Abstract

In this paper, we experimentally demonstrate the use of infrared synchrotron radiation (IR-SR) as a broadband source for photothermal near-field infrared spectroscopy. We assess two methods of signal transduction; cantilever resonant thermal expansion and scanning thermal microscopy. By means of rapid mechanical chopping (50-150 kHz), we modulate the IR-SR at rates matching the contact resonance frequencies of atomic force microscope (AFM) cantilevers, allowing us to record interferograms yielding Fourier transform infrared (FT-IR) photothermal absorption spectra of polystyrene and cyanoacrylate films. Complementary offline measurements using a mechanically chopped CW IR laser confirmed that the resonant thermal expansion IR-SR measurements were below the diffraction limit, with a spatial resolution better than 500 nm achieved at a wavelength of 6 μm, i.e. λ/12 for the samples studied. Despite achieving the highest signal to noise so far for a scanning thermal microscopy measurement under conditions approaching near-field (dictated by thermal diffusion), the IR-SR resonant photothermal expansion FT-IR spectra measured were significantly higher in signal to noise in comparison with the scanning thermal data.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy

Peter Hermann, Arne Hoehl, Georg Ulrich, Claudia Fleischmann, Antje Hermelink, Bernd Kästner, Piotr Patoka, Andrea Hornemann, Burkhard Beckhoff, Eckart Rühl, and Gerhard Ulm
Opt. Express 22(15) 17948-17958 (2014)

Sub-100 nm IR spectromicroscopy of living cells

C. Mayet, A. Dazzi, R. Prazeres, F. Allot, F. Glotin, and J. M. Ortega
Opt. Lett. 33(14) 1611-1613 (2008)

Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation

Peter Hermann, Arne Hoehl, Piotr Patoka, Florian Huth, Eckart Rühl, and Gerhard Ulm
Opt. Express 21(3) 2913-2919 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Sommer, “Mid-infrared Transmission Microspectroscopy,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers, and P. R. Griffiths, eds. (Wiley, 2001).
  2. P. J. Treado and M. P. Nelson, “Raman Imaging,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers, and P. R. Griffiths, eds. (Wiley, 2001).
  3. A. Marcelli and G. Cinque, “Chapter 3: infrared synchrotron radiation beamlines: high brilliance tools for IR spectromicroscopy,” in Biomedical Applications of Synchrotron Infrared Microspectroscopy: A Practical Approach (The Royal Society of Chemistry, 2011), pp. 67–104.
  4. X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3(13), 1836–1841 (2012).
    [Crossref] [PubMed]
  5. F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12(8), 3973–3978 (2012).
    [Crossref] [PubMed]
  6. A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
    [Crossref]
  7. A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett. 30(18), 2388–2390 (2005).
    [Crossref] [PubMed]
  8. F. Lu and M. A. Belkin, “Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers,” Opt. Express 19(21), 19942–19947 (2011).
    [Crossref] [PubMed]
  9. C. Mayet, A. Dazzi, R. Prazeres, F. Allot, F. Glotin, and J. M. Ortega, “Sub-100 nm IR spectromicroscopy of living cells,” Opt. Lett. 33(14), 1611–1613 (2008).
    [Crossref] [PubMed]
  10. C. Policar, J. B. Waern, M.-A. Plamont, S. Clède, C. Mayet, R. Prazeres, J.-M. Ortega, A. Vessières, and A. Dazzi, “Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance,” Angew. Chem. Int. Ed. Engl. 50(4), 860–864 (2011).
    [Crossref] [PubMed]
  11. I. T. Lucas, A. S. McLeod, J. S. Syzdek, D. S. Middlemiss, C. P. Grey, D. N. Basov, and R. Kostecki, “IR near-field spectroscopy and imaging of single LixFePO4 microcrystals,” Nano Lett. 15(1), 1–7 (2015).
    [Crossref] [PubMed]
  12. I. V. Pechenezhskiy, X. Hong, G. D. Nguyen, J. E. P. Dahl, R. M. K. Carlson, F. Wang, and M. F. Crommie, “Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111,” Phys. Rev. Lett. 111(12), 126101 (2013).
    [Crossref] [PubMed]
  13. J. D’ Archangel, E. Tucker, E. Kinzel, E. A. Muller, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. Boreman, “Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces,” Opt. Express 21(14), 17150–17160 (2013).
    [Crossref] [PubMed]
  14. P. Hermann, A. Hoehl, P. Patoka, F. Huth, E. Rühl, and G. Ulm, “Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation,” Opt. Express 21(3), 2913–2919 (2013).
    [Crossref] [PubMed]
  15. H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7191–7196 (2014).
    [Crossref] [PubMed]
  16. A. Centrone, “Infrared imaging and spectroscopy beyond the diffraction limit,” Annu. Rev. Anal. Chem. 8(1), 101–126 (2015).
    [Crossref] [PubMed]
  17. L. Bozec, A. Hammiche, M. J. Tobin, J. M. Chalmers, N. J. Everall, and H. M. Pollock, “Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation,” Meas. Sci. Technol. 13(8), 1217–1222 (2002).
    [Crossref]
  18. A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
    [Crossref]
  19. A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
    [Crossref] [PubMed]
  20. A. Dazzi, C. B. Prater, Q. Hu, D. B. Chase, J. F. Rabolt, and C. Marcott, “AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization,” Appl. Spectrosc. 66(12), 1365–1384 (2012).
    [Crossref] [PubMed]
  21. G. Cinque, M. Frogley, K. Wehbe, J. Filik, and J. Pijanka, “Multimode InfraRed Imaging and Microspectroscopy (MIRIAM) beamline at diamond,” Synchrotron Radiat. News 24(5), 24–33 (2011).
    [Crossref]
  22. K. Wehbe, J. Filik, M. D. Frogley, and G. Cinque, “The effect of optical substrates on micro-FTIR analysis of single mammalian cells,” Anal. Bioanal. Chem. 405(4), 1311–1324 (2013).
    [Crossref] [PubMed]
  23. G. P. Williams, “Filling the THz gap - high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
    [Crossref]

2015 (3)

I. T. Lucas, A. S. McLeod, J. S. Syzdek, D. S. Middlemiss, C. P. Grey, D. N. Basov, and R. Kostecki, “IR near-field spectroscopy and imaging of single LixFePO4 microcrystals,” Nano Lett. 15(1), 1–7 (2015).
[Crossref] [PubMed]

A. Centrone, “Infrared imaging and spectroscopy beyond the diffraction limit,” Annu. Rev. Anal. Chem. 8(1), 101–126 (2015).
[Crossref] [PubMed]

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

2014 (1)

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7191–7196 (2014).
[Crossref] [PubMed]

2013 (5)

I. V. Pechenezhskiy, X. Hong, G. D. Nguyen, J. E. P. Dahl, R. M. K. Carlson, F. Wang, and M. F. Crommie, “Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111,” Phys. Rev. Lett. 111(12), 126101 (2013).
[Crossref] [PubMed]

J. D’ Archangel, E. Tucker, E. Kinzel, E. A. Muller, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. Boreman, “Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces,” Opt. Express 21(14), 17150–17160 (2013).
[Crossref] [PubMed]

P. Hermann, A. Hoehl, P. Patoka, F. Huth, E. Rühl, and G. Ulm, “Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation,” Opt. Express 21(3), 2913–2919 (2013).
[Crossref] [PubMed]

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

K. Wehbe, J. Filik, M. D. Frogley, and G. Cinque, “The effect of optical substrates on micro-FTIR analysis of single mammalian cells,” Anal. Bioanal. Chem. 405(4), 1311–1324 (2013).
[Crossref] [PubMed]

2012 (3)

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3(13), 1836–1841 (2012).
[Crossref] [PubMed]

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12(8), 3973–3978 (2012).
[Crossref] [PubMed]

A. Dazzi, C. B. Prater, Q. Hu, D. B. Chase, J. F. Rabolt, and C. Marcott, “AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization,” Appl. Spectrosc. 66(12), 1365–1384 (2012).
[Crossref] [PubMed]

2011 (3)

G. Cinque, M. Frogley, K. Wehbe, J. Filik, and J. Pijanka, “Multimode InfraRed Imaging and Microspectroscopy (MIRIAM) beamline at diamond,” Synchrotron Radiat. News 24(5), 24–33 (2011).
[Crossref]

C. Policar, J. B. Waern, M.-A. Plamont, S. Clède, C. Mayet, R. Prazeres, J.-M. Ortega, A. Vessières, and A. Dazzi, “Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance,” Angew. Chem. Int. Ed. Engl. 50(4), 860–864 (2011).
[Crossref] [PubMed]

F. Lu and M. A. Belkin, “Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers,” Opt. Express 19(21), 19942–19947 (2011).
[Crossref] [PubMed]

2010 (1)

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
[Crossref]

2008 (1)

2006 (1)

G. P. Williams, “Filling the THz gap - high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
[Crossref]

2005 (1)

2002 (1)

L. Bozec, A. Hammiche, M. J. Tobin, J. M. Chalmers, N. J. Everall, and H. M. Pollock, “Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation,” Meas. Sci. Technol. 13(8), 1217–1222 (2002).
[Crossref]

Allot, F.

Amarie, S.

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12(8), 3973–3978 (2012).
[Crossref] [PubMed]

Barrett, S. D.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Basov, D. N.

I. T. Lucas, A. S. McLeod, J. S. Syzdek, D. S. Middlemiss, C. P. Grey, D. N. Basov, and R. Kostecki, “IR near-field spectroscopy and imaging of single LixFePO4 microcrystals,” Nano Lett. 15(1), 1–7 (2015).
[Crossref] [PubMed]

Bechtel, H. A.

Belkin, M. A.

Boreman, G.

Bozec, L.

L. Bozec, A. Hammiche, M. J. Tobin, J. M. Chalmers, N. J. Everall, and H. M. Pollock, “Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation,” Meas. Sci. Technol. 13(8), 1217–1222 (2002).
[Crossref]

Carlson, R. M. K.

I. V. Pechenezhskiy, X. Hong, G. D. Nguyen, J. E. P. Dahl, R. M. K. Carlson, F. Wang, and M. F. Crommie, “Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111,” Phys. Rev. Lett. 111(12), 126101 (2013).
[Crossref] [PubMed]

Carminati, R.

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
[Crossref]

Centrone, A.

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

A. Centrone, “Infrared imaging and spectroscopy beyond the diffraction limit,” Annu. Rev. Anal. Chem. 8(1), 101–126 (2015).
[Crossref] [PubMed]

Chalmers, J. M.

L. Bozec, A. Hammiche, M. J. Tobin, J. M. Chalmers, N. J. Everall, and H. M. Pollock, “Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation,” Meas. Sci. Technol. 13(8), 1217–1222 (2002).
[Crossref]

Chase, D. B.

Chattopadhyay, S.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Cinque, G.

K. Wehbe, J. Filik, M. D. Frogley, and G. Cinque, “The effect of optical substrates on micro-FTIR analysis of single mammalian cells,” Anal. Bioanal. Chem. 405(4), 1311–1324 (2013).
[Crossref] [PubMed]

G. Cinque, M. Frogley, K. Wehbe, J. Filik, and J. Pijanka, “Multimode InfraRed Imaging and Microspectroscopy (MIRIAM) beamline at diamond,” Synchrotron Radiat. News 24(5), 24–33 (2011).
[Crossref]

Clède, S.

C. Policar, J. B. Waern, M.-A. Plamont, S. Clède, C. Mayet, R. Prazeres, J.-M. Ortega, A. Vessières, and A. Dazzi, “Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance,” Angew. Chem. Int. Ed. Engl. 50(4), 860–864 (2011).
[Crossref] [PubMed]

Craig, I. M.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3(13), 1836–1841 (2012).
[Crossref] [PubMed]

Craig, T.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Cricenti, A.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Crommie, M. F.

I. V. Pechenezhskiy, X. Hong, G. D. Nguyen, J. E. P. Dahl, R. M. K. Carlson, F. Wang, and M. F. Crommie, “Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111,” Phys. Rev. Lett. 111(12), 126101 (2013).
[Crossref] [PubMed]

D’ Archangel, J.

Dahl, J. E. P.

I. V. Pechenezhskiy, X. Hong, G. D. Nguyen, J. E. P. Dahl, R. M. K. Carlson, F. Wang, and M. F. Crommie, “Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111,” Phys. Rev. Lett. 111(12), 126101 (2013).
[Crossref] [PubMed]

Dazzi, A.

Dunning, D. J.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Everall, N. J.

L. Bozec, A. Hammiche, M. J. Tobin, J. M. Chalmers, N. J. Everall, and H. M. Pollock, “Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation,” Meas. Sci. Technol. 13(8), 1217–1222 (2002).
[Crossref]

Filik, J.

K. Wehbe, J. Filik, M. D. Frogley, and G. Cinque, “The effect of optical substrates on micro-FTIR analysis of single mammalian cells,” Anal. Bioanal. Chem. 405(4), 1311–1324 (2013).
[Crossref] [PubMed]

G. Cinque, M. Frogley, K. Wehbe, J. Filik, and J. Pijanka, “Multimode InfraRed Imaging and Microspectroscopy (MIRIAM) beamline at diamond,” Synchrotron Radiat. News 24(5), 24–33 (2011).
[Crossref]

Frogley, M.

G. Cinque, M. Frogley, K. Wehbe, J. Filik, and J. Pijanka, “Multimode InfraRed Imaging and Microspectroscopy (MIRIAM) beamline at diamond,” Synchrotron Radiat. News 24(5), 24–33 (2011).
[Crossref]

Frogley, M. D.

K. Wehbe, J. Filik, M. D. Frogley, and G. Cinque, “The effect of optical substrates on micro-FTIR analysis of single mammalian cells,” Anal. Bioanal. Chem. 405(4), 1311–1324 (2013).
[Crossref] [PubMed]

Glotin, F.

Govyadinov, A.

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12(8), 3973–3978 (2012).
[Crossref] [PubMed]

Grey, C. P.

I. T. Lucas, A. S. McLeod, J. S. Syzdek, D. S. Middlemiss, C. P. Grey, D. N. Basov, and R. Kostecki, “IR near-field spectroscopy and imaging of single LixFePO4 microcrystals,” Nano Lett. 15(1), 1–7 (2015).
[Crossref] [PubMed]

Hammiche, A.

L. Bozec, A. Hammiche, M. J. Tobin, J. M. Chalmers, N. J. Everall, and H. M. Pollock, “Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation,” Meas. Sci. Technol. 13(8), 1217–1222 (2002).
[Crossref]

Harrison, P.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Hermann, P.

Hillenbrand, R.

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12(8), 3973–3978 (2012).
[Crossref] [PubMed]

Hoehl, A.

Holder, G. M.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Holland, G.

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

Hong, X.

I. V. Pechenezhskiy, X. Hong, G. D. Nguyen, J. E. P. Dahl, R. M. K. Carlson, F. Wang, and M. F. Crommie, “Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111,” Phys. Rev. Lett. 111(12), 126101 (2013).
[Crossref] [PubMed]

Hu, Q.

Huth, F.

P. Hermann, A. Hoehl, P. Patoka, F. Huth, E. Rühl, and G. Ulm, “Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation,” Opt. Express 21(3), 2913–2919 (2013).
[Crossref] [PubMed]

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12(8), 3973–3978 (2012).
[Crossref] [PubMed]

Katzenmeyer, A. M.

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

Keilmann, F.

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12(8), 3973–3978 (2012).
[Crossref] [PubMed]

Kinzel, E.

Kjoller, K.

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

Kostecki, R.

I. T. Lucas, A. S. McLeod, J. S. Syzdek, D. S. Middlemiss, C. P. Grey, D. N. Basov, and R. Kostecki, “IR near-field spectroscopy and imaging of single LixFePO4 microcrystals,” Nano Lett. 15(1), 1–7 (2015).
[Crossref] [PubMed]

Lu, F.

Lucas, I. T.

I. T. Lucas, A. S. McLeod, J. S. Syzdek, D. S. Middlemiss, C. P. Grey, D. N. Basov, and R. Kostecki, “IR near-field spectroscopy and imaging of single LixFePO4 microcrystals,” Nano Lett. 15(1), 1–7 (2015).
[Crossref] [PubMed]

Luce, M.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Marcott, C.

Martin, D. S.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Martin, M. C.

Mayet, C.

C. Policar, J. B. Waern, M.-A. Plamont, S. Clède, C. Mayet, R. Prazeres, J.-M. Ortega, A. Vessières, and A. Dazzi, “Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance,” Angew. Chem. Int. Ed. Engl. 50(4), 860–864 (2011).
[Crossref] [PubMed]

C. Mayet, A. Dazzi, R. Prazeres, F. Allot, F. Glotin, and J. M. Ortega, “Sub-100 nm IR spectromicroscopy of living cells,” Opt. Lett. 33(14), 1611–1613 (2008).
[Crossref] [PubMed]

McLeod, A. S.

I. T. Lucas, A. S. McLeod, J. S. Syzdek, D. S. Middlemiss, C. P. Grey, D. N. Basov, and R. Kostecki, “IR near-field spectroscopy and imaging of single LixFePO4 microcrystals,” Nano Lett. 15(1), 1–7 (2015).
[Crossref] [PubMed]

Middlemiss, D. S.

I. T. Lucas, A. S. McLeod, J. S. Syzdek, D. S. Middlemiss, C. P. Grey, D. N. Basov, and R. Kostecki, “IR near-field spectroscopy and imaging of single LixFePO4 microcrystals,” Nano Lett. 15(1), 1–7 (2015).
[Crossref] [PubMed]

Muller, E. A.

Nguyen, G. D.

I. V. Pechenezhskiy, X. Hong, G. D. Nguyen, J. E. P. Dahl, R. M. K. Carlson, F. Wang, and M. F. Crommie, “Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111,” Phys. Rev. Lett. 111(12), 126101 (2013).
[Crossref] [PubMed]

Nuansing, W.

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12(8), 3973–3978 (2012).
[Crossref] [PubMed]

Olmon, R. L.

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7191–7196 (2014).
[Crossref] [PubMed]

Ortega, J. M.

Ortega, J.-M.

C. Policar, J. B. Waern, M.-A. Plamont, S. Clède, C. Mayet, R. Prazeres, J.-M. Ortega, A. Vessières, and A. Dazzi, “Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance,” Angew. Chem. Int. Ed. Engl. 50(4), 860–864 (2011).
[Crossref] [PubMed]

Patoka, P.

Pechenezhskiy, I. V.

I. V. Pechenezhskiy, X. Hong, G. D. Nguyen, J. E. P. Dahl, R. M. K. Carlson, F. Wang, and M. F. Crommie, “Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111,” Phys. Rev. Lett. 111(12), 126101 (2013).
[Crossref] [PubMed]

Pijanka, J.

G. Cinque, M. Frogley, K. Wehbe, J. Filik, and J. Pijanka, “Multimode InfraRed Imaging and Microspectroscopy (MIRIAM) beamline at diamond,” Synchrotron Radiat. News 24(5), 24–33 (2011).
[Crossref]

Plamont, M.-A.

C. Policar, J. B. Waern, M.-A. Plamont, S. Clède, C. Mayet, R. Prazeres, J.-M. Ortega, A. Vessières, and A. Dazzi, “Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance,” Angew. Chem. Int. Ed. Engl. 50(4), 860–864 (2011).
[Crossref] [PubMed]

Policar, C.

C. Policar, J. B. Waern, M.-A. Plamont, S. Clède, C. Mayet, R. Prazeres, J.-M. Ortega, A. Vessières, and A. Dazzi, “Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance,” Angew. Chem. Int. Ed. Engl. 50(4), 860–864 (2011).
[Crossref] [PubMed]

Pollock, H. M.

L. Bozec, A. Hammiche, M. J. Tobin, J. M. Chalmers, N. J. Everall, and H. M. Pollock, “Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation,” Meas. Sci. Technol. 13(8), 1217–1222 (2002).
[Crossref]

Prater, C. B.

Prazeres, R.

Pritchard, D. M.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Rabolt, J. F.

Rang, M.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3(13), 1836–1841 (2012).
[Crossref] [PubMed]

Raschke, M. B.

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7191–7196 (2014).
[Crossref] [PubMed]

J. D’ Archangel, E. Tucker, E. Kinzel, E. A. Muller, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. Boreman, “Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces,” Opt. Express 21(14), 17150–17160 (2013).
[Crossref] [PubMed]

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3(13), 1836–1841 (2012).
[Crossref] [PubMed]

Rühl, E.

Saveliev, Y.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Siggel-King, M. R. F.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Smith, A. D.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Surman, M.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Syzdek, J. S.

I. T. Lucas, A. S. McLeod, J. S. Syzdek, D. S. Middlemiss, C. P. Grey, D. N. Basov, and R. Kostecki, “IR near-field spectroscopy and imaging of single LixFePO4 microcrystals,” Nano Lett. 15(1), 1–7 (2015).
[Crossref] [PubMed]

Thompson, N. R.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Tobin, M. J.

L. Bozec, A. Hammiche, M. J. Tobin, J. M. Chalmers, N. J. Everall, and H. M. Pollock, “Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation,” Meas. Sci. Technol. 13(8), 1217–1222 (2002).
[Crossref]

Tucker, E.

Ulm, G.

Varro, A.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Vessières, A.

C. Policar, J. B. Waern, M.-A. Plamont, S. Clède, C. Mayet, R. Prazeres, J.-M. Ortega, A. Vessières, and A. Dazzi, “Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance,” Angew. Chem. Int. Ed. Engl. 50(4), 860–864 (2011).
[Crossref] [PubMed]

Waern, J. B.

C. Policar, J. B. Waern, M.-A. Plamont, S. Clède, C. Mayet, R. Prazeres, J.-M. Ortega, A. Vessières, and A. Dazzi, “Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance,” Angew. Chem. Int. Ed. Engl. 50(4), 860–864 (2011).
[Crossref] [PubMed]

Wang, F.

I. V. Pechenezhskiy, X. Hong, G. D. Nguyen, J. E. P. Dahl, R. M. K. Carlson, F. Wang, and M. F. Crommie, “Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111,” Phys. Rev. Lett. 111(12), 126101 (2013).
[Crossref] [PubMed]

Wehbe, K.

K. Wehbe, J. Filik, M. D. Frogley, and G. Cinque, “The effect of optical substrates on micro-FTIR analysis of single mammalian cells,” Anal. Bioanal. Chem. 405(4), 1311–1324 (2013).
[Crossref] [PubMed]

G. Cinque, M. Frogley, K. Wehbe, J. Filik, and J. Pijanka, “Multimode InfraRed Imaging and Microspectroscopy (MIRIAM) beamline at diamond,” Synchrotron Radiat. News 24(5), 24–33 (2011).
[Crossref]

Weightman, P.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Williams, G. P.

G. P. Williams, “Filling the THz gap - high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
[Crossref]

Wolski, A.

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Xu, X. G.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3(13), 1836–1841 (2012).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

K. Wehbe, J. Filik, M. D. Frogley, and G. Cinque, “The effect of optical substrates on micro-FTIR analysis of single mammalian cells,” Anal. Bioanal. Chem. 405(4), 1311–1324 (2013).
[Crossref] [PubMed]

Anal. Chem. (1)

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

C. Policar, J. B. Waern, M.-A. Plamont, S. Clède, C. Mayet, R. Prazeres, J.-M. Ortega, A. Vessières, and A. Dazzi, “Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance,” Angew. Chem. Int. Ed. Engl. 50(4), 860–864 (2011).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (1)

A. Centrone, “Infrared imaging and spectroscopy beyond the diffraction limit,” Annu. Rev. Anal. Chem. 8(1), 101–126 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

A. D. Smith, M. R. F. Siggel-King, G. M. Holder, A. Cricenti, M. Luce, P. Harrison, D. S. Martin, M. Surman, T. Craig, S. D. Barrett, A. Wolski, D. J. Dunning, N. R. Thompson, Y. Saveliev, D. M. Pritchard, A. Varro, S. Chattopadhyay, and P. Weightman, “Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis,” Appl. Phys. Lett. 102(5), 053701 (2013).
[Crossref]

Appl. Spectrosc. (1)

J. Appl. Phys. (1)

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
[Crossref]

J. Phys. Chem. Lett. (1)

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3(13), 1836–1841 (2012).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

L. Bozec, A. Hammiche, M. J. Tobin, J. M. Chalmers, N. J. Everall, and H. M. Pollock, “Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation,” Meas. Sci. Technol. 13(8), 1217–1222 (2002).
[Crossref]

Nano Lett. (2)

I. T. Lucas, A. S. McLeod, J. S. Syzdek, D. S. Middlemiss, C. P. Grey, D. N. Basov, and R. Kostecki, “IR near-field spectroscopy and imaging of single LixFePO4 microcrystals,” Nano Lett. 15(1), 1–7 (2015).
[Crossref] [PubMed]

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12(8), 3973–3978 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

I. V. Pechenezhskiy, X. Hong, G. D. Nguyen, J. E. P. Dahl, R. M. K. Carlson, F. Wang, and M. F. Crommie, “Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111,” Phys. Rev. Lett. 111(12), 126101 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7191–7196 (2014).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

G. P. Williams, “Filling the THz gap - high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
[Crossref]

Synchrotron Radiat. News (1)

G. Cinque, M. Frogley, K. Wehbe, J. Filik, and J. Pijanka, “Multimode InfraRed Imaging and Microspectroscopy (MIRIAM) beamline at diamond,” Synchrotron Radiat. News 24(5), 24–33 (2011).
[Crossref]

Other (3)

A. J. Sommer, “Mid-infrared Transmission Microspectroscopy,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers, and P. R. Griffiths, eds. (Wiley, 2001).

P. J. Treado and M. P. Nelson, “Raman Imaging,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers, and P. R. Griffiths, eds. (Wiley, 2001).

A. Marcelli and G. Cinque, “Chapter 3: infrared synchrotron radiation beamlines: high brilliance tools for IR spectromicroscopy,” in Biomedical Applications of Synchrotron Infrared Microspectroscopy: A Practical Approach (The Royal Society of Chemistry, 2011), pp. 67–104.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Calculation of the thermal diffusion radius R as a function of modulation rate η for protein (DT ∼0.05 μm2 μs−1). (b) The temperature rise within a thermal diffusion sphere of radius R as a function of modulation frequency. The lines are calculations for IR-SR excitation of protein (black line, κ ∼0.13 W K−1 m−1) and visible laser excitation of dye (red line). The data points are experimental photothermal SThM signal values linearly offset (equivalent to a multiplicative constant accounting for the signal units). (c) Calculation of thermal diffusion radius as a function of IR interferometer scan rate plotted for two wavelengths, 3 and 15 μm. All plots are on a log/log scale. The dashed lines show for several wavelengths the scan rates at which the measurements become sub diffraction limited R < λ.

Fig. 2
Fig. 2

(a) Chopper optics and vacuum box (optical path shown in red). (b) Optics frame for AFM.

Fig. 3
Fig. 3

Plot of cantilever resonance frequency (a), RE-AFMIR signal and topography (b) against position across a cyanoacrylate ridge (shown in (c) alongside AFM cantilever, scale bar 15 μm, white arrow showing scan direction). The RE-AFMIR signal was recorded using a mechanically modulated CW QCL at 1650 cm−1. In (b), the thermal signal (black square) traces the topographic signal (red triangle) to within ∼250-500 nm. The signals were recorded at 100nm intervals.

Fig. 4
Fig. 4

Tip heating effects. RE-AFMIR signals from different cantilevers on a fixed cell (mammalian DLD1 on CaF2). A pulsed QCL with λ = 6 μm (amide I absorption) was used to illuminate the cell. (a) Thermal expansion signal scans of same cell taken with glass cantilever (red, resonant frequency 98 kHz), gold coated glass cantilever (blue, resonant frequency 107 kHz) and silicon cantilever (black, resonant frequency 63 kHz). (b) Photothermal expansion image of DLD1 cell measured using silicon cantilever (resonant frequency 150 kHz).

Fig. 5
Fig. 5

(a) IR-SR photothermal expansion spectrum of a PS film recorded using an Au coated glass fibre cantilever with a resonant frequency of 106 kHz. (b) Image of the cantilever, with the SR beam focussed under the tip, during the measurement (scale bar is 400 μm). (c) IR spectrum of the same region of the PS film recorded using conventional IR microscopy. (d) Tip response spectrum of the Au coated glass fibre cantilever used.

Fig. 6
Fig. 6

Comparison of (a) near and (b) far-field spectra for a cyanoacrylate microsample. The near-field spectrum was taken with an Au coated Si tip in 15 minutes. The inset in (b) shows the far-field spectrum full-scale.

Fig. 7
Fig. 7

Synchrotron IR photothermal SThM spectra of fixed DLD1 cells on CaF2. (a) A Nanonics SThM probe with 100 nm gold overcoat in the vicinity of DLD1 cells. (b) Photothermal IR spectra of the SThM probe in contact with DLD1 cells for different interferometer scan rates. (c) A background subtracted DLD1 photothermal absorption spectrum obtained by logarithmic subtraction of spectra on the cells and on the bare window. (d) An infrared spectrum of a fixed cell measured using a conventional single point mapping microscope at 15 μm resolution.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S( t )=( χ*T )( t ) 0 t d t n 1 ω n ( sin( ω n ( t t ) ) e Γ n ( t t ) 2 )T( t )
R= 3τ D T
ΔT= P abs 4πRκ
P abs = λ=3 μm λ=12.5 μm dλ  2π λ c ϵ 0 9n( λ )k( λ ) ( n( λ )+2 ) 2 | E inc ( λ ) | 2 4π R 3 3

Metrics