Abstract

Here, we present a novel microscopic technique for measuring wavelength-dependent three-dimensional (3-D) distributions of the refractive indices (RIs) of microscopic samples in the visible wavelengths. Employing 3-D quantitative phase microscopy techniques with a wavelength-swept source, 3-D RI tomograms were obtained in the range of 450 – 700 nm with a spectral resolution of a few nanometers. The capability of the technique was demonstrated by measuring the hyperspectral 3-D RI tomograms of polystyrene beads, human red blood cells, and hepatocytes. The results demonstrate the potential for label-free molecular specific 3-D tomography of biological samples.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography

JooWon Lim, KyeoReh Lee, Kyong Hwan Jin, Seungwoo Shin, SeoEun Lee, YongKeun Park, and Jong Chul Ye
Opt. Express 23(13) 16933-16948 (2015)

Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging

Kyoohyun Kim, Wei Sun Park, Sangchan Na, Sangbum Kim, Taehong Kim, Won Do Heo, and YongKeun Park
Biomed. Opt. Express 8(12) 5688-5697 (2017)

Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography

Di Jin, Renjie Zhou, Zahid Yaqoob, and Peter T. C. So
Opt. Express 26(1) 428-437 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A 69(8), 748–758 (2006).
    [Crossref] [PubMed]
  2. T. Bernas, J. P. Robinson, E. K. Asem, and B. Rajwa, “Loss of image quality in photobleaching during microscopic imaging of fluorescent probes bound to chromatin,” J. Biomed. Opt. 10, 064015 (2005).
  3. R. Dixit and R. Cyr, “Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy,” Plant J. 36(2), 280–290 (2003).
    [Crossref] [PubMed]
  4. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
    [Crossref] [PubMed]
  5. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  6. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).
  7. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
    [Crossref] [PubMed]
  8. Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
    [Crossref] [PubMed]
  9. Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20(9), 9673–9681 (2012).
    [Crossref] [PubMed]
  10. J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
    [Crossref] [PubMed]
  11. F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett. 36(23), 4665–4667 (2011).
    [Crossref] [PubMed]
  12. D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1(2), 347–353 (2010).
    [Crossref] [PubMed]
  13. H. Pham, B. Bhaduri, H. Ding, and G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37(16), 3438–3440 (2012).
    [Crossref] [PubMed]
  14. M. Rinehart, Y. Zhu, and A. Wax, “Quantitative phase spectroscopy,” Biomed. Opt. Express 3(5), 958–965 (2012).
    [Crossref] [PubMed]
  15. N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
    [Crossref] [PubMed]
  16. H. Park, T. Ahn, K. Kim, S. Lee, S. Y. Kook, D. Lee, I. B. Suh, S. Na, and Y. Park, “Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood,” J. Biomed. Opt. 20(11), 111208 (2015).
    [Crossref] [PubMed]
  17. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
    [Crossref]
  18. T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
    [Crossref]
  19. M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers,” Opt. Lett. 40(8), 1881–1884 (2015).
    [Crossref] [PubMed]
  20. K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. C. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39(24), 6935–6938 (2014).
    [Crossref] [PubMed]
  21. S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett.in press.
  22. A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19(4), 046009 (2014).
    [Crossref] [PubMed]
  23. H. Park, M. Ji, S. Lee, K. Kim, Y.-H. Sohn, S. Jang, and Y. Park, “Alterations in cell surface area and deformability of individual human red blood cells in stored blood,” arXiv preprint arXiv:1506.05259 (2015).
  24. J. Yoon, K. Kim, H. Park, C. Choi, S. Jang, and Y. Park, “Label-free characterization of white blood cells by measuring 3D refractive index maps,” Biomed. Opt. Express 6(10), 3865–3875 (2015).
    [Crossref] [PubMed]
  25. H. Park, S. H. Hong, K. Kim, S. H. Cho, W. J. Lee, Y. Kim, S. E. Lee, and Y. Park, “Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy,” Sci. Rep. 5, 10827 (2015).
    [Crossref] [PubMed]
  26. S. Lee, K. Kim, A. Mubarok, A. Panduwirawan, K. Lee, S. Lee, H. Park, and Y. Park, “High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton,” J. Opt. Soc. Korea 18(6), 691–697 (2014).
    [Crossref]
  27. Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
    [Crossref] [PubMed]
  28. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2013).
    [Crossref] [PubMed]
  29. J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy [invited],” Appl. Opt. 53(27), G111–G122 (2014).
    [Crossref] [PubMed]
  30. Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
    [Crossref] [PubMed]
  31. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
    [Crossref] [PubMed]
  32. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [Crossref] [PubMed]
  33. S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
    [Crossref] [PubMed]
  34. A. J. Devaney, “Inverse-Scattering Theory within the Rytov approximation,” Opt. Lett. 6(8), 374–376 (1981).
    [Crossref] [PubMed]
  35. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(2), 165–176 (2002).
    [Crossref] [PubMed]
  36. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009).
    [Crossref] [PubMed]
  37. K. C. Tam and V. Perezmendez, “Tomographical imaging with limited-angle input,” J. Opt. Soc. Am. 71(5), 582–592 (1981).
    [Crossref]
  38. J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23(13), 16933–16948 (2015).
    [Crossref] [PubMed]
  39. N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Physica 19, 585–586 (2009).
  40. N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, “Measuring the refractometric characteristics of optical plastics,” Opt. Quantum Phys. 35(1), 21–34 (2003).
    [Crossref]
  41. D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
    [Crossref] [PubMed]
  42. M. Friebel and M. Meinke, “Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration,” Appl. Opt. 45(12), 2838–2842 (2006).
    [Crossref] [PubMed]
  43. O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol. 56(13), 4013–4021 (2011).
    [Crossref] [PubMed]
  44. J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, and C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
    [Crossref] [PubMed]
  45. D. DiDonato and D. L. Brasaemle, “Fixation methods for the study of lipid droplets by immunofluorescence microscopy,” J. Histochem. Cytochem. 51(6), 773–780 (2003).
    [Crossref] [PubMed]
  46. K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21(26), 32269–32278 (2013).
    [Crossref] [PubMed]
  47. P. Geladi, H. Isaksson, L. Lindqvist, S. Wold, and K. Esbensen, “Principal component analysis of multivariate images,” Chemometr. Intell. Lab. 5(3), 209–220 (1989).
    [Crossref]

2015 (5)

H. Park, T. Ahn, K. Kim, S. Lee, S. Y. Kook, D. Lee, I. B. Suh, S. Na, and Y. Park, “Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood,” J. Biomed. Opt. 20(11), 111208 (2015).
[Crossref] [PubMed]

M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers,” Opt. Lett. 40(8), 1881–1884 (2015).
[Crossref] [PubMed]

J. Yoon, K. Kim, H. Park, C. Choi, S. Jang, and Y. Park, “Label-free characterization of white blood cells by measuring 3D refractive index maps,” Biomed. Opt. Express 6(10), 3865–3875 (2015).
[Crossref] [PubMed]

H. Park, S. H. Hong, K. Kim, S. H. Cho, W. J. Lee, Y. Kim, S. E. Lee, and Y. Park, “Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy,” Sci. Rep. 5, 10827 (2015).
[Crossref] [PubMed]

J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23(13), 16933–16948 (2015).
[Crossref] [PubMed]

2014 (7)

S. Lee, K. Kim, A. Mubarok, A. Panduwirawan, K. Lee, S. Lee, H. Park, and Y. Park, “High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton,” J. Opt. Soc. Korea 18(6), 691–697 (2014).
[Crossref]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
[Crossref] [PubMed]

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy [invited],” Appl. Opt. 53(27), G111–G122 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. C. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39(24), 6935–6938 (2014).
[Crossref] [PubMed]

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19(4), 046009 (2014).
[Crossref] [PubMed]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

2013 (5)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2013).
[Crossref] [PubMed]

K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21(26), 32269–32278 (2013).
[Crossref] [PubMed]

2012 (5)

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, and C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[Crossref] [PubMed]

H. Pham, B. Bhaduri, H. Ding, and G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37(16), 3438–3440 (2012).
[Crossref] [PubMed]

M. Rinehart, Y. Zhu, and A. Wax, “Quantitative phase spectroscopy,” Biomed. Opt. Express 3(5), 958–965 (2012).
[Crossref] [PubMed]

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20(9), 9673–9681 (2012).
[Crossref] [PubMed]

2011 (4)

F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett. 36(23), 4665–4667 (2011).
[Crossref] [PubMed]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
[Crossref] [PubMed]

O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol. 56(13), 4013–4021 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (3)

2006 (4)

2005 (1)

T. Bernas, J. P. Robinson, E. K. Asem, and B. Rajwa, “Loss of image quality in photobleaching during microscopic imaging of fluorescent probes bound to chromatin,” J. Biomed. Opt. 10, 064015 (2005).

2004 (1)

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

2003 (3)

N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, “Measuring the refractometric characteristics of optical plastics,” Opt. Quantum Phys. 35(1), 21–34 (2003).
[Crossref]

R. Dixit and R. Cyr, “Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy,” Plant J. 36(2), 280–290 (2003).
[Crossref] [PubMed]

D. DiDonato and D. L. Brasaemle, “Fixation methods for the study of lipid droplets by immunofluorescence microscopy,” J. Histochem. Cytochem. 51(6), 773–780 (2003).
[Crossref] [PubMed]

2002 (1)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(2), 165–176 (2002).
[Crossref] [PubMed]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1989 (1)

P. Geladi, H. Isaksson, L. Lindqvist, S. Wold, and K. Esbensen, “Principal component analysis of multivariate images,” Chemometr. Intell. Lab. 5(3), 209–220 (1989).
[Crossref]

1981 (2)

Aalders, M. C.

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

Ahn, T.

H. Park, T. Ahn, K. Kim, S. Lee, S. Y. Kook, D. Lee, I. B. Suh, S. Na, and Y. Park, “Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood,” J. Biomed. Opt. 20(11), 111208 (2015).
[Crossref] [PubMed]

Asem, E. K.

T. Bernas, J. P. Robinson, E. K. Asem, and B. Rajwa, “Loss of image quality in photobleaching during microscopic imaging of fluorescent probes bound to chromatin,” J. Biomed. Opt. 10, 064015 (2005).

Babacan, S. D.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

Badizadegan, K.

Bernas, T.

T. Bernas, J. P. Robinson, E. K. Asem, and B. Rajwa, “Loss of image quality in photobleaching during microscopic imaging of fluorescent probes bound to chromatin,” J. Biomed. Opt. 10, 064015 (2005).

Bhaduri, B.

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Brasaemle, D. L.

D. DiDonato and D. L. Brasaemle, “Fixation methods for the study of lipid droplets by immunofluorescence microscopy,” J. Histochem. Cytochem. 51(6), 773–780 (2003).
[Crossref] [PubMed]

Carney, P. S.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

Chang, D. Y.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, and C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[Crossref] [PubMed]

Chang, G.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Cho, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Cho, S. H.

H. Park, S. H. Hong, K. Kim, S. H. Cho, W. J. Lee, Y. Kim, S. E. Lee, and Y. Park, “Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy,” Sci. Rep. 5, 10827 (2015).
[Crossref] [PubMed]

Choi, C.

Choi, K.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, and C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[Crossref] [PubMed]

Choi, W.

Choi, Y.

Choi, Y. H.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, and C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[Crossref] [PubMed]

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Cyr, R.

R. Dixit and R. Cyr, “Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy,” Plant J. 36(2), 280–290 (2003).
[Crossref] [PubMed]

Dao, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2013).
[Crossref] [PubMed]

Dasari, R.

Dasari, R. R.

Debnath, S. K.

Depeursinge, C.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Devaney, A. J.

DiDonato, D.

D. DiDonato and D. L. Brasaemle, “Fixation methods for the study of lipid droplets by immunofluorescence microscopy,” J. Histochem. Cytochem. 51(6), 773–780 (2003).
[Crossref] [PubMed]

Diez-Silva, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2013).
[Crossref] [PubMed]

Ding, H.

Dixit, R.

R. Dixit and R. Cyr, “Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy,” Plant J. 36(2), 280–290 (2003).
[Crossref] [PubMed]

Douplik, A.

O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol. 56(13), 4013–4021 (2011).
[Crossref] [PubMed]

Dudek, M.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19(4), 046009 (2014).
[Crossref] [PubMed]

Esbensen, K.

P. Geladi, H. Isaksson, L. Lindqvist, S. Wold, and K. Esbensen, “Principal component analysis of multivariate images,” Chemometr. Intell. Lab. 5(3), 209–220 (1989).
[Crossref]

Faber, D. J.

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

Fang-Yen, C.

Feld, M.

Feld, M. S.

Friebel, M.

Fu, D.

Geladi, P.

P. Geladi, H. Isaksson, L. Lindqvist, S. Wold, and K. Esbensen, “Principal component analysis of multivariate images,” Chemometr. Intell. Lab. 5(3), 209–220 (1989).
[Crossref]

Gilboa, B.

Goddard, L. L.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Habaza, M.

Heo, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Heo, J. H.

Hillman, T. R.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Hong, S. H.

H. Park, S. H. Hong, K. Kim, S. H. Cho, W. J. Lee, Y. Kim, S. E. Lee, and Y. Park, “Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy,” Sci. Rep. 5, 10827 (2015).
[Crossref] [PubMed]

Hooper, B. A.

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

Hosseini, P.

Ikeda, T.

Isaksson, H.

P. Geladi, H. Isaksson, L. Lindqvist, S. Wold, and K. Esbensen, “Principal component analysis of multivariate images,” Chemometr. Intell. Lab. 5(3), 209–220 (1989).
[Crossref]

Ivanov, C. D.

N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, “Measuring the refractometric characteristics of optical plastics,” Opt. Quantum Phys. 35(1), 21–34 (2003).
[Crossref]

Jang, J.

J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20(9), 9673–9681 (2012).
[Crossref] [PubMed]

Jang, S.

Jang, Y.

Jin, K. H.

Jo, Y.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Jung, J.

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy [invited],” Appl. Opt. 53(27), G111–G122 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Jung, J.-H.

J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

Kang, J. W.

K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. C. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39(24), 6935–6938 (2014).
[Crossref] [PubMed]

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

Kang, W.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, and C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[Crossref] [PubMed]

Kasarova, S.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Physica 19, 585–586 (2009).

Kemper, B.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19(4), 046009 (2014).
[Crossref] [PubMed]

Kim, K.

J. Yoon, K. Kim, H. Park, C. Choi, S. Jang, and Y. Park, “Label-free characterization of white blood cells by measuring 3D refractive index maps,” Biomed. Opt. Express 6(10), 3865–3875 (2015).
[Crossref] [PubMed]

H. Park, S. H. Hong, K. Kim, S. H. Cho, W. J. Lee, Y. Kim, S. E. Lee, and Y. Park, “Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy,” Sci. Rep. 5, 10827 (2015).
[Crossref] [PubMed]

H. Park, T. Ahn, K. Kim, S. Lee, S. Y. Kook, D. Lee, I. B. Suh, S. Na, and Y. Park, “Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood,” J. Biomed. Opt. 20(11), 111208 (2015).
[Crossref] [PubMed]

K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. C. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39(24), 6935–6938 (2014).
[Crossref] [PubMed]

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy [invited],” Appl. Opt. 53(27), G111–G122 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
[Crossref] [PubMed]

S. Lee, K. Kim, A. Mubarok, A. Panduwirawan, K. Lee, S. Lee, H. Park, and Y. Park, “High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton,” J. Opt. Soc. Korea 18(6), 691–697 (2014).
[Crossref]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2013).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21(26), 32269–32278 (2013).
[Crossref] [PubMed]

S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett.in press.

Kim, K. S.

Kim, T.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

Kim, W. I.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, and C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[Crossref] [PubMed]

Kim, Y.

H. Park, S. H. Hong, K. Kim, S. H. Cho, W. J. Lee, Y. Kim, S. E. Lee, and Y. Park, “Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy,” Sci. Rep. 5, 10827 (2015).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

Kook, S. Y.

H. Park, T. Ahn, K. Kim, S. Lee, S. Y. Kook, D. Lee, I. B. Suh, S. Na, and Y. Park, “Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood,” J. Biomed. Opt. 20(11), 111208 (2015).
[Crossref] [PubMed]

Kujawinska, M.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19(4), 046009 (2014).
[Crossref] [PubMed]

Kus, A.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19(4), 046009 (2014).
[Crossref] [PubMed]

Lauer, V.

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(2), 165–176 (2002).
[Crossref] [PubMed]

Lee, D.

H. Park, T. Ahn, K. Kim, S. Lee, S. Y. Kook, D. Lee, I. B. Suh, S. Na, and Y. Park, “Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood,” J. Biomed. Opt. 20(11), 111208 (2015).
[Crossref] [PubMed]

Lee, D. H.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, and C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[Crossref] [PubMed]

Lee, K.

Lee, S.

H. Park, T. Ahn, K. Kim, S. Lee, S. Y. Kook, D. Lee, I. B. Suh, S. Na, and Y. Park, “Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood,” J. Biomed. Opt. 20(11), 111208 (2015).
[Crossref] [PubMed]

J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23(13), 16933–16948 (2015).
[Crossref] [PubMed]

S. Lee, K. Kim, A. Mubarok, A. Panduwirawan, K. Lee, S. Lee, H. Park, and Y. Park, “High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton,” J. Opt. Soc. Korea 18(6), 691–697 (2014).
[Crossref]

S. Lee, K. Kim, A. Mubarok, A. Panduwirawan, K. Lee, S. Lee, H. Park, and Y. Park, “High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton,” J. Opt. Soc. Korea 18(6), 691–697 (2014).
[Crossref]

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy [invited],” Appl. Opt. 53(27), G111–G122 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Lee, S. E.

H. Park, S. H. Hong, K. Kim, S. H. Cho, W. J. Lee, Y. Kim, S. E. Lee, and Y. Park, “Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy,” Sci. Rep. 5, 10827 (2015).
[Crossref] [PubMed]

Lee, W. J.

H. Park, S. H. Hong, K. Kim, S. H. Cho, W. J. Lee, Y. Kim, S. E. Lee, and Y. Park, “Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy,” Sci. Rep. 5, 10827 (2015).
[Crossref] [PubMed]

Levenson, R. M.

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A 69(8), 748–758 (2006).
[Crossref] [PubMed]

Lim, J.

Lindqvist, L.

P. Geladi, H. Isaksson, L. Lindqvist, S. Wold, and K. Esbensen, “Principal component analysis of multivariate images,” Chemometr. Intell. Lab. 5(3), 209–220 (1989).
[Crossref]

Lue, N.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

Magistretti, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Mansfield, J. R.

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A 69(8), 748–758 (2006).
[Crossref] [PubMed]

Marquet, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Meinke, M.

Mik, E. G.

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

Mir, M.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

Mubarok, A.

Na, S.

H. Park, T. Ahn, K. Kim, S. Lee, S. Y. Kook, D. Lee, I. B. Suh, S. Na, and Y. Park, “Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood,” J. Biomed. Opt. 20(11), 111208 (2015).
[Crossref] [PubMed]

Nahm, S.

Nikolov, I.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Physica 19, 585–586 (2009).

Nikolov, I. D.

N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, “Measuring the refractometric characteristics of optical plastics,” Opt. Quantum Phys. 35(1), 21–34 (2003).
[Crossref]

Panduwirawan, A.

Park, H.

H. Park, S. H. Hong, K. Kim, S. H. Cho, W. J. Lee, Y. Kim, S. E. Lee, and Y. Park, “Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy,” Sci. Rep. 5, 10827 (2015).
[Crossref] [PubMed]

J. Yoon, K. Kim, H. Park, C. Choi, S. Jang, and Y. Park, “Label-free characterization of white blood cells by measuring 3D refractive index maps,” Biomed. Opt. Express 6(10), 3865–3875 (2015).
[Crossref] [PubMed]

H. Park, T. Ahn, K. Kim, S. Lee, S. Y. Kook, D. Lee, I. B. Suh, S. Na, and Y. Park, “Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood,” J. Biomed. Opt. 20(11), 111208 (2015).
[Crossref] [PubMed]

S. Lee, K. Kim, A. Mubarok, A. Panduwirawan, K. Lee, S. Lee, H. Park, and Y. Park, “High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton,” J. Opt. Soc. Korea 18(6), 691–697 (2014).
[Crossref]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
[Crossref] [PubMed]

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy [invited],” Appl. Opt. 53(27), G111–G122 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21(26), 32269–32278 (2013).
[Crossref] [PubMed]

Park, J.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, and C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[Crossref] [PubMed]

Park, Y.

J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23(13), 16933–16948 (2015).
[Crossref] [PubMed]

H. Park, T. Ahn, K. Kim, S. Lee, S. Y. Kook, D. Lee, I. B. Suh, S. Na, and Y. Park, “Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood,” J. Biomed. Opt. 20(11), 111208 (2015).
[Crossref] [PubMed]

H. Park, S. H. Hong, K. Kim, S. H. Cho, W. J. Lee, Y. Kim, S. E. Lee, and Y. Park, “Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy,” Sci. Rep. 5, 10827 (2015).
[Crossref] [PubMed]

J. Yoon, K. Kim, H. Park, C. Choi, S. Jang, and Y. Park, “Label-free characterization of white blood cells by measuring 3D refractive index maps,” Biomed. Opt. Express 6(10), 3865–3875 (2015).
[Crossref] [PubMed]

K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. C. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39(24), 6935–6938 (2014).
[Crossref] [PubMed]

S. Lee, K. Kim, A. Mubarok, A. Panduwirawan, K. Lee, S. Lee, H. Park, and Y. Park, “High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton,” J. Opt. Soc. Korea 18(6), 691–697 (2014).
[Crossref]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
[Crossref] [PubMed]

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy [invited],” Appl. Opt. 53(27), G111–G122 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21(26), 32269–32278 (2013).
[Crossref] [PubMed]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2013).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20(9), 9673–9681 (2012).
[Crossref] [PubMed]

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, and C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[Crossref] [PubMed]

S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
[Crossref] [PubMed]

Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[Crossref] [PubMed]

S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett.in press.

Pavillon, N.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Perezmendez, V.

Pham, H.

Popescu, G.

Rajwa, B.

T. Bernas, J. P. Robinson, E. K. Asem, and B. Rajwa, “Loss of image quality in photobleaching during microscopic imaging of fluorescent probes bound to chromatin,” J. Biomed. Opt. 10, 064015 (2005).

Rinehart, M.

Robinson, J. P.

T. Bernas, J. P. Robinson, E. K. Asem, and B. Rajwa, “Loss of image quality in photobleaching during microscopic imaging of fluorescent probes bound to chromatin,” J. Biomed. Opt. 10, 064015 (2005).

Robles, F. E.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett. 36(23), 4665–4667 (2011).
[Crossref] [PubMed]

Roichman, Y.

Ryu, S. W.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, and C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[Crossref] [PubMed]

Satterwhite, L. L.

Shaked, N. T.

Shim, H.

Shin, E. C.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, and C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[Crossref] [PubMed]

Shin, S.

So, P. T. C.

Suh, I. B.

H. Park, T. Ahn, K. Kim, S. Lee, S. Y. Kook, D. Lee, I. B. Suh, S. Na, and Y. Park, “Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood,” J. Biomed. Opt. 20(11), 111208 (2015).
[Crossref] [PubMed]

Sultanova, N.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Physica 19, 585–586 (2009).

Sultanova, N. G.

N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, “Measuring the refractometric characteristics of optical plastics,” Opt. Quantum Phys. 35(1), 21–34 (2003).
[Crossref]

Sung, Y.

Sydoruk, O.

O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol. 56(13), 4013–4021 (2011).
[Crossref] [PubMed]

Tam, K. C.

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Tuchin, V.

O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol. 56(13), 4013–4021 (2011).
[Crossref] [PubMed]

van Gemert, M. J.

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

van Leeuwen, T. G.

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

Vollmer, A.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19(4), 046009 (2014).
[Crossref] [PubMed]

Wax, A.

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Wold, S.

P. Geladi, H. Isaksson, L. Lindqvist, S. Wold, and K. Esbensen, “Principal component analysis of multivariate images,” Chemometr. Intell. Lab. 5(3), 209–220 (1989).
[Crossref]

Xie, X. S.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Yamauchi, T.

Yaqoob, Z.

Ye, J. C.

Yoon, H.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2013).
[Crossref] [PubMed]

Yoon, J.

Yu, H.

Zhernovaya, O.

O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol. 56(13), 4013–4021 (2011).
[Crossref] [PubMed]

Zhou, R.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

Zhu, Y.

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Acta Physica (1)

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Physica 19, 585–586 (2009).

Anal. Chem. (1)

J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Chemometr. Intell. Lab. (1)

P. Geladi, H. Isaksson, L. Lindqvist, S. Wold, and K. Esbensen, “Principal component analysis of multivariate images,” Chemometr. Intell. Lab. 5(3), 209–220 (1989).
[Crossref]

Cytometry A (1)

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A 69(8), 748–758 (2006).
[Crossref] [PubMed]

Hepatology (1)

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, and C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2013).
[Crossref] [PubMed]

T. Bernas, J. P. Robinson, E. K. Asem, and B. Rajwa, “Loss of image quality in photobleaching during microscopic imaging of fluorescent probes bound to chromatin,” J. Biomed. Opt. 10, 064015 (2005).

H. Park, T. Ahn, K. Kim, S. Lee, S. Y. Kook, D. Lee, I. B. Suh, S. Na, and Y. Park, “Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood,” J. Biomed. Opt. 20(11), 111208 (2015).
[Crossref] [PubMed]

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19(4), 046009 (2014).
[Crossref] [PubMed]

J. Histochem. Cytochem. (1)

D. DiDonato and D. L. Brasaemle, “Fixation methods for the study of lipid droplets by immunofluorescence microscopy,” J. Histochem. Cytochem. 51(6), 773–780 (2003).
[Crossref] [PubMed]

J. Microsc. (1)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(2), 165–176 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Korea (1)

Nat. Photonics (3)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (8)

Opt. Quantum Phys. (1)

N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, “Measuring the refractometric characteristics of optical plastics,” Opt. Quantum Phys. 35(1), 21–34 (2003).
[Crossref]

Phys. Med. Biol. (1)

O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol. 56(13), 4013–4021 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Plant J. (1)

R. Dixit and R. Cyr, “Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy,” Plant J. 36(2), 280–290 (2003).
[Crossref] [PubMed]

Sci. Rep. (2)

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
[Crossref] [PubMed]

H. Park, S. H. Hong, K. Kim, S. H. Cho, W. J. Lee, Y. Kim, S. E. Lee, and Y. Park, “Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy,” Sci. Rep. 5, 10827 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Other (3)

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).

S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett.in press.

H. Park, M. Ji, S. Lee, K. Kim, Y.-H. Sohn, S. Jang, and Y. Park, “Alterations in cell surface area and deformability of individual human red blood cells in stored blood,” arXiv preprint arXiv:1506.05259 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup and spectra of the illumination of HS-ODT. (a) The wavelength of the illumination beam is controlled using a galvanomirror, GM1. The illumination angle impinging onto a sample is scanned by GM2, which is then descanned by GM3. L1-12, lenses; M1-3, mirrors; GM1, single-axis rotating mirror; GM2-3, dual-axis rotating mirrors. (b) Spectral density of the illumination which covers the wavelength range from 450 to 700 nm. Because a prism is used as a dispersion material, bandwidths of individual wavelengths gradually vary from 1.2 nm at λ = 465 nm to 5.9 nm at λ = 660 nm.
Fig. 2
Fig. 2 Cross-sections of the 3-D RI tomograms and the rendered isosurfaces of a polystyrene bead measured at a wavelength of (a) 480, (b) 580, and (c) 680 nm. (d) The averaged RI dispersion of the polystyrene beads. The shaded area represents standard deviations of 5 measurements. Previously reported RI values of polystyrene from Ref [39]. are also plotted in a dotted line for comparison purposes.
Fig. 3
Fig. 3 Cross-sections of the 3-D RI tomograms and the rendered isosurfaces of a RBC from a healthy donor at wavelength of (a) 480, (b) 581, and (c) 658 nm. (d) The dispersive characteristics of the normalized RI values of 5 RBCs. The shaded area represents the standard deviation. Previously reported values [42] are also plotted in a dotted line for comparison purposes
Fig. 4
Fig. 4 Cross-sections of the 3-D RI tomograms and the rendered isosurfaces of a Huh7 cell at wavelength of (a) 499 nm, (b) 553 nm, and (c) 629 nm. (d-f) Blue colored isosurfaces inside the cell represent subcellular organelles presumed to be vesicles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δn(λ) Δn(λ) λ = α(λ) C Hb α(λ) C Hb λ = α(λ) α(λ) λ ,

Metrics