoo, and N. Kim, “Resolution-enhancement for an orthographic-view image display in an integral imaging microscope system,” Biomed. Opt. Express 6(3), 736–746 (2015).
    [Crossref] [PubMed]
  6. G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).
  7. N. Kim, M. A. Alam, L. T. Bang, A.-H. Phan, M.-L. Piao, and M.-U. Erdenebat, “Advances in the light field displays based on integral imaging and holographic techniques,” Chin. Opt. Lett. 12, 060005 (2014).
    [Crossref]
  8. M.-U. Erdenebat, K.-C. Kwon, E. Dashdavaa, Y.-L. Piao, K.-H. Yoo, G. Baasantseren, Y. Kim, and N. Kim, “Advanced 360-degree integral-floating display using a hidden point removal operator and a hexagonal lens array,” J. Opt. Soc. Korea 18(6), 706–713 (2014).
    [Crossref]
  9. Y. Yang and S.-W. Min, “Projection-type integral imaging using a pico-projector,” J. Opt. Soc. Korea 18(6), 714–719 (2014).
    [Crossref]
  10. Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Analysis on enhanced depth of field for integral imaging microscope,” Opt. Express 20(21), 23480–23488 (2012).
    [Crossref] [PubMed]
  11. J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28(16), 1421–1423 (2003).
    [Crossref] [PubMed]
  12. J.-S. Jang and B. Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28(20), 1924–1926 (2003).
    [Crossref] [PubMed]
  13. S.-C. Kim, C.-K. Kim, and E.-S. Kim, “Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique,” 3D Res. 2(2), 6 (2011).
    [Crossref]
  14. C.-J. Kim, M. Chang, M. Lee, J. Kim, and Y. H. Won, “Depth plane adaptive integral imaging using a varifocal liquid lens array,” Appl. Opt. 54(10), 2565–2571 (2015).
    [Crossref] [PubMed]
  15. B. Lee, S.-W. Min, and B. Javidi, “Theoretical analysis for three-dimensional integral imaging systems with double devices,” Appl. Opt. 41(23), 4856–4865 (2002).
    [Crossref] [PubMed]
  16. S.-W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42(20), 4186–4195 (2003).
    [Crossref] [PubMed]
  17. Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, and B. Lee, “Depth-enhanced three-dimensional integral imaging by use of multilayered display devices,” Appl. Opt. 45(18), 4334–4343 (2006).
    [Crossref] [PubMed]
  18. D.-Q. Pham, N. Kim, K.-C. Kwon, J.-H. Jung, K. Hong, B. Lee, and J.-H. Park, “Depth enhancement of integral imaging by using polymer-dispersed liquid-crystal films and a dual-depth configuration,” Opt. Lett. 35(18), 3135–3137 (2010).
    [Crossref] [PubMed]
  19. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
    [Crossref] [PubMed]
  20. S.-C. Kim, S.-C. Park, and E.-S. Kim, “Computational integral-imaging reconstruction-based 3-D volumetric target object recognition by using a 3-D reference object,” Appl. Opt. 48(34), H95–H104 (2009).
    [PubMed]

2015 (2)

2014 (4)

2012 (1)

2011 (1)

S.-C. Kim, C.-K. Kim, and E.-S. Kim, “Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique,” 3D Res. 2(2), 6 (2011).
[Crossref]

2010 (1)

2009 (2)

2006 (1)

2004 (2)

2003 (3)

2002 (1)

1908 (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Adams, A.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” Proc. SIGGRAPH‘06, 924–934 (2006).

Alam, M. A.

Baasantseren, G.

Bang, L. T.

Chang, M.

Cho, S.-W.

Choi, H.

Dashdavaa, E.

Erdenebat, M.-U.

Footer, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” Proc. SIGGRAPH‘06, 924–934 (2006).

Hong, K.

Hong, S.-H.

Horowitz, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” Proc. SIGGRAPH‘06, 924–934 (2006).

Jang, J.-S.

Javidi, B.

Jeong, J.-S.

Jin, F.

Jung, J.-H.

Kim, C.-J.

Kim, C.-K.

S.-C. Kim, C.-K. Kim, and E.-S. Kim, “Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique,” 3D Res. 2(2), 6 (2011).
[Crossref]

Kim, E.-S.

S.-C. Kim, C.-K. Kim, and E.-S. Kim, “Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique,” 3D Res. 2(2), 6 (2011).
[Crossref]

S.-C. Kim, S.-C. Park, and E.-S. Kim, “Computational integral-imaging reconstruction-based 3-D volumetric target object recognition by using a 3-D reference object,” Appl. Opt. 48(34), H95–H104 (2009).
[PubMed]

Kim, J.

Kim, N.

K.-C. Kwon, J.-S. Jeong, M.-U. Erdenebat, Y.-L. Piao, K.-H. Yoo, and N. Kim, “Resolution-enhancement for an orthographic-view image display in an integral imaging microscope system,” Biomed. Opt. Express 6(3), 736–746 (2015).
[Crossref] [PubMed]

K.-C. Kwon, J.-S. Jeong, M.-U. Erdenebat, Y.-T. Lim, K.-H. Yoo, and N. Kim, “Real-time interactive display for integral imaging microscopy,” Appl. Opt. 53(20), 4450–4459 (2014).
[Crossref] [PubMed]

N. Kim, M. A. Alam, L. T. Bang, A.-H. Phan, M.-L. Piao, and M.-U. Erdenebat, “Advances in the light field displays based on integral imaging and holographic techniques,” Chin. Opt. Lett. 12, 060005 (2014).
[Crossref]

M.-U. Erdenebat, K.-C. Kwon, E. Dashdavaa, Y.-L. Piao, K.-H. Yoo, G. Baasantseren, Y. Kim, and N. Kim, “Advanced 360-degree integral-floating display using a hidden point removal operator and a hexagonal lens array,” J. Opt. Soc. Korea 18(6), 706–713 (2014).
[Crossref]

Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Analysis on enhanced depth of field for integral imaging microscope,” Opt. Express 20(21), 23480–23488 (2012).
[Crossref] [PubMed]

D.-Q. Pham, N. Kim, K.-C. Kwon, J.-H. Jung, K. Hong, B. Lee, and J.-H. Park, “Depth enhancement of integral imaging by using polymer-dispersed liquid-crystal films and a dual-depth configuration,” Opt. Lett. 35(18), 3135–3137 (2010).
[Crossref] [PubMed]

Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17(21), 19253–19263 (2009).
[Crossref] [PubMed]

Kim, S.-C.

S.-C. Kim, C.-K. Kim, and E.-S. Kim, “Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique,” 3D Res. 2(2), 6 (2011).
[Crossref]

S.-C. Kim, S.-C. Park, and E.-S. Kim, “Computational integral-imaging reconstruction-based 3-D volumetric target object recognition by using a 3-D reference object,” Appl. Opt. 48(34), H95–H104 (2009).
[PubMed]

Kim, Y.

Kwon, K.-C.

Lee, B.

Lee, M.

Levoy, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” Proc. SIGGRAPH‘06, 924–934 (2006).

Lim, Y.-T.

Lippmann, G.

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Min, S.-W.

Ng, R.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” Proc. SIGGRAPH‘06, 924–934 (2006).

Park, J.-H.

Park, S.-C.

Pham, D.-Q.

Phan, A.-H.

Piao, M.-L.

Piao, Y.-L.

Won, Y. H.

Yang, Y.

Yoo, K.-H.

3D Res. (1)

S.-C. Kim, C.-K. Kim, and E.-S. Kim, “Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique,” 3D Res. 2(2), 6 (2011).
[Crossref]

Appl. Opt. (6)

Biomed. Opt. Express (1)

C. R. Acad. Sci. (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Chin. Opt. Lett. (1)

J. Opt. Soc. Korea (2)

Opt. Express (3)

Opt. Lett. (4)

Other (1)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” Proc. SIGGRAPH‘06, 924–934 (2006).

Supplementary Material (6)

NameDescription
» Visualization 1: MOV (2200 KB)      Visualization 1
» Visualization 2: MOV (2656 KB)      Visualization 2
» Visualization 3: MOV (2258 KB)      Visualization 3
» Visualization 4: MOV (1685 KB)      Visualization 4
» Visualization 5: MOV (2177 KB)      Visualization 5
» Visualization 6: MOV (2031 KB)      Visualization 6

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Basic structure of the IIM.

Fig. 2
Fig. 2

Correlation between the DoF of MLA and z.

Fig. 3
Fig. 3

The dependence of DIIM on z, where (a) M = 5 and NA = 0.14 mm, and (b) M = 10 and NA = 0.28 mm.

Fig. 4
Fig. 4

Schematic of the proposed IIM system with dual MLAs and dual cameras.

Fig. 5
Fig. 5

Schematic of the DoF enhancement in the proposed IIM using two MLAs: (a) pickup and (b) reconstruction.

Fig. 6
Fig. 6

Schematic for the (a) first and (b) second conditions.

Fig. 7
Fig. 7

Numerical simulation results: (a) the first case where fLA1fLA2 and g1 = g2, and (b) the second case where fLA1 = fLA2 and g1 > g2.

Fig. 8
Fig. 8

A photograph of the prototype DoF-enhanced IIM system.

Fig. 9
Fig. 9

(a) The 2D images for top (left) and bottom (right) sides of a surface-mounted resistor, the corresponding EIAs, and reconstructed orthographic-view images; (b) images of the stamen (left) and pistil (right) of a chrysanthemum flower and their corresponding EIAs, and the reconstructed orthographic-view images; and (c) images of the left eye (left) and right eye (right) of a fruit fly, their corresponding EIAs, and orthographic-view images.

Fig. 10
Fig. 10

The reconstructed depth slices for each EIA captured from the different depth planes of the specimens: the depth slices for corresponding EIA1 (left) and EIA2 (right) of (a) a surface-mounted resistor (Visualization 1), (b) a chrysanthemum flower (Visualization 2), and (c) a fruit fly (Visualization 3).

Fig. 11
Fig. 11

The PSD values for each of the depth-sliced reconstructions from EIA1 and EIA2: (a) the surface-mounted resistor, (b) the chrysanthemum flower, and (c) the fruit fly.

Fig. 12
Fig. 12

The overall visualizations of the three objects with combined the well-focused depth slices: (a) a surface-mounted resistor (Visualization 4), (b) a chrysanthemum flower (Visualization 5), and (c) a fruit fly (Visualization 6).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D con = λn N A 2 + n MNA P S ,
D LA = λ N A LA 2 + z gN A LA P S ,
D IIM = 1 M 2 D LA .
{ D IIM1 = 1 M 2 ( λ N A LA1 2 + z 1 g 1 N A LA1 P S ),whereN A LA1 = P EL 2 f LA1 D IIM2 = 1 M 2 ( λ N A LA2 2 + z 2 g 2 N A LA2 P S ),whereN A LA2 = P EL 2 f LA2 ,
D tot_gen = D IIM1 + D IIM2 D ov ,where D ov >0,
D ov =( z 2 z 1 )( z 2 z 1 z 1 2 )( z 2 z 1 z 2 2 )= 3 z 1 z 2 2 .
D tot_gen = D IIM1 + D IIM2 D ov = = λ g 1 g 2 ( N A LA1 2 +N A LA2 2 )+N A LA1 N A LA2 P S ( g 1 z 2 N A LA1 + g 2 z 1 N A LA2 ) g 1 g 2 N A LA1 2 N A LA2 2 M 2 3 z 1 z 2 2 , where D ov >0.
D tot_max = D IIM1 + D IIM2 = = λ g 1 g 2 ( N A LA1 2 +N A LA2 2 )+N A LA1 N A LA2 P S ( g 1 z 2 N A LA1 + g 2 z 1 N A LA2 ) g 1 g 2 N A LA1 2 N A LA2 2 M 2 , where D ov =0.

Metrics