Abstract

We demonstrate, for the first time, post-growth wavelength setting of electrically-injected vertical-cavity surface-emitting lasers (VCSELs) by using high-contrast gratings (HCGs) with different grating parameters. By fabricating HCGs with different duty cycle and period, the HCG reflection phase can be varied, in effect giving different optical cavity lengths for HCG-VCSELs with different grating parameters. This enables fabrication of monolithic multi-wavelength HCG-VCSEL arrays for wavelength-division multiplexing (WDM). The GaAs HCG is suspended in air by removing a sacrificial layer of InGaP. Electrically-injected 980-nm HCG-VCSELs with sub-mA threshold currents indicate high reflectivity from the GaAs HCGs. Lasing over a wavelength span of 15 nm was achieved, enabling a 4-channel WDM array with 5 nm channel spacing. A large wavelength setting span was enabled by an air-coupled cavity design and the use of only the HCG as top mirror.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings

Vadim Karagodsky, Bala Pesala, Christopher Chase, Werner Hofmann, Fumio Koyama, and Connie J. Chang-Hasnain
Opt. Express 18(2) 694-699 (2010)

1550 nm high contrast grating VCSEL

Christopher Chase, Yi Rao, Werner Hofmann, and Connie J. Chang-Hasnain
Opt. Express 18(15) 15461-15466 (2010)

Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning

Ye Zhou, Michael C. Y. Huang, and Connie J. Chang-Hasnain
Opt. Express 16(18) 14221-14226 (2008)

References

  • View by:
  • |
  • |
  • |

  1. N. Chitica, J. Carlsson, L.-G. Svensson, and M. Chacinski, “Vertical cavity surface emitting lasers enable high-density ultra-high bandwidth optical interconnects,” Proc. SPIE 9381, 938103 (2015).
    [Crossref]
  2. P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gbit/s,” IEEE Photonics Technol. Lett. 27(3), 296–299 (2015).
    [Crossref]
  3. J. A. Tatum, D. Gazula, L. A. Graham, J. K. Guenter, R. H. Johnson, J. King, C. Kocot, G. D. Landry, I. Lyubomirsky, D. Vaidya, M. Yan, and F. Tang, “VCSEL-based interconnects for current and future data centers,” J. Lightwave Technol. 33(4), 727–732 (2015).
    [Crossref]
  4. A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011).
    [Crossref]
  5. D. M. Kuchta, A. V. Rylyakov, F. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
    [Crossref]
  6. E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
    [Crossref]
  7. C. J. Chang-Hasnain, M. W. Maeda, J. P. Harbison, L. T. Florez, and C. Lin, “Monolithic multiple wavelength surface emitting laser arrays,” J. Lightwave Technol. 9(12), 1665–1673 (1991).
    [Crossref]
  8. M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, and F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1367–1373 (2003).
    [Crossref]
  9. J. Geske, Y. L. Okuno, D. Leonard, and J. Bowers, “Long wavelength two-dimensional WDM vertical cavity surface emitting laser arrays fabricated by nonplanar wafer bonding,” IEEE Photonics Technol. Lett. 15(2), 179–181 (2003).
    [Crossref]
  10. A. Fiore, Y. Akulova, J. Ko, E. Hegblom, and L. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
    [Crossref]
  11. T. Wipiejewski, M. Peters, E. Hegblom, and L. Coldren, “Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment,” IEEE Photonics Technol. Lett. 7(7), 727–729 (1995).
    [Crossref]
  12. P. B. Dayal, T. Sakaguchi, A. Matsutani, and F. Koyama, “Multiple-wavelength vertical-cavity surface-emitting lasers by grading a spacer layer for short-reach wavelength division multiplexing applications,” Appl. Phys. Express 2(9), 092501 (2009).
    [Crossref]
  13. J. H. E. Kim, L. Chrostowski, E. Bisaillon, and D. V. Plant, “DBR, Sub-wavelength grating, and Photonic crystal slab Fabry-Perot cavity design using phase analysis by FDTD,” Opt. Express 15(16), 10330–10339 (2007).
    [Crossref] [PubMed]
  14. V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010).
    [Crossref] [PubMed]
  15. C. Sciancalepore, B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photonics Technol. Lett. 25(12), 1111–1113 (2013).
    [Crossref]
  16. Y. Rao, C. Chase, and C. J. Chang-Hasnain, “Multiwavelength HCG-VCSEL array,” in Proceedings of 22nd International Semiconductor Laser Workshop (IEEE, 2010), pp. 11–12.
  17. F. Sugihwo, M. Larson, and J. S. Harris, “Micromachined widely tunable vertical cavity laser diodes,” J. Microelectromech. Syst. 7(1), 48–55 (1998).
    [Crossref]
  18. W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
    [Crossref]
  19. T. Ansbæk, I.-S. Chung, E. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
    [Crossref]
  20. C. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 869–878 (2009).
    [Crossref]
  21. S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
    [Crossref]
  22. D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
    [Crossref]
  23. M. J. Cich, J. A. Johnson, G. M. Peake, and O. B. Spahn, “Crystallographic dependence of the lateral undercut wet etching rate of InGaP in HCl,” Appl. Phys. Lett. 82(4), 651–653 (2003).
    [Crossref]

2015 (5)

D. M. Kuchta, A. V. Rylyakov, F. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

N. Chitica, J. Carlsson, L.-G. Svensson, and M. Chacinski, “Vertical cavity surface emitting lasers enable high-density ultra-high bandwidth optical interconnects,” Proc. SPIE 9381, 938103 (2015).
[Crossref]

P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gbit/s,” IEEE Photonics Technol. Lett. 27(3), 296–299 (2015).
[Crossref]

J. A. Tatum, D. Gazula, L. A. Graham, J. K. Guenter, R. H. Johnson, J. King, C. Kocot, G. D. Landry, I. Lyubomirsky, D. Vaidya, M. Yan, and F. Tang, “VCSEL-based interconnects for current and future data centers,” J. Lightwave Technol. 33(4), 727–732 (2015).
[Crossref]

2014 (1)

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

2013 (2)

C. Sciancalepore, B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photonics Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

T. Ansbæk, I.-S. Chung, E. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

2011 (1)

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011).
[Crossref]

2010 (2)

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010).
[Crossref] [PubMed]

2009 (2)

C. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 869–878 (2009).
[Crossref]

P. B. Dayal, T. Sakaguchi, A. Matsutani, and F. Koyama, “Multiple-wavelength vertical-cavity surface-emitting lasers by grading a spacer layer for short-reach wavelength division multiplexing applications,” Appl. Phys. Express 2(9), 092501 (2009).
[Crossref]

2007 (1)

2003 (3)

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, and F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1367–1373 (2003).
[Crossref]

J. Geske, Y. L. Okuno, D. Leonard, and J. Bowers, “Long wavelength two-dimensional WDM vertical cavity surface emitting laser arrays fabricated by nonplanar wafer bonding,” IEEE Photonics Technol. Lett. 15(2), 179–181 (2003).
[Crossref]

M. J. Cich, J. A. Johnson, G. M. Peake, and O. B. Spahn, “Crystallographic dependence of the lateral undercut wet etching rate of InGaP in HCl,” Appl. Phys. Lett. 82(4), 651–653 (2003).
[Crossref]

1999 (1)

A. Fiore, Y. Akulova, J. Ko, E. Hegblom, and L. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
[Crossref]

1998 (1)

F. Sugihwo, M. Larson, and J. S. Harris, “Micromachined widely tunable vertical cavity laser diodes,” J. Microelectromech. Syst. 7(1), 48–55 (1998).
[Crossref]

1995 (1)

T. Wipiejewski, M. Peters, E. Hegblom, and L. Coldren, “Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment,” IEEE Photonics Technol. Lett. 7(7), 727–729 (1995).
[Crossref]

1993 (1)

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[Crossref]

1991 (1)

C. J. Chang-Hasnain, M. W. Maeda, J. P. Harbison, L. T. Florez, and C. Lin, “Monolithic multiple wavelength surface emitting laser arrays,” J. Lightwave Technol. 9(12), 1665–1673 (1991).
[Crossref]

Akulova, Y.

A. Fiore, Y. Akulova, J. Ko, E. Hegblom, and L. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
[Crossref]

Amann, M.-C.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

Ansbæk, T.

T. Ansbæk, I.-S. Chung, E. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

Arai, M.

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, and F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1367–1373 (2003).
[Crossref]

Bakir, B.

C. Sciancalepore, B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photonics Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

Baks, C. W.

D. M. Kuchta, A. V. Rylyakov, F. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Bisaillon, E.

Böhm, G.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

Bordel, D.

C. Sciancalepore, B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photonics Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

Bowers, J.

J. Geske, Y. L. Okuno, D. Leonard, and J. Bowers, “Long wavelength two-dimensional WDM vertical cavity surface emitting laser arrays fabricated by nonplanar wafer bonding,” IEEE Photonics Technol. Lett. 15(2), 179–181 (2003).
[Crossref]

Carlsson, J.

N. Chitica, J. Carlsson, L.-G. Svensson, and M. Chacinski, “Vertical cavity surface emitting lasers enable high-density ultra-high bandwidth optical interconnects,” Proc. SPIE 9381, 938103 (2015).
[Crossref]

Chacinski, M.

N. Chitica, J. Carlsson, L.-G. Svensson, and M. Chacinski, “Vertical cavity surface emitting lasers enable high-density ultra-high bandwidth optical interconnects,” Proc. SPIE 9381, 938103 (2015).
[Crossref]

Chang-Hasnain, C.

C. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 869–878 (2009).
[Crossref]

Chang-Hasnain, C. J.

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010).
[Crossref] [PubMed]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

C. J. Chang-Hasnain, M. W. Maeda, J. P. Harbison, L. T. Florez, and C. Lin, “Monolithic multiple wavelength surface emitting laser arrays,” J. Lightwave Technol. 9(12), 1665–1673 (1991).
[Crossref]

Y. Rao, C. Chase, and C. J. Chang-Hasnain, “Multiwavelength HCG-VCSEL array,” in Proceedings of 22nd International Semiconductor Laser Workshop (IEEE, 2010), pp. 11–12.

Chase, C.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010).
[Crossref] [PubMed]

C. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 869–878 (2009).
[Crossref]

Y. Rao, C. Chase, and C. J. Chang-Hasnain, “Multiwavelength HCG-VCSEL array,” in Proceedings of 22nd International Semiconductor Laser Workshop (IEEE, 2010), pp. 11–12.

Chitica, N.

N. Chitica, J. Carlsson, L.-G. Svensson, and M. Chacinski, “Vertical cavity surface emitting lasers enable high-density ultra-high bandwidth optical interconnects,” Proc. SPIE 9381, 938103 (2015).
[Crossref]

Chrostowski, L.

Chung, I.-S.

T. Ansbæk, I.-S. Chung, E. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

Cich, M. J.

M. J. Cich, J. A. Johnson, G. M. Peake, and O. B. Spahn, “Crystallographic dependence of the lateral undercut wet etching rate of InGaP in HCl,” Appl. Phys. Lett. 82(4), 651–653 (2003).
[Crossref]

Coldren, L.

A. Fiore, Y. Akulova, J. Ko, E. Hegblom, and L. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
[Crossref]

T. Wipiejewski, M. Peters, E. Hegblom, and L. Coldren, “Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment,” IEEE Photonics Technol. Lett. 7(7), 727–729 (1995).
[Crossref]

Coldren, L. A.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[Crossref]

Corzine, S. W.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[Crossref]

Dayal, P. B.

P. B. Dayal, T. Sakaguchi, A. Matsutani, and F. Koyama, “Multiple-wavelength vertical-cavity surface-emitting lasers by grading a spacer layer for short-reach wavelength division multiplexing applications,” Appl. Phys. Express 2(9), 092501 (2009).
[Crossref]

Doany, F.

D. M. Kuchta, A. V. Rylyakov, F. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Fiore, A.

A. Fiore, Y. Akulova, J. Ko, E. Hegblom, and L. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
[Crossref]

Florez, L. T.

C. J. Chang-Hasnain, M. W. Maeda, J. P. Harbison, L. T. Florez, and C. Lin, “Monolithic multiple wavelength surface emitting laser arrays,” J. Lightwave Technol. 9(12), 1665–1673 (1991).
[Crossref]

Gazula, D.

Geen, M.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

Geske, J.

J. Geske, Y. L. Okuno, D. Leonard, and J. Bowers, “Long wavelength two-dimensional WDM vertical cavity surface emitting laser arrays fabricated by nonplanar wafer bonding,” IEEE Photonics Technol. Lett. 15(2), 179–181 (2003).
[Crossref]

Graham, L. A.

Grasse, C.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

Guenter, J. K.

Gustavsson, J. S.

P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gbit/s,” IEEE Photonics Technol. Lett. 27(3), 296–299 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Haglund, E.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

Haglund, E. P.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

Harbison, J. P.

C. J. Chang-Hasnain, M. W. Maeda, J. P. Harbison, L. T. Florez, and C. Lin, “Monolithic multiple wavelength surface emitting laser arrays,” J. Lightwave Technol. 9(12), 1665–1673 (1991).
[Crossref]

Harris, J. S.

F. Sugihwo, M. Larson, and J. S. Harris, “Micromachined widely tunable vertical cavity laser diodes,” J. Microelectromech. Syst. 7(1), 48–55 (1998).
[Crossref]

Hegblom, E.

A. Fiore, Y. Akulova, J. Ko, E. Hegblom, and L. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
[Crossref]

T. Wipiejewski, M. Peters, E. Hegblom, and L. Coldren, “Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment,” IEEE Photonics Technol. Lett. 7(7), 727–729 (1995).
[Crossref]

Hofmann, W.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010).
[Crossref] [PubMed]

Huang, M.

C. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 869–878 (2009).
[Crossref]

Inoue, S.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

Joel, A.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

Johnson, J. A.

M. J. Cich, J. A. Johnson, G. M. Peake, and O. B. Spahn, “Crystallographic dependence of the lateral undercut wet etching rate of InGaP in HCl,” Appl. Phys. Lett. 82(4), 651–653 (2003).
[Crossref]

Johnson, R. H.

Karagodsky, V.

Kashino, J.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

Kim, J. H. E.

King, J.

Ko, J.

A. Fiore, Y. Akulova, J. Ko, E. Hegblom, and L. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
[Crossref]

Kocot, C.

Kondo, T.

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, and F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1367–1373 (2003).
[Crossref]

Koyama, F.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010).
[Crossref] [PubMed]

P. B. Dayal, T. Sakaguchi, A. Matsutani, and F. Koyama, “Multiple-wavelength vertical-cavity surface-emitting lasers by grading a spacer layer for short-reach wavelength division multiplexing applications,” Appl. Phys. Express 2(9), 092501 (2009).
[Crossref]

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, and F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1367–1373 (2003).
[Crossref]

Kuchta, D. M.

D. M. Kuchta, A. V. Rylyakov, F. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Landry, G. D.

Larson, M.

F. Sugihwo, M. Larson, and J. S. Harris, “Micromachined widely tunable vertical cavity laser diodes,” J. Microelectromech. Syst. 7(1), 48–55 (1998).
[Crossref]

Larsson, A.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gbit/s,” IEEE Photonics Technol. Lett. 27(3), 296–299 (2015).
[Crossref]

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011).
[Crossref]

Leonard, D.

J. Geske, Y. L. Okuno, D. Leonard, and J. Bowers, “Long wavelength two-dimensional WDM vertical cavity surface emitting laser arrays fabricated by nonplanar wafer bonding,” IEEE Photonics Technol. Lett. 15(2), 179–181 (2003).
[Crossref]

Letartre, X.

C. Sciancalepore, B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photonics Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

Lin, C.

C. J. Chang-Hasnain, M. W. Maeda, J. P. Harbison, L. T. Florez, and C. Lin, “Monolithic multiple wavelength surface emitting laser arrays,” J. Lightwave Technol. 9(12), 1665–1673 (1991).
[Crossref]

Lyubomirsky, I.

Maeda, M. W.

C. J. Chang-Hasnain, M. W. Maeda, J. P. Harbison, L. T. Florez, and C. Lin, “Monolithic multiple wavelength surface emitting laser arrays,” J. Lightwave Technol. 9(12), 1665–1673 (1991).
[Crossref]

Majewski, M. L.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[Crossref]

Matsutani, A.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

P. B. Dayal, T. Sakaguchi, A. Matsutani, and F. Koyama, “Multiple-wavelength vertical-cavity surface-emitting lasers by grading a spacer layer for short-reach wavelength division multiplexing applications,” Appl. Phys. Express 2(9), 092501 (2009).
[Crossref]

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, and F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1367–1373 (2003).
[Crossref]

Menezo, S.

C. Sciancalepore, B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photonics Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

Miyamoto, T.

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, and F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1367–1373 (2003).
[Crossref]

Miyashita, T.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

Müller, M.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

Ohtsuki, H.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

Okuno, Y. L.

J. Geske, Y. L. Okuno, D. Leonard, and J. Bowers, “Long wavelength two-dimensional WDM vertical cavity surface emitting laser arrays fabricated by nonplanar wafer bonding,” IEEE Photonics Technol. Lett. 15(2), 179–181 (2003).
[Crossref]

Onomura, A.

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, and F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1367–1373 (2003).
[Crossref]

Peake, G. M.

M. J. Cich, J. A. Johnson, G. M. Peake, and O. B. Spahn, “Crystallographic dependence of the lateral undercut wet etching rate of InGaP in HCl,” Appl. Phys. Lett. 82(4), 651–653 (2003).
[Crossref]

Pesala, B.

Peters, F. H.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[Crossref]

Peters, M.

T. Wipiejewski, M. Peters, E. Hegblom, and L. Coldren, “Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment,” IEEE Photonics Technol. Lett. 7(7), 727–729 (1995).
[Crossref]

Peters, M. G.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[Crossref]

Plant, D. V.

Proesel, J. E.

D. M. Kuchta, A. V. Rylyakov, F. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Rao, Y.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

Y. Rao, C. Chase, and C. J. Chang-Hasnain, “Multiwavelength HCG-VCSEL array,” in Proceedings of 22nd International Semiconductor Laser Workshop (IEEE, 2010), pp. 11–12.

Rylyakov, A. V.

D. M. Kuchta, A. V. Rylyakov, F. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Sakaguchi, T.

P. B. Dayal, T. Sakaguchi, A. Matsutani, and F. Koyama, “Multiple-wavelength vertical-cavity surface-emitting lasers by grading a spacer layer for short-reach wavelength division multiplexing applications,” Appl. Phys. Express 2(9), 092501 (2009).
[Crossref]

Schow, C. L.

D. M. Kuchta, A. V. Rylyakov, F. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Sciancalepore, C.

C. Sciancalepore, B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photonics Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

Scott, J. W.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[Crossref]

Semenova, E.

T. Ansbæk, I.-S. Chung, E. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

Spahn, O. B.

M. J. Cich, J. A. Johnson, G. M. Peake, and O. B. Spahn, “Crystallographic dependence of the lateral undercut wet etching rate of InGaP in HCl,” Appl. Phys. Lett. 82(4), 651–653 (2003).
[Crossref]

Sugihwo, F.

F. Sugihwo, M. Larson, and J. S. Harris, “Micromachined widely tunable vertical cavity laser diodes,” J. Microelectromech. Syst. 7(1), 48–55 (1998).
[Crossref]

Svensson, L.-G.

N. Chitica, J. Carlsson, L.-G. Svensson, and M. Chacinski, “Vertical cavity surface emitting lasers enable high-density ultra-high bandwidth optical interconnects,” Proc. SPIE 9381, 938103 (2015).
[Crossref]

Tang, F.

Tatum, J. A.

Thibeault, B. J.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[Crossref]

Vaidya, D.

Viktorovitch, P.

C. Sciancalepore, B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photonics Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

Westbergh, P.

D. M. Kuchta, A. V. Rylyakov, F. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gbit/s,” IEEE Photonics Technol. Lett. 27(3), 296–299 (2015).
[Crossref]

Wipiejewski, T.

T. Wipiejewski, M. Peters, E. Hegblom, and L. Coldren, “Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment,” IEEE Photonics Technol. Lett. 7(7), 727–729 (1995).
[Crossref]

Yan, M.

Young, D. B.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[Crossref]

Yvind, K.

T. Ansbæk, I.-S. Chung, E. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

Zhou, Y.

C. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 869–878 (2009).
[Crossref]

Appl. Phys. Express (1)

P. B. Dayal, T. Sakaguchi, A. Matsutani, and F. Koyama, “Multiple-wavelength vertical-cavity surface-emitting lasers by grading a spacer layer for short-reach wavelength division multiplexing applications,” Appl. Phys. Express 2(9), 092501 (2009).
[Crossref]

Appl. Phys. Lett. (1)

M. J. Cich, J. A. Johnson, G. M. Peake, and O. B. Spahn, “Crystallographic dependence of the lateral undercut wet etching rate of InGaP in HCl,” Appl. Phys. Lett. 82(4), 651–653 (2003).
[Crossref]

Electron. Lett. (1)

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Fiore, Y. Akulova, J. Ko, E. Hegblom, and L. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
[Crossref]

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

C. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 869–878 (2009).
[Crossref]

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, and F. Koyama, “Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1367–1373 (2003).
[Crossref]

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011).
[Crossref]

IEEE Photonics J. (1)

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (6)

T. Ansbæk, I.-S. Chung, E. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gbit/s,” IEEE Photonics Technol. Lett. 27(3), 296–299 (2015).
[Crossref]

J. Geske, Y. L. Okuno, D. Leonard, and J. Bowers, “Long wavelength two-dimensional WDM vertical cavity surface emitting laser arrays fabricated by nonplanar wafer bonding,” IEEE Photonics Technol. Lett. 15(2), 179–181 (2003).
[Crossref]

T. Wipiejewski, M. Peters, E. Hegblom, and L. Coldren, “Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment,” IEEE Photonics Technol. Lett. 7(7), 727–729 (1995).
[Crossref]

C. Sciancalepore, B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photonics Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

J. Lightwave Technol. (2)

C. J. Chang-Hasnain, M. W. Maeda, J. P. Harbison, L. T. Florez, and C. Lin, “Monolithic multiple wavelength surface emitting laser arrays,” J. Lightwave Technol. 9(12), 1665–1673 (1991).
[Crossref]

J. A. Tatum, D. Gazula, L. A. Graham, J. K. Guenter, R. H. Johnson, J. King, C. Kocot, G. D. Landry, I. Lyubomirsky, D. Vaidya, M. Yan, and F. Tang, “VCSEL-based interconnects for current and future data centers,” J. Lightwave Technol. 33(4), 727–732 (2015).
[Crossref]

J. Microelectromech. Syst. (1)

F. Sugihwo, M. Larson, and J. S. Harris, “Micromachined widely tunable vertical cavity laser diodes,” J. Microelectromech. Syst. 7(1), 48–55 (1998).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

Opt. Express (2)

Proc. SPIE (1)

N. Chitica, J. Carlsson, L.-G. Svensson, and M. Chacinski, “Vertical cavity surface emitting lasers enable high-density ultra-high bandwidth optical interconnects,” Proc. SPIE 9381, 938103 (2015).
[Crossref]

Other (1)

Y. Rao, C. Chase, and C. J. Chang-Hasnain, “Multiwavelength HCG-VCSEL array,” in Proceedings of 22nd International Semiconductor Laser Workshop (IEEE, 2010), pp. 11–12.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 HCG reflectivity (left) and reflection phase (right) at 980 nm for different grating parameters, simulated using RCWA for a grating thickness of 270 nm.
Fig. 2
Fig. 2 Calculated material gain at threshold (left) and resonance wavelength (right) for HCG-VCSELs with different HCG parameters.
Fig. 3
Fig. 3 (a) Schematic figure of the HCG-VCSEL. (b) Refractive index profile and calculated optical field intensity for a HCG-VCSEL with 99.8% HCG reflectivity. This is an air-coupled design, thus the optical field has a node at the semiconductor-air interface.
Fig. 4
Fig. 4 (a) Microscope image of a fabricated HCG-VCSEL. The underetching in ⟨100⟩ is seen in the corners of the HCG. (b) Close-up SEM image of a HCG with a period of 416 nm and duty-cycle of 64%. Note that the images have different crystal orientations.
Fig. 5
Fig. 5 Room-temperature characteristics for VCSELs with different HCG period and duty cycle. (a) Output power vs. current. (b) Optical spectra measured at 2 mA (3 mA for the longest-wavelength lasing, and the non-lasing devices). (c) Comparison of resonance wavelengths measured at 1 mA with numerical calculations. HCG period/duty cycle, from short to long wavelength, is: 405 nm/54%, 405 nm/59%, 400 nm/64%, 410 nm/69%, 425 nm/74%, and 450 nm/79%.

Metrics