Abstract

We investigate field enhancement inside metal-insulator-metal gaps with asymmetric thicknesses and tapered shapes in the terahertz regime. Finite-difference time-domain simulations were conducted for calculation of field enhancement factor. The calculation indicates that for asymmetric sample, field enhancement increases proportionally with the decrease of the thinner of the two metal film thicknesses surrounding the gap. Concomitantly, angle variation has little effect on the field enhancement if the thickness of the narrowest gap region is fixed. A model based on the capacitor concept is proposed for intuitive understanding of the phenomena.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical field enhancement of nanometer-sized gaps at near-infrared frequencies

Jae Sung Ahn, Taehee Kang, Dilip K. Singh, Young-Mi Bahk, Hyunhwa Lee, Soo Bong Choi, and Dai-Sik Kim
Opt. Express 23(4) 4897-4907 (2015)

Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, and P. U. Jepsen
Opt. Express 20(8) 8344-8355 (2012)

Fast vertical mode expansion method for the simulation of extraordinary terahertz field enhancement in an annular nanogap

Zhen Hu, Junshan Lin, Ya Yan Lu, and Sang-Hyun Oh
J. Opt. Soc. Am. B 35(1) 30-38 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  2. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
    [Crossref] [PubMed]
  3. D. Zeisel, V. Deckert, R. Zenobi, and T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283(5-6), 381–385 (1998).
    [Crossref]
  4. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000).
    [Crossref] [PubMed]
  5. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
    [Crossref] [PubMed]
  6. S. G. Rodrigo, S. Carretero-Palacios, F. García-Vidal, and L. Martín-Moreno, “Metallic slit arrays filled with third-order nonlinear media: Optical Kerr effect and third-harmonic generation,” Phys. Rev. B 83(23), 235425 (2011).
    [Crossref]
  7. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
    [Crossref] [PubMed]
  8. D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
    [Crossref] [PubMed]
  9. F. Kadlec, P. Kužel, and J.-L. Coutaz, “Optical rectification at metal surfaces,” Opt. Lett. 29(22), 2674–2676 (2004).
    [Crossref] [PubMed]
  10. P. S. Davids, R. L. Jarecki, A. Starbuck, D. B. Burckel, E. A. Kadlec, T. Ribaudo, E. A. Shaner, and D. W. Peters, “Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode,” Nat. Nanotechnol. 10(12), 1033–1038 (2015).
    [Crossref] [PubMed]
  11. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
    [Crossref]
  12. X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
    [Crossref] [PubMed]
  13. J. Jeong, J. Rhie, W. Jeon, C. S. Hwang, and D.-S. Kim, “High-throughput fabrication of infinitely long 10 nm slit arrays for terahertz applications,” J. Infrared Millim. Te. 36(3), 262–268 (2015).
    [Crossref]
  14. J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
    [Crossref]
  15. J. Lee, M. Seo, D. Kim, S. Jeoung, C. Lienau, J. Kang, and Q.-H. Park, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88(7), 071114 (2006).
    [Crossref]
  16. J.-Y. Kim, B. J. Kang, J. Park, Y.-M. Bahk, W. T. Kim, J. Rhie, H. Jeon, F. Rotermund, and D.-S. Kim, “Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime,” Nano Lett. 15(10), 6683–6688 (2015).
    [Crossref] [PubMed]
  17. H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
    [Crossref] [PubMed]
  18. M. Groner, J. Elam, F. Fabreguette, and S. M. George, “Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates,” Thin Solid Films 413(1-2), 186–197 (2002).
    [Crossref]
  19. W. Heinrich, K. Beilenhoff, P. Mezzanotte, and L. Roselli, “Optimum mesh grading for finite-difference method,” IEEE Trans. Microw. Theory Tech. 44(9), 1569–1574 (1996).
    [Crossref]
  20. W. Yu and R. Mittra, “A technique for improving the accuracy of the nonuniform finite-difference time-domain algorithm,” IEEE Trans. Microw. Theory Tech. 47(3), 353–356 (1999).
    [Crossref]

2015 (3)

P. S. Davids, R. L. Jarecki, A. Starbuck, D. B. Burckel, E. A. Kadlec, T. Ribaudo, E. A. Shaner, and D. W. Peters, “Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode,” Nat. Nanotechnol. 10(12), 1033–1038 (2015).
[Crossref] [PubMed]

J. Jeong, J. Rhie, W. Jeon, C. S. Hwang, and D.-S. Kim, “High-throughput fabrication of infinitely long 10 nm slit arrays for terahertz applications,” J. Infrared Millim. Te. 36(3), 262–268 (2015).
[Crossref]

J.-Y. Kim, B. J. Kang, J. Park, Y.-M. Bahk, W. T. Kim, J. Rhie, H. Jeon, F. Rotermund, and D.-S. Kim, “Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime,” Nano Lett. 15(10), 6683–6688 (2015).
[Crossref] [PubMed]

2013 (2)

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[Crossref] [PubMed]

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

2011 (2)

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[Crossref] [PubMed]

S. G. Rodrigo, S. Carretero-Palacios, F. García-Vidal, and L. Martín-Moreno, “Metallic slit arrays filled with third-order nonlinear media: Optical Kerr effect and third-harmonic generation,” Phys. Rev. B 83(23), 235425 (2011).
[Crossref]

2010 (2)

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
[Crossref]

2009 (1)

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

2006 (2)

J. Lee, M. Seo, D. Kim, S. Jeoung, C. Lienau, J. Kang, and Q.-H. Park, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88(7), 071114 (2006).
[Crossref]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (1)

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

2002 (1)

M. Groner, J. Elam, F. Fabreguette, and S. M. George, “Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates,” Thin Solid Films 413(1-2), 186–197 (2002).
[Crossref]

2000 (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000).
[Crossref] [PubMed]

1999 (1)

W. Yu and R. Mittra, “A technique for improving the accuracy of the nonuniform finite-difference time-domain algorithm,” IEEE Trans. Microw. Theory Tech. 47(3), 353–356 (1999).
[Crossref]

1998 (1)

D. Zeisel, V. Deckert, R. Zenobi, and T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283(5-6), 381–385 (1998).
[Crossref]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

1996 (1)

W. Heinrich, K. Beilenhoff, P. Mezzanotte, and L. Roselli, “Optimum mesh grading for finite-difference method,” IEEE Trans. Microw. Theory Tech. 44(9), 1569–1574 (1996).
[Crossref]

Ahn, J. S.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Ahn, K. J.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[Crossref] [PubMed]

J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
[Crossref]

Aizpurua, J.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000).
[Crossref] [PubMed]

Apell, P.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000).
[Crossref] [PubMed]

Bahk, Y.-M.

J.-Y. Kim, B. J. Kang, J. Park, Y.-M. Bahk, W. T. Kim, J. Rhie, H. Jeon, F. Rotermund, and D.-S. Kim, “Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime,” Nano Lett. 15(10), 6683–6688 (2015).
[Crossref] [PubMed]

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[Crossref] [PubMed]

Beilenhoff, K.

W. Heinrich, K. Beilenhoff, P. Mezzanotte, and L. Roselli, “Optimum mesh grading for finite-difference method,” IEEE Trans. Microw. Theory Tech. 44(9), 1569–1574 (1996).
[Crossref]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Brongersma, M. L.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[Crossref] [PubMed]

Burckel, D. B.

P. S. Davids, R. L. Jarecki, A. Starbuck, D. B. Burckel, E. A. Kadlec, T. Ribaudo, E. A. Shaner, and D. W. Peters, “Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode,” Nat. Nanotechnol. 10(12), 1033–1038 (2015).
[Crossref] [PubMed]

Cai, W.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[Crossref] [PubMed]

Carretero-Palacios, S.

S. G. Rodrigo, S. Carretero-Palacios, F. García-Vidal, and L. Martín-Moreno, “Metallic slit arrays filled with third-order nonlinear media: Optical Kerr effect and third-harmonic generation,” Phys. Rev. B 83(23), 235425 (2011).
[Crossref]

Chen, X.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Choi, S. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Coutaz, J.-L.

Cuevas, J. C.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Davids, P. S.

P. S. Davids, R. L. Jarecki, A. Starbuck, D. B. Burckel, E. A. Kadlec, T. Ribaudo, E. A. Shaner, and D. W. Peters, “Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode,” Nat. Nanotechnol. 10(12), 1033–1038 (2015).
[Crossref] [PubMed]

Deckert, V.

D. Zeisel, V. Deckert, R. Zenobi, and T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283(5-6), 381–385 (1998).
[Crossref]

Elam, J.

M. Groner, J. Elam, F. Fabreguette, and S. M. George, “Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates,” Thin Solid Films 413(1-2), 186–197 (2002).
[Crossref]

Fabreguette, F.

M. Groner, J. Elam, F. Fabreguette, and S. M. George, “Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates,” Thin Solid Films 413(1-2), 186–197 (2002).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

García-Vidal, F.

S. G. Rodrigo, S. Carretero-Palacios, F. García-Vidal, and L. Martín-Moreno, “Metallic slit arrays filled with third-order nonlinear media: Optical Kerr effect and third-harmonic generation,” Phys. Rev. B 83(23), 235425 (2011).
[Crossref]

George, S. M.

M. Groner, J. Elam, F. Fabreguette, and S. M. George, “Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates,” Thin Solid Films 413(1-2), 186–197 (2002).
[Crossref]

Groner, M.

M. Groner, J. Elam, F. Fabreguette, and S. M. George, “Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates,” Thin Solid Films 413(1-2), 186–197 (2002).
[Crossref]

Han, S.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[Crossref] [PubMed]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Heinrich, W.

W. Heinrich, K. Beilenhoff, P. Mezzanotte, and L. Roselli, “Optimum mesh grading for finite-difference method,” IEEE Trans. Microw. Theory Tech. 44(9), 1569–1574 (1996).
[Crossref]

Hüser, F.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Hwang, C. S.

J. Jeong, J. Rhie, W. Jeon, C. S. Hwang, and D.-S. Kim, “High-throughput fabrication of infinitely long 10 nm slit arrays for terahertz applications,” J. Infrared Millim. Te. 36(3), 262–268 (2015).
[Crossref]

Im, H.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jarecki, R. L.

P. S. Davids, R. L. Jarecki, A. Starbuck, D. B. Burckel, E. A. Kadlec, T. Ribaudo, E. A. Shaner, and D. W. Peters, “Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode,” Nat. Nanotechnol. 10(12), 1033–1038 (2015).
[Crossref] [PubMed]

Jeon, H.

J.-Y. Kim, B. J. Kang, J. Park, Y.-M. Bahk, W. T. Kim, J. Rhie, H. Jeon, F. Rotermund, and D.-S. Kim, “Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime,” Nano Lett. 15(10), 6683–6688 (2015).
[Crossref] [PubMed]

Jeon, W.

J. Jeong, J. Rhie, W. Jeon, C. S. Hwang, and D.-S. Kim, “High-throughput fabrication of infinitely long 10 nm slit arrays for terahertz applications,” J. Infrared Millim. Te. 36(3), 262–268 (2015).
[Crossref]

Jeong, J.

J. Jeong, J. Rhie, W. Jeon, C. S. Hwang, and D.-S. Kim, “High-throughput fabrication of infinitely long 10 nm slit arrays for terahertz applications,” J. Infrared Millim. Te. 36(3), 262–268 (2015).
[Crossref]

Jeoung, S.

J. Lee, M. Seo, D. Kim, S. Jeoung, C. Lienau, J. Kang, and Q.-H. Park, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88(7), 071114 (2006).
[Crossref]

Kadlec, E. A.

P. S. Davids, R. L. Jarecki, A. Starbuck, D. B. Burckel, E. A. Kadlec, T. Ribaudo, E. A. Shaner, and D. W. Peters, “Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode,” Nat. Nanotechnol. 10(12), 1033–1038 (2015).
[Crossref] [PubMed]

Kadlec, F.

Käll, M.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000).
[Crossref] [PubMed]

Kang, B. J.

J.-Y. Kim, B. J. Kang, J. Park, Y.-M. Bahk, W. T. Kim, J. Rhie, H. Jeon, F. Rotermund, and D.-S. Kim, “Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime,” Nano Lett. 15(10), 6683–6688 (2015).
[Crossref] [PubMed]

Kang, J.

J. Lee, M. Seo, D. Kim, S. Jeoung, C. Lienau, J. Kang, and Q.-H. Park, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88(7), 071114 (2006).
[Crossref]

Kang, J. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Kim, D.

J. Lee, M. Seo, D. Kim, S. Jeoung, C. Lienau, J. Kang, and Q.-H. Park, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88(7), 071114 (2006).
[Crossref]

Kim, D. S.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
[Crossref]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Kim, D.-S.

J. Jeong, J. Rhie, W. Jeon, C. S. Hwang, and D.-S. Kim, “High-throughput fabrication of infinitely long 10 nm slit arrays for terahertz applications,” J. Infrared Millim. Te. 36(3), 262–268 (2015).
[Crossref]

J.-Y. Kim, B. J. Kang, J. Park, Y.-M. Bahk, W. T. Kim, J. Rhie, H. Jeon, F. Rotermund, and D.-S. Kim, “Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime,” Nano Lett. 15(10), 6683–6688 (2015).
[Crossref] [PubMed]

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[Crossref] [PubMed]

Kim, J.-Y.

J.-Y. Kim, B. J. Kang, J. Park, Y.-M. Bahk, W. T. Kim, J. Rhie, H. Jeon, F. Rotermund, and D.-S. Kim, “Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime,” Nano Lett. 15(10), 6683–6688 (2015).
[Crossref] [PubMed]

Kim, W. T.

J.-Y. Kim, B. J. Kang, J. Park, Y.-M. Bahk, W. T. Kim, J. Rhie, H. Jeon, F. Rotermund, and D.-S. Kim, “Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime,” Nano Lett. 15(10), 6683–6688 (2015).
[Crossref] [PubMed]

Kim, Y. J.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Koo, S. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Kužel, P.

Kyoung, J. S.

J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
[Crossref]

Lee, J.

J. Lee, M. Seo, D. Kim, S. Jeoung, C. Lienau, J. Kang, and Q.-H. Park, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88(7), 071114 (2006).
[Crossref]

Lienau, C.

J. Lee, M. Seo, D. Kim, S. Jeoung, C. Lienau, J. Kang, and Q.-H. Park, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88(7), 071114 (2006).
[Crossref]

Lindquist, N. C.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Maier, S. A.

Martín-Moreno, L.

S. G. Rodrigo, S. Carretero-Palacios, F. García-Vidal, and L. Martín-Moreno, “Metallic slit arrays filled with third-order nonlinear media: Optical Kerr effect and third-harmonic generation,” Phys. Rev. B 83(23), 235425 (2011).
[Crossref]

Mezzanotte, P.

W. Heinrich, K. Beilenhoff, P. Mezzanotte, and L. Roselli, “Optimum mesh grading for finite-difference method,” IEEE Trans. Microw. Theory Tech. 44(9), 1569–1574 (1996).
[Crossref]

Mittra, R.

W. Yu and R. Mittra, “A technique for improving the accuracy of the nonuniform finite-difference time-domain algorithm,” IEEE Trans. Microw. Theory Tech. 47(3), 353–356 (1999).
[Crossref]

Natelson, D.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Novotny, L.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Oh, S. H.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Park, D. J.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, G. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, H. R.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
[Crossref]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, H.-R.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[Crossref] [PubMed]

Park, J.

J.-Y. Kim, B. J. Kang, J. Park, Y.-M. Bahk, W. T. Kim, J. Rhie, H. Jeon, F. Rotermund, and D.-S. Kim, “Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime,” Nano Lett. 15(10), 6683–6688 (2015).
[Crossref] [PubMed]

Park, N.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[Crossref] [PubMed]

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Park, N. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, Q. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, Q.-H.

J. Lee, M. Seo, D. Kim, S. Jeoung, C. Lienau, J. Kang, and Q.-H. Park, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88(7), 071114 (2006).
[Crossref]

Pauly, F.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Pelton, M.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Peters, D. W.

P. S. Davids, R. L. Jarecki, A. Starbuck, D. B. Burckel, E. A. Kadlec, T. Ribaudo, E. A. Shaner, and D. W. Peters, “Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode,” Nat. Nanotechnol. 10(12), 1033–1038 (2015).
[Crossref] [PubMed]

Piao, X.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Planken, P. C. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Rhie, J.

J. Jeong, J. Rhie, W. Jeon, C. S. Hwang, and D.-S. Kim, “High-throughput fabrication of infinitely long 10 nm slit arrays for terahertz applications,” J. Infrared Millim. Te. 36(3), 262–268 (2015).
[Crossref]

J.-Y. Kim, B. J. Kang, J. Park, Y.-M. Bahk, W. T. Kim, J. Rhie, H. Jeon, F. Rotermund, and D.-S. Kim, “Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime,” Nano Lett. 15(10), 6683–6688 (2015).
[Crossref] [PubMed]

Ribaudo, T.

P. S. Davids, R. L. Jarecki, A. Starbuck, D. B. Burckel, E. A. Kadlec, T. Ribaudo, E. A. Shaner, and D. W. Peters, “Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode,” Nat. Nanotechnol. 10(12), 1033–1038 (2015).
[Crossref] [PubMed]

Rodrigo, S. G.

S. G. Rodrigo, S. Carretero-Palacios, F. García-Vidal, and L. Martín-Moreno, “Metallic slit arrays filled with third-order nonlinear media: Optical Kerr effect and third-harmonic generation,” Phys. Rev. B 83(23), 235425 (2011).
[Crossref]

Roselli, L.

W. Heinrich, K. Beilenhoff, P. Mezzanotte, and L. Roselli, “Optimum mesh grading for finite-difference method,” IEEE Trans. Microw. Theory Tech. 44(9), 1569–1574 (1996).
[Crossref]

Rotermund, F.

J.-Y. Kim, B. J. Kang, J. Park, Y.-M. Bahk, W. T. Kim, J. Rhie, H. Jeon, F. Rotermund, and D.-S. Kim, “Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime,” Nano Lett. 15(10), 6683–6688 (2015).
[Crossref] [PubMed]

Seo, M.

J. Lee, M. Seo, D. Kim, S. Jeoung, C. Lienau, J. Kang, and Q.-H. Park, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88(7), 071114 (2006).
[Crossref]

Seo, M. A.

J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
[Crossref]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Shaner, E. A.

P. S. Davids, R. L. Jarecki, A. Starbuck, D. B. Burckel, E. A. Kadlec, T. Ribaudo, E. A. Shaner, and D. W. Peters, “Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode,” Nat. Nanotechnol. 10(12), 1033–1038 (2015).
[Crossref] [PubMed]

Starbuck, A.

P. S. Davids, R. L. Jarecki, A. Starbuck, D. B. Burckel, E. A. Kadlec, T. Ribaudo, E. A. Shaner, and D. W. Peters, “Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode,” Nat. Nanotechnol. 10(12), 1033–1038 (2015).
[Crossref] [PubMed]

Suwal, O. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Vasudev, A. P.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[Crossref] [PubMed]

Vo-Dinh, T.

D. Zeisel, V. Deckert, R. Zenobi, and T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283(5-6), 381–385 (1998).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Ward, D. R.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Xu, H.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000).
[Crossref] [PubMed]

Yu, W.

W. Yu and R. Mittra, “A technique for improving the accuracy of the nonuniform finite-difference time-domain algorithm,” IEEE Trans. Microw. Theory Tech. 47(3), 353–356 (1999).
[Crossref]

Zeisel, D.

D. Zeisel, V. Deckert, R. Zenobi, and T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283(5-6), 381–385 (1998).
[Crossref]

Zenobi, R.

D. Zeisel, V. Deckert, R. Zenobi, and T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283(5-6), 381–385 (1998).
[Crossref]

Appl. Phys. Lett. (1)

J. Lee, M. Seo, D. Kim, S. Jeoung, C. Lienau, J. Kang, and Q.-H. Park, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88(7), 071114 (2006).
[Crossref]

Chem. Phys. Lett. (1)

D. Zeisel, V. Deckert, R. Zenobi, and T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283(5-6), 381–385 (1998).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

W. Heinrich, K. Beilenhoff, P. Mezzanotte, and L. Roselli, “Optimum mesh grading for finite-difference method,” IEEE Trans. Microw. Theory Tech. 44(9), 1569–1574 (1996).
[Crossref]

W. Yu and R. Mittra, “A technique for improving the accuracy of the nonuniform finite-difference time-domain algorithm,” IEEE Trans. Microw. Theory Tech. 47(3), 353–356 (1999).
[Crossref]

J. Infrared Millim. Te. (1)

J. Jeong, J. Rhie, W. Jeon, C. S. Hwang, and D.-S. Kim, “High-throughput fabrication of infinitely long 10 nm slit arrays for terahertz applications,” J. Infrared Millim. Te. 36(3), 262–268 (2015).
[Crossref]

Nano Lett. (2)

J.-Y. Kim, B. J. Kang, J. Park, Y.-M. Bahk, W. T. Kim, J. Rhie, H. Jeon, F. Rotermund, and D.-S. Kim, “Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime,” Nano Lett. 15(10), 6683–6688 (2015).
[Crossref] [PubMed]

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

P. S. Davids, R. L. Jarecki, A. Starbuck, D. B. Burckel, E. A. Kadlec, T. Ribaudo, E. A. Shaner, and D. W. Peters, “Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode,” Nat. Nanotechnol. 10(12), 1033–1038 (2015).
[Crossref] [PubMed]

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Opt. Commun. (1)

J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

S. G. Rodrigo, S. Carretero-Palacios, F. García-Vidal, and L. Martín-Moreno, “Metallic slit arrays filled with third-order nonlinear media: Optical Kerr effect and third-harmonic generation,” Phys. Rev. B 83(23), 235425 (2011).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Science (1)

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[Crossref] [PubMed]

Thin Solid Films (1)

M. Groner, J. Elam, F. Fabreguette, and S. M. George, “Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates,” Thin Solid Films 413(1-2), 186–197 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Cross section SEM images of Au-Al2O3-Au gap samples. Inplane dimensions of two samples are the same, and insulating gap between metals is about 5 nm. (b) Field enhancement spectra estimated from THz transmission measurement of the gap samples. The spectra show different resonance positions and field enhancement values, which means that characteristic of the structure is determined by metal thickness and gap shape.
Fig. 2
Fig. 2 (a) A schematic of the structure used for FDTD simulation. w and t are fixed at 5 nm and 200 nm, respectively. To calculate field enhancement factor, electric field at output side of 5 nm gap (depicted by red dashed line) is normalized by transmitted field through substrate-only without the metallic gap structure. (b) Four classified structures according to tapered angle (θL, θR): symmetric, non-tapered (θL = θR = 0°); asymmetric, non-tapered (θL = 90°, θR = 0°); symmetric, tapered (θL = θR = θ); asymmetric, tapered (θL = 90°, θR = θ).
Fig. 3
Fig. 3 (a) x-component of electric field distributions and (b) x-component of current density distributions for each type of the gap structure when gap thickness tgap is 50 nm and w is 5 nm. For the tapered structures, tapered angle is 60°. In (a) the electric fields with similar intensities are concentrated inside the smallest gap in all cases. In (b) current densities along the metal edges forming the smallest gap are very similar to each other, although they differ significantly once we move away from the smallest nanogap region.
Fig. 4
Fig. 4 Dependences of field enhancement factor on (a) the gap thickness and (b) the tapered angle calculated by FDTD simulations. w and t are 5 nm and 200 nm, respectively. In (a) θ is set at 60° for the tapered structures. Field enhancement goes higher as tgap becomes smaller, and symmetry has little effect on the enhancement. In (b) tgap is set at 100 nm. Until θ changes by 70° from the non-tapered case (θ = 0°), field enhancement factor keeps about the same value. Calculated enhancement factors from a capacitor-based model are plotted as dashed lines.
Fig. 5
Fig. 5 A schematics for modeling using capacitor concepts. Overall structure can be regarded as parallel connected capacitors. And capacitor of tapered part is approximately divided several capacitors in parallel with increasing capacitor width dm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C total = C gap + C tapered = ε 0 ε gap t gap w + lim n [ m=1 n ε 0 Δy d m ] ,where d m =w+ 2(m1)Δy tanθ , Δy= t t gap n . C total = ε 0 ε gap t gap w + 0 t t gap ε 0 tanθ 2y+wtanθ dy = ε 0 ε gap t gap w + ε 0 tanθ 2 ln[ 1+ 2(t t gap ) wtanθ ]

Metrics