Abstract

We propose a dielectric nanoresonator geometry consisting of hollow dielectric nanocylinders which support geometrical resonances. We fabricate such hollow Si particles with an outer diameter of 108–251 nm on a Si substrate, and determine their resonant modes with cathodo-luminescence (CL) spectroscopy and optical dark-field (DF) scattering measurements. The scattering behavior is numerically investigated in a systematic fashion as a function of wavelength and particle geometry. We find that the additional design parameter as a result of the introduction of a center gap can be used to control the relative spectral spacing of the resonant modes, which will enable additional control over the angular radiation pattern of the scatterers. Furthermore, the gap offers direct access to the enhanced magnetic dipole modal field in the center of the particle.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Designing dielectric resonators on substrates: Combining magnetic and electric resonances

J. van de Groep and A. Polman
Opt. Express 21(22) 26285-26302 (2013)

Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles

F. Moreno, B. García-Cámara, J. M. Saiz, and F. González
Opt. Express 16(17) 12487-12504 (2008)

Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays

Francisco J. Bezares, James P. Long, Orest J. Glembocki, Junpeng Guo, Ronald W. Rendell, Richard Kasica, Loretta Shirey, Jeffrey C. Owrutsky, and Joshua D. Caldwell
Opt. Express 21(23) 27587-27601 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 1983).
  2. J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17, 24084–24095 (2009).
    [Crossref]
  3. J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21, 26285–26302 (2013).
    [Crossref] [PubMed]
  4. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011).
    [Crossref] [PubMed]
  5. A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express 19, 19015–19026 (2011).
    [Crossref] [PubMed]
  6. S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express 19, 25729–25740 (2011).
    [Crossref]
  7. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref] [PubMed]
  8. A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20, A385–A394 (2012).
    [Crossref] [PubMed]
  9. C. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).
    [Crossref] [PubMed]
  10. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
    [Crossref] [PubMed]
  11. L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
    [Crossref] [PubMed]
  12. R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nano 7, 191–196 (2012).
    [Crossref]
  13. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
    [Crossref] [PubMed]
  14. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B. 82, 045404 (2010).
    [Crossref]
  15. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref] [PubMed]
  16. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
    [Crossref] [PubMed]
  17. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
    [Crossref] [PubMed]
  18. M. Kerker, D. S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” Journal of the Optical Society of America 73, 765–767 (1983).
    [Crossref]
  19. P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable semiconductor phased-array metasurfaces,” ACS Photonics 2, 1077–1084 (2015).
    [Crossref]
  20. S. Karaveli and R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett. 35, 3318–3320 (2010).
    [Crossref] [PubMed]
  21. B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B 85, 245432 (2012).
    [Crossref]
  22. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” Journal of the Optical Society of America A 21, 2442–2446 (2004).
    [Crossref]
  23. R. Hussain, S. S. Kruk, C. E. Bonner, M. A. Noginov, I. Staude, Y. S. Kivshar, N. Noginova, and D. N. Neshev, “Enhancing Eu3+ magnetic dipole emission by resonant plasmonic nanostructures,” Opt. Lett. 40, 1659–1662 (2015).
    [Crossref] [PubMed]
  24. M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong Modification of Magnetic Dipole Emission through Diabolo Nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
    [Crossref]
  25. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
    [Crossref] [PubMed]
  26. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [Crossref] [PubMed]
  27. T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7, 1689–1698 (2013).
    [Crossref] [PubMed]
  28. L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13, 3559–3565 (2013).
    [Crossref] [PubMed]
  29. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Annalen der Physik 330, 377–445 (1908).
    [Crossref]
  30. F. J. García de Abajo, “Optical excitations in electron microscopy,” Reviews of Modern Physics 82, 209–275 (2010).
    [Crossref]
  31. R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
    [Crossref] [PubMed]
  32. “Lumerical solutions, inc.”.
  33. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  34. U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
    [Crossref]

2015 (5)

C. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).
[Crossref] [PubMed]

P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable semiconductor phased-array metasurfaces,” ACS Photonics 2, 1077–1084 (2015).
[Crossref]

R. Hussain, S. S. Kruk, C. E. Bonner, M. A. Noginov, I. Staude, Y. S. Kivshar, N. Noginova, and D. N. Neshev, “Enhancing Eu3+ magnetic dipole emission by resonant plasmonic nanostructures,” Opt. Lett. 40, 1659–1662 (2015).
[Crossref] [PubMed]

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong Modification of Magnetic Dipole Emission through Diabolo Nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
[Crossref]

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

2013 (6)

T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7, 1689–1698 (2013).
[Crossref] [PubMed]

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13, 3559–3565 (2013).
[Crossref] [PubMed]

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21, 26285–26302 (2013).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

2012 (7)

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nano 7, 191–196 (2012).
[Crossref]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20, A385–A394 (2012).
[Crossref] [PubMed]

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

2011 (4)

2010 (4)

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B. 82, 045404 (2010).
[Crossref]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref] [PubMed]

S. Karaveli and R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett. 35, 3318–3320 (2010).
[Crossref] [PubMed]

F. J. García de Abajo, “Optical excitations in electron microscopy,” Reviews of Modern Physics 82, 209–275 (2010).
[Crossref]

2009 (2)

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17, 24084–24095 (2009).
[Crossref]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

2004 (1)

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” Journal of the Optical Society of America A 21, 2442–2446 (2004).
[Crossref]

1983 (1)

M. Kerker, D. S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” Journal of the Optical Society of America 73, 765–767 (1983).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Annalen der Physik 330, 377–445 (1908).
[Crossref]

Aizpurua, J.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[Crossref] [PubMed]

Atwater, H. A.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011).
[Crossref] [PubMed]

Bebey, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

Bidault, S.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 1983).

Bonner, C. E.

Bonod, N.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Brener, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Brongersma, M. L.

A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20, A385–A394 (2012).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17, 24084–24095 (2009).
[Crossref]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” Journal of the Optical Society of America A 21, 2442–2446 (2004).
[Crossref]

Burr, G. W.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong Modification of Magnetic Dipole Emission through Diabolo Nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
[Crossref]

Butakov, N. A.

P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable semiconductor phased-array metasurfaces,” ACS Photonics 2, 1077–1084 (2015).
[Crossref]

Callahan, D. M.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011).
[Crossref] [PubMed]

Cao, L.

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13, 3559–3565 (2013).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

Catrysse, P. B.

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” Journal of the Optical Society of America A 21, 2442–2446 (2004).
[Crossref]

Chantada, L.

Chichkov, B. N.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B. 82, 045404 (2010).
[Crossref]

Choi, Y.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nano 7, 191–196 (2012).
[Crossref]

Clemens, B.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref] [PubMed]

Clemens, B. M.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

Coenen, T.

T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7, 1689–1698 (2013).
[Crossref] [PubMed]

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

Decker, M.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Dominguez, J.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Evlyukhin, A. B.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B. 82, 045404 (2010).
[Crossref]

Fan, P.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref] [PubMed]

Fan, S.

Fischer, U. C.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong Modification of Magnetic Dipole Emission through Diabolo Nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
[Crossref]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Froufe-Pérez, L. S.

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

García de Abajo, F. J.

F. J. García de Abajo, “Optical excitations in electron microscopy,” Reviews of Modern Physics 82, 209–275 (2010).
[Crossref]

García-Etxarri, A.

Garcia-Parajo, M. F.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong Modification of Magnetic Dipole Emission through Diabolo Nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
[Crossref]

Giles, C. L.

M. Kerker, D. S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” Journal of the Optical Society of America 73, 765–767 (1983).
[Crossref]

Gómez-Medina, R.

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Grandidier, J.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011).
[Crossref] [PubMed]

Grosjean, T.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong Modification of Magnetic Dipole Emission through Diabolo Nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
[Crossref]

Grote, R. R.

Heo, C.-J.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nano 7, 191–196 (2012).
[Crossref]

Huang, L.

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13, 3559–3565 (2013).
[Crossref] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 1983).

Hussain, R.

Iyer, P. P.

P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable semiconductor phased-array metasurfaces,” ACS Photonics 2, 1077–1084 (2015).
[Crossref]

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Karaveli, S.

Kerker, M.

M. Kerker, D. S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” Journal of the Optical Society of America 73, 765–767 (1983).
[Crossref]

Kivshar, Y.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

Kruk, S. S.

Kuttge, M.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Lee, L. P.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nano 7, 191–196 (2012).
[Crossref]

Lenzmann, F.

C. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).
[Crossref] [PubMed]

Liu, S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

López, C.

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Lukyanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Lukyanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B. 82, 045404 (2010).
[Crossref]

Mann, S. A.

Mie, G.

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Annalen der Physik 330, 377–445 (1908).
[Crossref]

Miroshnichenko, A. E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Mivelle, M.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong Modification of Magnetic Dipole Emission through Diabolo Nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
[Crossref]

Munday, J. N.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011).
[Crossref] [PubMed]

Neshev, D. N.

R. Hussain, S. S. Kruk, C. E. Bonner, M. A. Noginov, I. Staude, Y. S. Kivshar, N. Noginova, and D. N. Neshev, “Enhancing Eu3+ magnetic dipole emission by resonant plasmonic nanostructures,” Opt. Lett. 40, 1659–1662 (2015).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

Noginov, M. A.

Noginova, N.

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Osgood, R. M.

Palik, E.

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Park, J.-H.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nano 7, 191–196 (2012).
[Crossref]

Park, J.-S.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Polman, A.

C. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).
[Crossref] [PubMed]

T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7, 1689–1698 (2013).
[Crossref] [PubMed]

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21, 26285–26302 (2013).
[Crossref] [PubMed]

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Raman, A.

Reinhardt, C.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B. 82, 045404 (2010).
[Crossref]

Renger, J.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

Rolly, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

Sáenz, J. J.

Sapienza, R.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

Scheffold, F.

Schmidt, M. K.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Schuller, J. A.

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B. 82, 045404 (2010).
[Crossref]

Selker, M. D.

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” Journal of the Optical Society of America A 21, 2442–2446 (2004).
[Crossref]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Staude, I.

R. Hussain, S. S. Kruk, C. E. Bonner, M. A. Noginov, I. Staude, Y. S. Kivshar, N. Noginova, and D. N. Neshev, “Enhancing Eu3+ magnetic dipole emission by resonant plasmonic nanostructures,” Opt. Lett. 40, 1659–1662 (2015).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Stout, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

van de Groep, J.

T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7, 1689–1698 (2013).
[Crossref] [PubMed]

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21, 26285–26302 (2013).
[Crossref] [PubMed]

van Hulst, N. F.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

van Lare, C.

C. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).
[Crossref] [PubMed]

Vasudev, A. P.

Verschuuren, M. A.

C. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Wang, D. S.

M. Kerker, D. S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” Journal of the Optical Society of America 73, 765–767 (1983).
[Crossref]

White, J. S.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Yan, R.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nano 7, 191–196 (2012).
[Crossref]

Yang, P.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nano 7, 191–196 (2012).
[Crossref]

Yang, S.-M.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nano 7, 191–196 (2012).
[Crossref]

Yu, Y.

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13, 3559–3565 (2013).
[Crossref] [PubMed]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Yu, Z.

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Zia, R.

S. Karaveli and R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett. 35, 3318–3320 (2010).
[Crossref] [PubMed]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” Journal of the Optical Society of America A 21, 2442–2446 (2004).
[Crossref]

Zywietz, U.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

ACS Nano (2)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7, 1689–1698 (2013).
[Crossref] [PubMed]

ACS Photonics (3)

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong Modification of Magnetic Dipole Emission through Diabolo Nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
[Crossref]

P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable semiconductor phased-array metasurfaces,” ACS Photonics 2, 1077–1084 (2015).
[Crossref]

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Adv. Mater. (1)

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011).
[Crossref] [PubMed]

Annalen der Physik (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Annalen der Physik 330, 377–445 (1908).
[Crossref]

Journal of the Optical Society of America (1)

M. Kerker, D. S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” Journal of the Optical Society of America 73, 765–767 (1983).
[Crossref]

Journal of the Optical Society of America A (1)

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” Journal of the Optical Society of America A 21, 2442–2446 (2004).
[Crossref]

Nano Lett. (5)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13, 3559–3565 (2013).
[Crossref] [PubMed]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref] [PubMed]

C. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).
[Crossref] [PubMed]

Nat. Commun. (2)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

Nat. Nano (1)

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nano 7, 191–196 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. B (1)

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

Phys. Rev. B. (1)

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B. 82, 045404 (2010).
[Crossref]

Reviews of Modern Physics (1)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Reviews of Modern Physics 82, 209–275 (2010).
[Crossref]

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Other (3)

“Lumerical solutions, inc.”.

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Sketch of the MD and ED modes inside a solid dielectric nanoparticle. (a) The MD mode is characterized by a magnetic dipole moment as result of an electrical displacement current loop, indicated by the red circle. (b) The ED mode is the result of collective polarization of the particle material, which induces a magnetic current loop, indicated by the blue circle. The polarization of the corresponding incident plane-wave is sketched above the structures. (c) Numerically simulated normalized scattering cross section of a 100 nm tall Si cylinder with a 150 nm diameter in air. The particle is excited by a plane wave under normal incidence, as shown in (a) and (b). The MD, ED and magnetic quadrupole (MQ) modes are labeled.
Fig. 2
Fig. 2 SEM images of the smallest (a), having a 20 nm inner and 108 nm outer diameter, and largest (b), having a 76 nm inner and 251 nm outer diameter, Si particle on a Si substrate measured in the CL experiments. The scale is the same in both figures.
Fig. 3
Fig. 3 Sketch of the setup used for the CL measurements. The sample is excited using a 30 kV electron beam inside a conventional SEM. The emitted light is collected by a parabolic mirror placed between the sample and the electron column and focused on an optical fiber which guides the signal to a spectrometer.
Fig. 4
Fig. 4 CL measurements and FDTD simulations for different cylinder sizes. (a) CL excitation map of a single Si particle with an outer diameter of 170 and an inner diameter of 71 nm at λ = 500 nm. (b) Secondary electron image taken simultaneously with the CL excitation map. (c) Spatially averaged CL spectra of a Si cylinder with a height of 122 nm, for 13 different coax geometries. The particle inner and outer diameters for each spectrum is indicated by the numbers in (d), where the first number denotes the inner and the second the outer diameter, respectively. (d) FDTD simulation results of the resonant spectra in the visible, excited with a plane wave under normal incidence, using experimentally measured particle dimensions on top of a Si substrate. All spectra are normalized to their maximum value, and vertically offset for clarity.
Fig. 5
Fig. 5 Normalized scattering cross section (Qscat) of a 150 nm diameter and 100 nm tall Si cylinder in air as function of wavelength and gap width in the visible wavelength range. The modes were excited with a horizontally polarized plane wave at normal incidence. In (a) the gap (inner) diameter is systematically increased from 0 (no gap) to 150 nm (no wall) in steps of 10 nm. In (b) we plot the scattering cross section as function of wavelength for three different gap sizes (0 (red), 40 (green) and 120 nm (blue)). The MD and ED modes of the particle without a gap are indicated in the spectrum. The cross sections in (b) are indicated by the dashed lines with corresponding color in (a).
Fig. 6
Fig. 6 Simulated electric and magnetic field profiles inside a Si nanocylinder in air. The normalized field profiles (|E|2 and |H|2) are plotted the as cross sections through the center of particles in the xz (parallel to the electric component of the driving field) (a–f) and yz (parallel to the magnetic component of the driving field) (h–l) planes for three different gap widths, 0, 40 and 120 nm, for the same dimensions as simulated in Fig. 5, at the wavelengths where the first two maxima in the scattering cross section are found. The peak on the red side of the spectrum is labeled the MD, whereas the peak on the blue side of the MD is labeled as the DE mode. The lines inside the field plots indicate the electric or magnetic field lines, enabling the recognition of the displacement current loops. All field intensities are normalized to the field intensities found for a solid cylinder without gap. The particle boundaries are plotted as white dashed lines. The scale bar in (k) represents 100 nm.
Fig. 7
Fig. 7 Simulated normalized scattering cross section (Qscat) of a 150 nm diameter and 100 nm tall Si cylinder on a Si substrate, as function of wavelength and gap width in the visible wavelength range. The modes were excited with a horizontally polarized plane wave at normal incidence. In (a) the gap (inner) diameter is systematically increased from 0 (no gap) to 150 nm (no wall) in steps of 10 nm. In (b) we plot the scattering cross section as function of wavelength for three different gap sizes (0 (red), 40 (green) and 120 nm (blue)). The peaks indicating the MD and ED resonances for the particle without gap are labeled. The geometries of the spectra in (b) are indicated by the dashed lines with corresponding color in (a).
Fig. 8
Fig. 8 Simulated electric and magnetic field profiles inside a Si nanocylinder on a Si substrate. The normalized field profiles (|E|2 and |H|2) are plotted as cross sections through the center of the particles in the xz (parallel to the electric component of the driving field) and yz (parallel to the magnetic component of the driving field) for three different gap widths, for the same dimensions as simulated in Fig. 7 at the wavelengths where the first two maxima in the scattering cross section are found. The lines inside the field plots show the electric or magnetic field lines, which allows for the identification of the displacement current loops. All field intensities are normalized to the field intensities found for a solid cylinder without a gap. The particle boundaries and substrate surface are plotted as white dashed lines. The scale bar (in k) represents 100 nm.
Fig. 9
Fig. 9 DF measurements and FDTD simulations for hollow Si cylinders with different sizes. SEM images of (a) the largest and (b) smallest measured Si particle on a Si substrate. The scale bar represents 100 nm and is the same in both SEM images. (c) DF scattering spectra of a Si nanoparticle for 5 different coax geometries. The corresponding inner and outer diameters are indicated in (d), the first number denotes the inner and the second the outer diameter. The cylinders have a height of 138 nm. (d) FDTD simulations of the scattering spectra in the visible spectral range, excited with a plane wave under normal incidence of a coaxial Si particle on a Si substrate. Experimentally measured values for the particle geometries were used for the simulations. All spectra are normalized to the maximum peak value of the MD mode, and vertically offset for clarity.
Fig. 10
Fig. 10 Simulated normalized scattering cross section as function of wavelength for different cylinder geometries in air. The rings are excited with a plane wave under normal incidence. In (a) the outer diameter is systematically increased from 63 ?nm to 300 nm while keeping the height and inner diameter constant at 100 and 40 nm respectively. In (b) the height is systematically increased from 10 to 300 nm while keeping the inner and outer diameter constant at 40 and 150 nm respectively.
Fig. 11
Fig. 11 Simulated normalized scattering cross section (Qscat) and corresponding mode profiles of a Si cylinder on a Si substrate, having a height of 100 nm and a wall thickness of 40 nm as function of wavelength and outer diameter in the visible wavelength range. The modes were excited with a horizontally polarized plane wave at normal incidence. In (a) the outer diameter is systematically increased from 80 (no gap) to 500 nm in steps of 10 nm. (b–d) The electric fields with the corresponding electric field lines in the xz-plane through the center of the particles, for the wavelengths and outer diameters indicated by the red, green and blue dots in (a), representing an outer diameter of 227, 248 and 269 nm, respectively. (e–g) Show the magnetic field intensity and corresponding magnetic field lines on resonance are plotted in the yz-plane through the center of the particle, for outer diameters of 332 (crossing point) and 500 nm. The colors of the dashed lines drawn in (a) indicate the geometries of the plotted fields in (b–g). The scale bar in (g) represents 150 nm.
Fig. 12
Fig. 12 Simulated normalized scattering cross section (Qscat) of a 150 nm diameter and 100 nm tall Si cylinder in air, as function of wavelength and gap width in the visible wavelength range. The modes were excited with a vertically polarized plane wave (with the E-field along the long axis of the particle), as seen in the inset of (a). The normalized electric (b) and magnetic (c) field intensity profiles for a solid particle with no gap with the corresponding electric field lines are shown for the xy-plane in the center of the particle on resonance, where the particle contour is plotted as white dashed lines. The field intensities are normalized to its maximum values. The scale bar in (c) represents 50 nm.
Fig. 13
Fig. 13 Simulated normalized scattering cross section (Qscat) of a 150 nm diameter, 100 nm tall Si cylinder in air, as function of wavelength and gap width in the visible wavelength range. The modes were excited with a vertically polarized plane wave (with the H-field along the long axis of the particle), as seen in the inset of (a). The electric (b) and magnetic (c) field intensity profiles at λ = 628 nm, for a particle without gap with the corresponding electric field lines are shown for the xy-plane in the center of the particle, where the particle contour is plotted as white dashed lines and the fields are normalized to the maximum. The scale bar represents 50 nm.

Metrics