Abstract

High-quality SiNx films with controllable low stress and low optical loss are deposited at ultra-low temperature (75 °C) using inductively coupled plasma chemical vapor deposition (ICP-CVD). Two kinds of integrated photonic structures have been demonstrated that exemplify its viability as a photonic integration platform. A microcavity consists of two distributed Bragg reflectors (DBR) formed by alternating a total of 49 layers of SiNx and SiO2 with a total thickness of about 11.5 μm is grown without any cracks, confirming the excellent stress control in the process. Microring resonators are also fabricated in as-deposited planar SiNx waveguide layer using electron-beam lithography (EBL) and plasma etching. Average waveguide loss of 0.79 ± 0.22 dB/cm has been achieved in the range of 1550-1600 nm for ring radii larger than 40 μm. The ultra-low temperature grown SiNx with properties of low loss and low stress is therefore a promising photonic integration platform for various photonic integration applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions

Wesley D. Sacher, Jared C. Mikkelsen, Patrick Dumais, Jia Jiang, Dominic Goodwill, Xianshu Luo, Ying Huang, Yisu Yang, Antoine Bois, Patrick Guo-Qiang Lo, Eric Bernier, and Joyce K. S. Poon
Opt. Express 25(25) 30862-30875 (2017)

Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits

Kuanping Shang, Shibnath Pathak, Binbin Guan, Guangyao Liu, and S. J. B. Yoo
Opt. Express 23(16) 21334-21342 (2015)

Athermal 4-channel (de-)multiplexer in silicon nitride fabricated at low temperature

Shiqi Tao, Qingzhong Huang, Liangqiu Zhu, Jun Liu, Yinglu Zhang, Ying Huang, Yi Wang, and Jinsong Xia
Photon. Res. 6(7) 686-691 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
    [Crossref] [PubMed]
  2. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  3. P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
    [Crossref]
  4. K. Dongwan, P. Popescu, M. Harfouche, J. Sendowski, M. E. Dimotsantou, R. Flagan, and A. Yariv, “On-chip integrated differential optical microring biosensing platform based on a dual laminar flow scheme,” inProceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2015), pp. 2.
  5. S. Ramelow, A. Farsi, S. Clemmen, D. Orquiza, K. Luke, M. Lipson, and A. L. Gaeta, “Silicon-nitride platform for narrowband entangled photon generation,” arXiv:1508.04358.
  6. J. T. Bovington, M. J. R. Heck, and J. E. Bowers, “Heterogeneous lasers and coupling to Si₃N₄ near 1060 nm,” Opt. Lett. 39(20), 6017–6020 (2014).
    [Crossref] [PubMed]
  7. S. Zhu, G. Q. Lo, and D. L. Kwong, “Silicon nitride based plasmonic components for CMOS back-end-of-line integration,” Opt. Express 21(20), 23376–23390 (2013).
    [Crossref] [PubMed]
  8. Z. Lu, S. S. He, Y. Ma, and G. Lucovsky, “Control of bonded-hydrogen in plasma-deposited silicon nitrides: Combined plasma-assisted deposition and rapid thermal annealing for the formation of device-quality nitride layers for applications in multilayer dielectrics,” J. Non-Cryst. Solids 187, 340–346 (1995).
    [Crossref]
  9. K. Ali, S. A. Khan, and M. Z. MatJafri, “Low temperature nanocrystalline silicon nitride film grown on silicon (111) by radio frequency sputtering system,” Optik (Stuttg.) 126(6), 596–598 (2015).
    [Crossref]
  10. M. Shi, H. Tang, X. Shao, X. Huang, G. Cao, R. Wang, T. Li, X. Li, and H. Gong, “Interface property of silicon nitride films grown by inductively coupled plasma chemical vapor deposition and plasma enhanced chemical vapor deposition on In0.82Al0.18As,” Infrared Phys. Technol. 71, 384–388 (2015).
    [Crossref]
  11. B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
    [Crossref]
  12. S. Ueno, Y. Konishi, and K. Azuma, “The structures of highly transparent, water impermeable SiNx films prepared using surface-wave-plasma chemical vapor deposition for organic light-emitting displays,” Thin Solid Films 580, 106–110 (2015).
    [Crossref]
  13. T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth front roughening in silicon nitride films by plasma-enhanced chemical vapor deposition,” Phys. Rev. B 66(7), 075329 (2002).
    [Crossref]
  14. H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, “Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition,” Jpn. J. Appl. Phys. 45(10B), 8388–8392 (2006).
    [Crossref]
  15. D. Dergez, J. Schalko, A. Bittner, and U. Schmid, “Fundamental properties of a-SiNx: H thin films deposited by ICP-PECVD for MEMS applications,” Appl. Surf. Sci. 284, 348–353 (2013).
    [Crossref]
  16. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
    [Crossref]
  17. M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-Loss Silicon Nitride AWG Demultiplexer Heterogeneously Integrated With Hybrid III-V/Silicon Photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
    [Crossref]
  18. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
    [Crossref] [PubMed]
  19. J. Aarnio, P. Heimala, M. Del Giudice, and F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett. 27(25), 2317–2318 (1991).
    [Crossref]
  20. Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Lin, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range”, in Asia Communications and Photonics Conference (2015), pp. 19–23.
    [Crossref]
  21. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16(25), 20809–20816 (2008).
    [Crossref] [PubMed]
  22. M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
    [Crossref]
  23. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref] [PubMed]
  24. H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
    [Crossref]
  25. T. Fremberg, J. M. C. Boggio, D. Bodenmueller, R. Haynes, M. M. Roth, R. Eisermann, L. Zimmermann, and M. Boehm, “Silicon nitride waveguides and micro ring-resonators for astronomical optical frequency comb generation,” in Integrated Optics: Physics and Simulations, P. Cheben, J. Ctyroky, and I. MolinaFernandez, eds. (Academic, 2013).
  26. J.-S. Yoo, J.-S. Cho, J.-H. Park, S.-K. Ahn, K.-S. Shin, K.-H. Yoon, and J. Yi, “Electrical characterization of MIS devices using PECVD SiNx:H films for application of silicon solar cells,” J. Korean Phys. Soc. 61(1), 89–92 (2012).
    [Crossref]
  27. A. G. Noskov, E. B. Gorokhov, G. A. Sokolova, E. M. Trukhanov, and S. I. Stenin, “Correlation between stress and structure in chemically vapour deposited silicon nitride films,” Thin Solid Films 162, 129–143 (1988).
    [Crossref]
  28. W. Stanley and R. N. Tauber, Silicon Processing for the VLSI Era, Vol. 1 (Lattice, 1986).
  29. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
    [Crossref] [PubMed]
  30. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007).
    [Crossref] [PubMed]

2015 (3)

K. Ali, S. A. Khan, and M. Z. MatJafri, “Low temperature nanocrystalline silicon nitride film grown on silicon (111) by radio frequency sputtering system,” Optik (Stuttg.) 126(6), 596–598 (2015).
[Crossref]

M. Shi, H. Tang, X. Shao, X. Huang, G. Cao, R. Wang, T. Li, X. Li, and H. Gong, “Interface property of silicon nitride films grown by inductively coupled plasma chemical vapor deposition and plasma enhanced chemical vapor deposition on In0.82Al0.18As,” Infrared Phys. Technol. 71, 384–388 (2015).
[Crossref]

S. Ueno, Y. Konishi, and K. Azuma, “The structures of highly transparent, water impermeable SiNx films prepared using surface-wave-plasma chemical vapor deposition for organic light-emitting displays,” Thin Solid Films 580, 106–110 (2015).
[Crossref]

2014 (4)

J. T. Bovington, M. J. R. Heck, and J. E. Bowers, “Heterogeneous lasers and coupling to Si₃N₄ near 1060 nm,” Opt. Lett. 39(20), 6017–6020 (2014).
[Crossref] [PubMed]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-Loss Silicon Nitride AWG Demultiplexer Heterogeneously Integrated With Hybrid III-V/Silicon Photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
[Crossref]

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

2013 (5)

D. Dergez, J. Schalko, A. Bittner, and U. Schmid, “Fundamental properties of a-SiNx: H thin films deposited by ICP-PECVD for MEMS applications,” Appl. Surf. Sci. 284, 348–353 (2013).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Silicon nitride based plasmonic components for CMOS back-end-of-line integration,” Opt. Express 21(20), 23376–23390 (2013).
[Crossref] [PubMed]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

2012 (2)

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

J.-S. Yoo, J.-S. Cho, J.-H. Park, S.-K. Ahn, K.-S. Shin, K.-H. Yoon, and J. Yi, “Electrical characterization of MIS devices using PECVD SiNx:H films for application of silicon solar cells,” J. Korean Phys. Soc. 61(1), 89–92 (2012).
[Crossref]

2009 (1)

2008 (2)

2007 (2)

2006 (1)

H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, “Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition,” Jpn. J. Appl. Phys. 45(10B), 8388–8392 (2006).
[Crossref]

2005 (1)

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

2002 (1)

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth front roughening in silicon nitride films by plasma-enhanced chemical vapor deposition,” Phys. Rev. B 66(7), 075329 (2002).
[Crossref]

1995 (1)

Z. Lu, S. S. He, Y. Ma, and G. Lucovsky, “Control of bonded-hydrogen in plasma-deposited silicon nitrides: Combined plasma-assisted deposition and rapid thermal annealing for the formation of device-quality nitride layers for applications in multilayer dielectrics,” J. Non-Cryst. Solids 187, 340–346 (1995).
[Crossref]

1991 (1)

J. Aarnio, P. Heimala, M. Del Giudice, and F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett. 27(25), 2317–2318 (1991).
[Crossref]

1988 (1)

A. G. Noskov, E. B. Gorokhov, G. A. Sokolova, E. M. Trukhanov, and S. I. Stenin, “Correlation between stress and structure in chemically vapour deposited silicon nitride films,” Thin Solid Films 162, 129–143 (1988).
[Crossref]

Aarnio, J.

J. Aarnio, P. Heimala, M. Del Giudice, and F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett. 27(25), 2317–2318 (1991).
[Crossref]

Agarwal, A. M.

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Ahn, S.-K.

J.-S. Yoo, J.-S. Cho, J.-H. Park, S.-K. Ahn, K.-S. Shin, K.-H. Yoon, and J. Yi, “Electrical characterization of MIS devices using PECVD SiNx:H films for application of silicon solar cells,” J. Korean Phys. Soc. 61(1), 89–92 (2012).
[Crossref]

Ali, K.

K. Ali, S. A. Khan, and M. Z. MatJafri, “Low temperature nanocrystalline silicon nitride film grown on silicon (111) by radio frequency sputtering system,” Optik (Stuttg.) 126(6), 596–598 (2015).
[Crossref]

Alic, N.

Azuma, K.

S. Ueno, Y. Konishi, and K. Azuma, “The structures of highly transparent, water impermeable SiNx films prepared using surface-wave-plasma chemical vapor deposition for organic light-emitting displays,” Thin Solid Films 580, 106–110 (2015).
[Crossref]

Bauters, J. F.

Bellutti, P.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Bittner, A.

D. Dergez, J. Schalko, A. Bittner, and U. Schmid, “Fundamental properties of a-SiNx: H thin films deposited by ICP-PECVD for MEMS applications,” Appl. Surf. Sci. 284, 348–353 (2013).
[Crossref]

Bovington, J. T.

Bowers, J. E.

Brainis, E.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Bruno, F.

J. Aarnio, P. Heimala, M. Del Giudice, and F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett. 27(25), 2317–2318 (1991).
[Crossref]

Cao, G.

M. Shi, H. Tang, X. Shao, X. Huang, G. Cao, R. Wang, T. Li, X. Li, and H. Gong, “Interface property of silicon nitride films grown by inductively coupled plasma chemical vapor deposition and plasma enhanced chemical vapor deposition on In0.82Al0.18As,” Infrared Phys. Technol. 71, 384–388 (2015).
[Crossref]

Chen, H.

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Lin, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range”, in Asia Communications and Photonics Conference (2015), pp. 19–23.
[Crossref]

Chen, Y.

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Lin, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range”, in Asia Communications and Photonics Conference (2015), pp. 19–23.
[Crossref]

Cho, J.-S.

J.-S. Yoo, J.-S. Cho, J.-H. Park, S.-K. Ahn, K.-S. Shin, K.-H. Yoon, and J. Yi, “Electrical characterization of MIS devices using PECVD SiNx:H films for application of silicon solar cells,” J. Korean Phys. Soc. 61(1), 89–92 (2012).
[Crossref]

Daldosso, N.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Danto, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Davenport, M. L.

De Geyter, B.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Del Giudice, M.

J. Aarnio, P. Heimala, M. Del Giudice, and F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett. 27(25), 2317–2318 (1991).
[Crossref]

Dergez, D.

D. Dergez, J. Schalko, A. Bittner, and U. Schmid, “Fundamental properties of a-SiNx: H thin films deposited by ICP-PECVD for MEMS applications,” Appl. Surf. Sci. 284, 348–353 (2013).
[Crossref]

Dimotsantou, M. E.

K. Dongwan, P. Popescu, M. Harfouche, J. Sendowski, M. E. Dimotsantou, R. Flagan, and A. Yariv, “On-chip integrated differential optical microring biosensing platform based on a dual laminar flow scheme,” inProceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2015), pp. 2.

Dongwan, K.

K. Dongwan, P. Popescu, M. Harfouche, J. Sendowski, M. E. Dimotsantou, R. Flagan, and A. Yariv, “On-chip integrated differential optical microring biosensing platform based on a dual laminar flow scheme,” inProceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2015), pp. 2.

Elgaid, K.

H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, “Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition,” Jpn. J. Appl. Phys. 45(10B), 8388–8392 (2006).
[Crossref]

Emplit, P.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Fainman, Y.

Fan, Z.

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Lin, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range”, in Asia Communications and Photonics Conference (2015), pp. 19–23.
[Crossref]

Finkelstein, H.

Flagan, R.

K. Dongwan, P. Popescu, M. Harfouche, J. Sendowski, M. E. Dimotsantou, R. Flagan, and A. Yariv, “On-chip integrated differential optical microring biosensing platform based on a dual laminar flow scheme,” inProceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2015), pp. 2.

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Geiregat, P.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Gondarenko, A.

Gong, H.

M. Shi, H. Tang, X. Shao, X. Huang, G. Cao, R. Wang, T. Li, X. Li, and H. Gong, “Interface property of silicon nitride films grown by inductively coupled plasma chemical vapor deposition and plasma enhanced chemical vapor deposition on In0.82Al0.18As,” Infrared Phys. Technol. 71, 384–388 (2015).
[Crossref]

Gorokhov, E. B.

A. G. Noskov, E. B. Gorokhov, G. A. Sokolova, E. M. Trukhanov, and S. I. Stenin, “Correlation between stress and structure in chemically vapour deposited silicon nitride films,” Thin Solid Films 162, 129–143 (1988).
[Crossref]

Harfouche, M.

K. Dongwan, P. Popescu, M. Harfouche, J. Sendowski, M. E. Dimotsantou, R. Flagan, and A. Yariv, “On-chip integrated differential optical microring biosensing platform based on a dual laminar flow scheme,” inProceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2015), pp. 2.

Hassinen, A.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

He, S. S.

Z. Lu, S. S. He, Y. Ma, and G. Lucovsky, “Control of bonded-hydrogen in plasma-deposited silicon nitrides: Combined plasma-assisted deposition and rapid thermal annealing for the formation of device-quality nitride layers for applications in multilayer dielectrics,” J. Non-Cryst. Solids 187, 340–346 (1995).
[Crossref]

Heck, M. J. R.

Heimala, P.

J. Aarnio, P. Heimala, M. Del Giudice, and F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett. 27(25), 2317–2318 (1991).
[Crossref]

Hens, Z.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Hu, J.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Huang, X.

M. Shi, H. Tang, X. Shao, X. Huang, G. Cao, R. Wang, T. Li, X. Li, and H. Gong, “Interface property of silicon nitride films grown by inductively coupled plasma chemical vapor deposition and plasma enhanced chemical vapor deposition on In0.82Al0.18As,” Infrared Phys. Technol. 71, 384–388 (2015).
[Crossref]

Ikeda, K.

Karabacak, T.

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth front roughening in silicon nitride films by plasma-enhanced chemical vapor deposition,” Phys. Rev. B 66(7), 075329 (2002).
[Crossref]

Khan, M. H.

Khan, S. A.

K. Ali, S. A. Khan, and M. Z. MatJafri, “Low temperature nanocrystalline silicon nitride film grown on silicon (111) by radio frequency sputtering system,” Optik (Stuttg.) 126(6), 596–598 (2015).
[Crossref]

Kimerling, L. C.

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Komorowska, K.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Kompocholis, C.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Konishi, Y.

S. Ueno, Y. Konishi, and K. Azuma, “The structures of highly transparent, water impermeable SiNx films prepared using surface-wave-plasma chemical vapor deposition for organic light-emitting displays,” Thin Solid Films 580, 106–110 (2015).
[Crossref]

Kwong, D. L.

Levy, J. S.

Li, C.

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

Li, L.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Li, T.

M. Shi, H. Tang, X. Shao, X. Huang, G. Cao, R. Wang, T. Li, X. Li, and H. Gong, “Interface property of silicon nitride films grown by inductively coupled plasma chemical vapor deposition and plasma enhanced chemical vapor deposition on In0.82Al0.18As,” Infrared Phys. Technol. 71, 384–388 (2015).
[Crossref]

Li, X.

M. Shi, H. Tang, X. Shao, X. Huang, G. Cao, R. Wang, T. Li, X. Li, and H. Gong, “Interface property of silicon nitride films grown by inductively coupled plasma chemical vapor deposition and plasma enhanced chemical vapor deposition on In0.82Al0.18As,” Infrared Phys. Technol. 71, 384–388 (2015).
[Crossref]

Lin, H.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Lin, H.-Y. G.

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Lin, L.

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Lin, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range”, in Asia Communications and Photonics Conference (2015), pp. 19–23.
[Crossref]

Lin, P. T.

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[Crossref] [PubMed]

Lo, G. Q.

Lo, P. G.-Q.

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

Lu, N.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Lu, T. M.

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth front roughening in silicon nitride films by plasma-enhanced chemical vapor deposition,” Phys. Rev. B 66(7), 075329 (2002).
[Crossref]

Lu, Z.

Z. Lu, S. S. He, Y. Ma, and G. Lucovsky, “Control of bonded-hydrogen in plasma-deposited silicon nitrides: Combined plasma-assisted deposition and rapid thermal annealing for the formation of device-quality nitride layers for applications in multilayer dielectrics,” J. Non-Cryst. Solids 187, 340–346 (1995).
[Crossref]

Lucovsky, G.

Z. Lu, S. S. He, Y. Ma, and G. Lucovsky, “Control of bonded-hydrogen in plasma-deposited silicon nitrides: Combined plasma-assisted deposition and rapid thermal annealing for the formation of device-quality nitride layers for applications in multilayer dielectrics,” J. Non-Cryst. Solids 187, 340–346 (1995).
[Crossref]

Lui, A.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Luo, X.

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

Ma, Y.

Z. Lu, S. S. He, Y. Ma, and G. Lucovsky, “Control of bonded-hydrogen in plasma-deposited silicon nitrides: Combined plasma-assisted deposition and rapid thermal annealing for the formation of device-quality nitride layers for applications in multilayer dielectrics,” J. Non-Cryst. Solids 187, 340–346 (1995).
[Crossref]

Mao, S. C.

MatJafri, M. Z.

K. Ali, S. A. Khan, and M. Z. MatJafri, “Low temperature nanocrystalline silicon nitride film grown on silicon (111) by radio frequency sputtering system,” Optik (Stuttg.) 126(6), 596–598 (2015).
[Crossref]

Melchiorri, M.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Merget, F.

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Musgraves, J. D.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Noskov, A. G.

A. G. Noskov, E. B. Gorokhov, G. A. Sokolova, E. M. Trukhanov, and S. I. Stenin, “Correlation between stress and structure in chemically vapour deposited silicon nitride films,” Thin Solid Films 162, 129–143 (1988).
[Crossref]

Park, J.-H.

J.-S. Yoo, J.-S. Cho, J.-H. Park, S.-K. Ahn, K.-S. Shin, K.-H. Yoon, and J. Yi, “Electrical characterization of MIS devices using PECVD SiNx:H films for application of silicon solar cells,” J. Korean Phys. Soc. 61(1), 89–92 (2012).
[Crossref]

Pavesi, L.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Piels, M.

Popescu, P.

K. Dongwan, P. Popescu, M. Harfouche, J. Sendowski, M. E. Dimotsantou, R. Flagan, and A. Yariv, “On-chip integrated differential optical microring biosensing platform based on a dual laminar flow scheme,” inProceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2015), pp. 2.

Pucker, G.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Qi, M.

Qiao, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Richardson, K.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Romero-García, S.

Saperstein, R. E.

Sbrana, F.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Schalko, J.

D. Dergez, J. Schalko, A. Bittner, and U. Schmid, “Fundamental properties of a-SiNx: H thin films deposited by ICP-PECVD for MEMS applications,” Appl. Surf. Sci. 284, 348–353 (2013).
[Crossref]

Schmid, U.

D. Dergez, J. Schalko, A. Bittner, and U. Schmid, “Fundamental properties of a-SiNx: H thin films deposited by ICP-PECVD for MEMS applications,” Appl. Surf. Sci. 284, 348–353 (2013).
[Crossref]

Sendowski, J.

K. Dongwan, P. Popescu, M. Harfouche, J. Sendowski, M. E. Dimotsantou, R. Flagan, and A. Yariv, “On-chip integrated differential optical microring biosensing platform based on a dual laminar flow scheme,” inProceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2015), pp. 2.

Shao, X.

M. Shi, H. Tang, X. Shao, X. Huang, G. Cao, R. Wang, T. Li, X. Li, and H. Gong, “Interface property of silicon nitride films grown by inductively coupled plasma chemical vapor deposition and plasma enhanced chemical vapor deposition on In0.82Al0.18As,” Infrared Phys. Technol. 71, 384–388 (2015).
[Crossref]

Shao, Z.

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Lin, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range”, in Asia Communications and Photonics Conference (2015), pp. 19–23.
[Crossref]

Shen, H.

Shi, M.

M. Shi, H. Tang, X. Shao, X. Huang, G. Cao, R. Wang, T. Li, X. Li, and H. Gong, “Interface property of silicon nitride films grown by inductively coupled plasma chemical vapor deposition and plasma enhanced chemical vapor deposition on In0.82Al0.18As,” Infrared Phys. Technol. 71, 384–388 (2015).
[Crossref]

Shin, K.-S.

J.-S. Yoo, J.-S. Cho, J.-H. Park, S.-K. Ahn, K.-S. Shin, K.-H. Yoon, and J. Yi, “Electrical characterization of MIS devices using PECVD SiNx:H films for application of silicon solar cells,” J. Korean Phys. Soc. 61(1), 89–92 (2012).
[Crossref]

Singh, V.

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Sokolova, G. A.

A. G. Noskov, E. B. Gorokhov, G. A. Sokolova, E. M. Trukhanov, and S. I. Stenin, “Correlation between stress and structure in chemically vapour deposited silicon nitride films,” Thin Solid Films 162, 129–143 (1988).
[Crossref]

Stenin, S. I.

A. G. Noskov, E. B. Gorokhov, G. A. Sokolova, E. M. Trukhanov, and S. I. Stenin, “Correlation between stress and structure in chemically vapour deposited silicon nitride films,” Thin Solid Films 162, 129–143 (1988).
[Crossref]

Sun, X. W.

Tang, H.

M. Shi, H. Tang, X. Shao, X. Huang, G. Cao, R. Wang, T. Li, X. Li, and H. Gong, “Interface property of silicon nitride films grown by inductively coupled plasma chemical vapor deposition and plasma enhanced chemical vapor deposition on In0.82Al0.18As,” Infrared Phys. Technol. 71, 384–388 (2015).
[Crossref]

Tao, S. H.

Thayne, I.

H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, “Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition,” Jpn. J. Appl. Phys. 45(10B), 8388–8392 (2006).
[Crossref]

Tiwald, T.

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Trukhanov, E. M.

A. G. Noskov, E. B. Gorokhov, G. A. Sokolova, E. M. Trukhanov, and S. I. Stenin, “Correlation between stress and structure in chemically vapour deposited silicon nitride films,” Thin Solid Films 162, 129–143 (1988).
[Crossref]

Tu, X.

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

Ueno, S.

S. Ueno, Y. Konishi, and K. Azuma, “The structures of highly transparent, water impermeable SiNx films prepared using surface-wave-plasma chemical vapor deposition for organic light-emitting displays,” Thin Solid Films 580, 106–110 (2015).
[Crossref]

Van Thourhout, D.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Wang, G. C.

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth front roughening in silicon nitride films by plasma-enhanced chemical vapor deposition,” Phys. Rev. B 66(7), 075329 (2002).
[Crossref]

Wang, R.

M. Shi, H. Tang, X. Shao, X. Huang, G. Cao, R. Wang, T. Li, X. Li, and H. Gong, “Interface property of silicon nitride films grown by inductively coupled plasma chemical vapor deposition and plasma enhanced chemical vapor deposition on In0.82Al0.18As,” Infrared Phys. Technol. 71, 384–388 (2015).
[Crossref]

Wilkinson, C.

H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, “Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition,” Jpn. J. Appl. Phys. 45(10B), 8388–8392 (2006).
[Crossref]

Witzens, J.

Xiao, S.

Xu, Y. L.

Yang, C.

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Lin, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range”, in Asia Communications and Photonics Conference (2015), pp. 19–23.
[Crossref]

Yariv, A.

K. Dongwan, P. Popescu, M. Harfouche, J. Sendowski, M. E. Dimotsantou, R. Flagan, and A. Yariv, “On-chip integrated differential optical microring biosensing platform based on a dual laminar flow scheme,” inProceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2015), pp. 2.

Yi, J.

J.-S. Yoo, J.-S. Cho, J.-H. Park, S.-K. Ahn, K.-S. Shin, K.-H. Yoon, and J. Yi, “Electrical characterization of MIS devices using PECVD SiNx:H films for application of silicon solar cells,” J. Korean Phys. Soc. 61(1), 89–92 (2012).
[Crossref]

Yoo, J.-S.

J.-S. Yoo, J.-S. Cho, J.-H. Park, S.-K. Ahn, K.-S. Shin, K.-H. Yoon, and J. Yi, “Electrical characterization of MIS devices using PECVD SiNx:H films for application of silicon solar cells,” J. Korean Phys. Soc. 61(1), 89–92 (2012).
[Crossref]

Yoon, K.-H.

J.-S. Yoo, J.-S. Cho, J.-H. Park, S.-K. Ahn, K.-S. Shin, K.-H. Yoon, and J. Yi, “Electrical characterization of MIS devices using PECVD SiNx:H films for application of silicon solar cells,” J. Korean Phys. Soc. 61(1), 89–92 (2012).
[Crossref]

Yu, M.

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

Yu, M. B.

Yu, S.

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Lin, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range”, in Asia Communications and Photonics Conference (2015), pp. 19–23.
[Crossref]

Zhang, H.

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

Zhang, Y.

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Lin, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range”, in Asia Communications and Photonics Conference (2015), pp. 19–23.
[Crossref]

Zhao, Y. P.

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth front roughening in silicon nitride films by plasma-enhanced chemical vapor deposition,” Phys. Rev. B 66(7), 075329 (2002).
[Crossref]

Zhong, F.

Zhou, H.

H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, “Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition,” Jpn. J. Appl. Phys. 45(10B), 8388–8392 (2006).
[Crossref]

Zhou, L.

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Lin, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range”, in Asia Communications and Photonics Conference (2015), pp. 19–23.
[Crossref]

Zhu, S.

Zou, Y.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Adv. Opt. Mater. (1)

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Appl. Phys. Lett. (2)

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

Appl. Surf. Sci. (1)

D. Dergez, J. Schalko, A. Bittner, and U. Schmid, “Fundamental properties of a-SiNx: H thin films deposited by ICP-PECVD for MEMS applications,” Appl. Surf. Sci. 284, 348–353 (2013).
[Crossref]

Electron. Lett. (1)

J. Aarnio, P. Heimala, M. Del Giudice, and F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett. 27(25), 2317–2318 (1991).
[Crossref]

Infrared Phys. Technol. (1)

M. Shi, H. Tang, X. Shao, X. Huang, G. Cao, R. Wang, T. Li, X. Li, and H. Gong, “Interface property of silicon nitride films grown by inductively coupled plasma chemical vapor deposition and plasma enhanced chemical vapor deposition on In0.82Al0.18As,” Infrared Phys. Technol. 71, 384–388 (2015).
[Crossref]

J. Korean Phys. Soc. (1)

J.-S. Yoo, J.-S. Cho, J.-H. Park, S.-K. Ahn, K.-S. Shin, K.-H. Yoon, and J. Yi, “Electrical characterization of MIS devices using PECVD SiNx:H films for application of silicon solar cells,” J. Korean Phys. Soc. 61(1), 89–92 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

Z. Lu, S. S. He, Y. Ma, and G. Lucovsky, “Control of bonded-hydrogen in plasma-deposited silicon nitrides: Combined plasma-assisted deposition and rapid thermal annealing for the formation of device-quality nitride layers for applications in multilayer dielectrics,” J. Non-Cryst. Solids 187, 340–346 (1995).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, “Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition,” Jpn. J. Appl. Phys. 45(10B), 8388–8392 (2006).
[Crossref]

Nat. Photonics (2)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Optik (Stuttg.) (1)

K. Ali, S. A. Khan, and M. Z. MatJafri, “Low temperature nanocrystalline silicon nitride film grown on silicon (111) by radio frequency sputtering system,” Optik (Stuttg.) 126(6), 596–598 (2015).
[Crossref]

Phys. Rev. B (1)

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth front roughening in silicon nitride films by plasma-enhanced chemical vapor deposition,” Phys. Rev. B 66(7), 075329 (2002).
[Crossref]

Thin Solid Films (2)

S. Ueno, Y. Konishi, and K. Azuma, “The structures of highly transparent, water impermeable SiNx films prepared using surface-wave-plasma chemical vapor deposition for organic light-emitting displays,” Thin Solid Films 580, 106–110 (2015).
[Crossref]

A. G. Noskov, E. B. Gorokhov, G. A. Sokolova, E. M. Trukhanov, and S. I. Stenin, “Correlation between stress and structure in chemically vapour deposited silicon nitride films,” Thin Solid Films 162, 129–143 (1988).
[Crossref]

Other (5)

W. Stanley and R. N. Tauber, Silicon Processing for the VLSI Era, Vol. 1 (Lattice, 1986).

T. Fremberg, J. M. C. Boggio, D. Bodenmueller, R. Haynes, M. M. Roth, R. Eisermann, L. Zimmermann, and M. Boehm, “Silicon nitride waveguides and micro ring-resonators for astronomical optical frequency comb generation,” in Integrated Optics: Physics and Simulations, P. Cheben, J. Ctyroky, and I. MolinaFernandez, eds. (Academic, 2013).

Z. Shao, Y. Chen, H. Chen, Z. Fan, L. Lin, C. Yang, L. Zhou, Y. Zhang, and S. Yu, “Silicon nitride-based integrated photonic devices suitable for operating in the visible to infrared wavelength range”, in Asia Communications and Photonics Conference (2015), pp. 19–23.
[Crossref]

K. Dongwan, P. Popescu, M. Harfouche, J. Sendowski, M. E. Dimotsantou, R. Flagan, and A. Yariv, “On-chip integrated differential optical microring biosensing platform based on a dual laminar flow scheme,” inProceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2015), pp. 2.

S. Ramelow, A. Farsi, S. Clemmen, D. Orquiza, K. Luke, M. Lipson, and A. L. Gaeta, “Silicon-nitride platform for narrowband entangled photon generation,” arXiv:1508.04358.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Comparison of the FTIR spectra of typical example layers as functions of the gas flow rate ratio of SiH4/N2. (b) Total stress versus gas flow ratio of SiH4/N2. (c) Refractive index versus wavelength measured by ellipsometer.
Fig. 2
Fig. 2 (a) The cross-sectional SEM micrographs of the microcavity. The bright and the dark areas are SiO2 and SiNx layers, respectively. (b) Transmittance spectrum of the cavity with SiNx/SiO2 Bragg mirrors.
Fig. 3
Fig. 3 (a) SEM image of cross-section of the SiNx waveguide with the upper and lower cladding. Inset: the mode profile of SiNx channel waveguide calculated by the finite element method. (b) SEM image of a SiNx microring resonator. Inset: zoom-in view SEMs of the coupling region.
Fig. 4
Fig. 4 (a) Measured transmission spectrum of the microring resonator. (b-c) Lorentzian fit to a single resonance for obtaining the quality factor (Q) of the resonator at ~1549.2 nm and ~1558.9 nm, respectively.
Fig. 5
Fig. 5 Measured transmission spectrum of the drop-port of an add-drop microring resonator with r = 60 μm.
Fig. 6
Fig. 6 Waveguide loss of the microring resonator at different radius versus wavelength in the range of 1500-1600 nm.

Tables (1)

Tables Icon

Table 1 Summary of propagation losses of silicon nitride waveguides deposited by LPCVD and PECVD published results, compared with that of ICP-CVD.

Metrics