Abstract

We introduce a new approach to systematically break the symmetry in periodic nanostructures on a crystalline silicon surface. Our focus is inverted nanopyramid arrays with a prescribed symmetry. The arrangement and symmetry of nanopyramids are determined by etch mask design and its rotation with respect to the [110] orientation of the Si(001) substrate. This approach eliminates the need for using expensive off-cut silicon wafers. We also make use of low-cost, manufacturable, wet etching steps to fabricate the nanopyramids. Our experiment and computational modeling demonstrate that the symmetry breaking can increase the photovoltaic efficiency in thin-film silicon solar cells. For a 10-micron-thick active layer, the efficiency improves from 27.0 to 27.9% by enhanced light trapping over the broad sunlight spectrum. Our computation further reveals that this improvement would increase from 28.1 to 30.0% in the case of a 20-micron-thick active layer, when the unetched area between nanopyramids is minimized with over-etching. In addition to the immediate benefit to solar photovoltaics, our method of symmetry breaking provides a useful experimental platform to broadly study the effect of symmetry breaking on spectrally tuned light absorption and emission.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of symmetry in periodic nanostructures on light trapping in thin film solar cells

Tianhao Cai and Sang Eon Han
J. Opt. Soc. Am. B 32(11) 2264-2270 (2015)

Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells

Shrestha Basu Mallick, Mukul Agrawal, and Peter Peumans
Opt. Express 18(6) 5691-5706 (2010)

Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells

Christos Trompoukis, Inès Massiot, Valérie Depauw, Ounsi El Daif, Kidong Lee, Alexandre Dmitriev, Ivan Gordon, Robert Mertens, and Jef Poortmans
Opt. Express 24(2) A191-A201 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. C. Boots, EGY123A - Alternative Photovoltaic Solar Cell Technologies: Global Markets, BCC Research, 2014.
  2. International Technology Roadmap for Photovoltaic (ITRPV), 6th Ed., http://www.itrpv.net/Reports/Downloads/ .
  3. M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
    [Crossref] [PubMed]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  5. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [Crossref] [PubMed]
  6. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [Crossref]
  7. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
    [Crossref]
  8. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [Crossref]
  9. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
    [PubMed]
  10. A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
    [Crossref]
  11. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [Crossref] [PubMed]
  12. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
    [Crossref] [PubMed]
  13. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [Crossref] [PubMed]
  14. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
    [PubMed]
  15. M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
    [Crossref]
  16. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
    [Crossref] [PubMed]
  17. K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
    [Crossref] [PubMed]
  18. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
    [Crossref]
  19. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
    [Crossref] [PubMed]
  20. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
    [Crossref] [PubMed]
  21. A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
    [Crossref] [PubMed]
  22. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
    [Crossref] [PubMed]
  23. A. Chutinan, N. P. Kherani, and S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Opt. Express 17(11), 8871–8878 (2009).
    [Crossref] [PubMed]
  24. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
    [Crossref] [PubMed]
  25. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
    [Crossref] [PubMed]
  26. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
    [Crossref]
  27. P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
    [Crossref]
  28. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
    [Crossref]
  29. M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. G. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline Silicon solar cells,” Opt. Express 20(28), 29488–29499 (2012).
    [Crossref] [PubMed]
  30. T. Cai and S. E. Han, “Effect of symmetry in periodic nanostructures on light trapping in thin film solar cells,” J. Opt. Soc. Am. B 32(11), 2264–2270 (2015).
    [Crossref]
  31. J. Gjessing, A. S. Sudbø, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110(3), 033104 (2011).
    [Crossref]
  32. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995).
    [Crossref] [PubMed]
  33. Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process. 105(2), 329–339 (2011).
    [Crossref]
  34. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
    [Crossref]
  35. P. Campbell, S. R. Wenham, and M. A. Green, “Light trapping and reflection control in solar cells using tilted crystallographic surface textures,” Sol. Energy Mater. Sol. Cells 31(2), 133–153 (1993).
    [Crossref]
  36. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
    [Crossref] [PubMed]
  37. M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
    [Crossref]
  38. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
    [Crossref] [PubMed]
  39. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
    [Crossref] [PubMed]
  40. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995).
    [Crossref] [PubMed]
  41. S. V. Kesapragada and D. Gall, “Two-component nanopillar arrays grown by Glancing Angle Deposition,” Thin Solid Films 494(1–2), 234–239 (2006).
    [Crossref]
  42. K. M. McPeak, C. D. van Engers, M. Blome, J. H. Park, S. Burger, M. A. Gosálvez, A. Faridi, Y. R. Ries, A. Sahu, and D. J. Norris, “Complex chiral colloids and surfaces via high-index off-cut silicon,” Nano Lett. 14(5), 2934–2940 (2014).
    [Crossref] [PubMed]
  43. Y.-C. Chang, S.-C. Lu, H.-C. Chung, S.-M. Wang, T.-D. Tsai, and T.-F. Guo, “High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography,” Sci. Rep. 3, 3339 (2013).
    [Crossref] [PubMed]
  44. C. Kittel, Introduction to Solid State Physics. 8th ed. (Wiley, 2004).
  45. Y. Yin, Z.-Y. Li, and Y. Xia, “Template-directed growth of (100)-oriented colloidal crystals,” Langmuir 19(3), 622–631 (2003).
    [Crossref]
  46. P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85(2), 306–322 (1995).
    [Crossref]
  47. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
    [Crossref] [PubMed]
  48. D. F. Edwards, “Silicon (Si)”; D. W. Lynch and W. R. Hunter, “Silver (Ag),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  49. S. Duttagupta, F. Ma, B. Hoex, T. Mueller, and A. G. Aberle, “Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling,” Energy Procedia 15, 78–83 (2012).
    [Crossref]
  50. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  51. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
    [Crossref]

2016 (1)

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

2015 (2)

T. Cai and S. E. Han, “Effect of symmetry in periodic nanostructures on light trapping in thin film solar cells,” J. Opt. Soc. Am. B 32(11), 2264–2270 (2015).
[Crossref]

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

2014 (1)

K. M. McPeak, C. D. van Engers, M. Blome, J. H. Park, S. Burger, M. A. Gosálvez, A. Faridi, Y. R. Ries, A. Sahu, and D. J. Norris, “Complex chiral colloids and surfaces via high-index off-cut silicon,” Nano Lett. 14(5), 2934–2940 (2014).
[Crossref] [PubMed]

2013 (2)

Y.-C. Chang, S.-C. Lu, H.-C. Chung, S.-M. Wang, T.-D. Tsai, and T.-F. Guo, “High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography,” Sci. Rep. 3, 3339 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

2012 (6)

M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. G. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline Silicon solar cells,” Opt. Express 20(28), 29488–29499 (2012).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

S. Duttagupta, F. Ma, B. Hoex, T. Mueller, and A. G. Aberle, “Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling,” Energy Procedia 15, 78–83 (2012).
[Crossref]

2011 (5)

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process. 105(2), 329–339 (2011).
[Crossref]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

J. Gjessing, A. S. Sudbø, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110(3), 033104 (2011).
[Crossref]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

2010 (7)

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (3)

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[Crossref]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

2007 (5)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
[Crossref] [PubMed]

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

2006 (1)

S. V. Kesapragada and D. Gall, “Two-component nanopillar arrays grown by Glancing Angle Deposition,” Thin Solid Films 494(1–2), 234–239 (2006).
[Crossref]

2005 (1)

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[Crossref] [PubMed]

2003 (1)

Y. Yin, Z.-Y. Li, and Y. Xia, “Template-directed growth of (100)-oriented colloidal crystals,” Langmuir 19(3), 622–631 (2003).
[Crossref]

1996 (1)

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[Crossref]

1995 (3)

C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995).
[Crossref] [PubMed]

C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995).
[Crossref] [PubMed]

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85(2), 306–322 (1995).
[Crossref]

1993 (1)

P. Campbell, S. R. Wenham, and M. A. Green, “Light trapping and reflection control in solar cells using tilted crystallographic surface textures,” Sol. Energy Mater. Sol. Cells 31(2), 133–153 (1993).
[Crossref]

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

1983 (1)

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
[Crossref]

1982 (1)

1980 (1)

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Aberle, A. G.

S. Duttagupta, F. Ma, B. Hoex, T. Mueller, and A. G. Aberle, “Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling,” Energy Procedia 15, 78–83 (2012).
[Crossref]

M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. G. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline Silicon solar cells,” Opt. Express 20(28), 29488–29499 (2012).
[Crossref] [PubMed]

Agrawal, M.

Alexander, D. T. L.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Algra, R. E.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[Crossref] [PubMed]

Arafune, K.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Atwater, H. A.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Baek, J. Y.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

Bakkers, E. P. A. M.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[Crossref] [PubMed]

Balch, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

Ballif, C.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Battaglia, C.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. G. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline Silicon solar cells,” Opt. Express 20(28), 29488–29499 (2012).
[Crossref] [PubMed]

Bell, P. M.

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85(2), 306–322 (1995).
[Crossref]

Bermel, P.

Biswas, R.

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[Crossref]

Bläsi, B.

Bloch, A. N.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
[Crossref]

Blome, M.

K. M. McPeak, C. D. van Engers, M. Blome, J. H. Park, S. Burger, M. A. Gosálvez, A. Faridi, Y. R. Ries, A. Sahu, and D. J. Norris, “Complex chiral colloids and surfaces via high-index off-cut silicon,” Nano Lett. 14(5), 2934–2940 (2014).
[Crossref] [PubMed]

Boccard, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Boettcher, S. W.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Boriskina, S. V.

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Branham, M. S.

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

Briggs, R. M.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Burger, S.

K. M. McPeak, C. D. van Engers, M. Blome, J. H. Park, S. Burger, M. A. Gosálvez, A. Faridi, Y. R. Ries, A. Sahu, and D. J. Norris, “Complex chiral colloids and surfaces via high-index off-cut silicon,” Nano Lett. 14(5), 2934–2940 (2014).
[Crossref] [PubMed]

Burresi, M.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Cai, T.

Campbell, P.

P. Campbell, S. R. Wenham, and M. A. Green, “Light trapping and reflection control in solar cells using tilted crystallographic surface textures,” Sol. Energy Mater. Sol. Cells 31(2), 133–153 (1993).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Cantoni, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Chang, Y.-C.

Y.-C. Chang, S.-C. Lu, H.-C. Chung, S.-M. Wang, T.-D. Tsai, and T.-F. Guo, “High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography,” Sci. Rep. 3, 3339 (2013).
[Crossref] [PubMed]

Charrière, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Chen, G.

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Chen, Z.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Chung, H.-C.

Y.-C. Chang, S.-C. Lu, H.-C. Chung, S.-M. Wang, T.-D. Tsai, and T.-F. Guo, “High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography,” Sci. Rep. 3, 3339 (2013).
[Crossref] [PubMed]

Chutinan, A.

Cui, Y.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Depauw, V.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Despeisse, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Duttagupta, S.

S. Duttagupta, F. Ma, B. Hoex, T. Mueller, and A. G. Aberle, “Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling,” Energy Procedia 15, 78–83 (2012).
[Crossref]

Ebong, A.

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

Escarré, J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Fan, S.

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process. 105(2), 329–339 (2011).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Faridi, A.

K. M. McPeak, C. D. van Engers, M. Blome, J. H. Park, S. Burger, M. A. Gosálvez, A. Faridi, Y. R. Ries, A. Sahu, and D. J. Norris, “Complex chiral colloids and surfaces via high-index off-cut silicon,” Nano Lett. 14(5), 2934–2940 (2014).
[Crossref] [PubMed]

Favuzzi, P. A.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Forberich, K.

Fronheiser, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

Gall, D.

S. V. Kesapragada and D. Gall, “Two-component nanopillar arrays grown by Glancing Angle Deposition,” Thin Solid Films 494(1–2), 234–239 (2006).
[Crossref]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Gjessing, J.

J. Gjessing, A. S. Sudbø, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110(3), 033104 (2011).
[Crossref]

Gosálvez, M. A.

K. M. McPeak, C. D. van Engers, M. Blome, J. H. Park, S. Burger, M. A. Gosálvez, A. Faridi, Y. R. Ries, A. Sahu, and D. J. Norris, “Complex chiral colloids and surfaces via high-index off-cut silicon,” Nano Lett. 14(5), 2934–2940 (2014).
[Crossref] [PubMed]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

P. Campbell, S. R. Wenham, and M. A. Green, “Light trapping and reflection control in solar cells using tilted crystallographic surface textures,” Sol. Energy Mater. Sol. Cells 31(2), 133–153 (1993).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Guo, T.-F.

Y.-C. Chang, S.-C. Lu, H.-C. Chung, S.-M. Wang, T.-D. Tsai, and T.-F. Guo, “High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography,” Sci. Rep. 3, 3339 (2013).
[Crossref] [PubMed]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[Crossref]

Han, S. E.

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

T. Cai and S. E. Han, “Effect of symmetry in periodic nanostructures on light trapping in thin film solar cells,” J. Opt. Soc. Am. B 32(11), 2264–2270 (2015).
[Crossref]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Haug, F.-J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Heine, C.

Henry, C. H.

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
[Crossref]

Hoard, B. R.

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Hoex, B.

S. Duttagupta, F. Ma, B. Hoex, T. Mueller, and A. G. Aberle, “Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling,” Energy Procedia 15, 78–83 (2012).
[Crossref]

Hsu, C.-M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Hsu, W.-C.

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Joannopoulos, J. D.

Kanamori, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Kawakami, Y.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Kelzenberg, M. D.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Kesapragada, S. V.

S. V. Kesapragada and D. Gall, “Two-component nanopillar arrays grown by Glancing Angle Deposition,” Thin Solid Films 494(1–2), 234–239 (2006).
[Crossref]

Kherani, N. P.

Kimerling, L. C.

Korevaar, B. A.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Lagendijk, A.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[Crossref] [PubMed]

Lare, M. C.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Lee, S.-T.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[Crossref] [PubMed]

Lewis, N. S.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Li, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Li, Z.-Y.

Y. Yin, Z.-Y. Li, and Y. Xia, “Template-directed growth of (100)-oriented colloidal crystals,” Langmuir 19(3), 622–631 (2003).
[Crossref]

Lin, C.

Liu, Y.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Loomis, J.

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Lu, S.-C.

Y.-C. Chang, S.-C. Lu, H.-C. Chung, S.-M. Wang, T.-D. Tsai, and T.-F. Guo, “High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography,” Sci. Rep. 3, 3339 (2013).
[Crossref] [PubMed]

Luo, C.

Ma, F.

S. Duttagupta, F. Ma, B. Hoex, T. Mueller, and A. G. Aberle, “Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling,” Energy Procedia 15, 78–83 (2012).
[Crossref]

Mallick, S. B.

Marstein, E. S.

J. Gjessing, A. S. Sudbø, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110(3), 033104 (2011).
[Crossref]

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Mavrokefalos, A.

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

McPeak, K. M.

K. M. McPeak, C. D. van Engers, M. Blome, J. H. Park, S. Burger, M. A. Gosálvez, A. Faridi, Y. R. Ries, A. Sahu, and D. J. Norris, “Complex chiral colloids and surfaces via high-index off-cut silicon,” Nano Lett. 14(5), 2934–2940 (2014).
[Crossref] [PubMed]

Moreno, L. M.

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85(2), 306–322 (1995).
[Crossref]

Morf, R. H.

Mueller, T.

S. Duttagupta, F. Ma, B. Hoex, T. Mueller, and A. G. Aberle, “Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling,” Energy Procedia 15, 78–83 (2012).
[Crossref]

Munday, J. N.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

Muskens, O. L.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[Crossref] [PubMed]

Noda, S.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Norris, D. J.

K. M. McPeak, C. D. van Engers, M. Blome, J. H. Park, S. Burger, M. A. Gosálvez, A. Faridi, Y. R. Ries, A. Sahu, and D. J. Norris, “Complex chiral colloids and surfaces via high-index off-cut silicon,” Nano Lett. 14(5), 2934–2940 (2014).
[Crossref] [PubMed]

Ohshita, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Oskooi, A.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Park, J. H.

K. M. McPeak, C. D. van Engers, M. Blome, J. H. Park, S. Burger, M. A. Gosálvez, A. Faridi, Y. R. Ries, A. Sahu, and D. J. Norris, “Complex chiral colloids and surfaces via high-index off-cut silicon,” Nano Lett. 14(5), 2934–2940 (2014).
[Crossref] [PubMed]

Pendry, J. B.

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85(2), 306–322 (1995).
[Crossref]

Peng, K.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[Crossref] [PubMed]

Peters, M.

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Peumans, P.

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Polman, A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

Povinelli, M. L.

Putnam, M. C.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process. 105(2), 329–339 (2011).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Rand, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

Riboli, F.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Ries, Y. R.

K. M. McPeak, C. D. van Engers, M. Blome, J. H. Park, S. Burger, M. A. Gosálvez, A. Faridi, Y. R. Ries, A. Sahu, and D. J. Norris, “Complex chiral colloids and surfaces via high-index off-cut silicon,” Nano Lett. 14(5), 2934–2940 (2014).
[Crossref] [PubMed]

Rivas, J. G.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[Crossref] [PubMed]

Sahraei, N.

Sahu, A.

K. M. McPeak, C. D. van Engers, M. Blome, J. H. Park, S. Burger, M. A. Gosálvez, A. Faridi, Y. R. Ries, A. Sahu, and D. J. Norris, “Complex chiral colloids and surfaces via high-index off-cut silicon,” Nano Lett. 14(5), 2934–2940 (2014).
[Crossref] [PubMed]

Sai, H.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Sheng, P.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
[Crossref]

Shigeta, H.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Söderström, K.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Stepleman, R. S.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
[Crossref]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[Crossref]

Sudbø, A. S.

J. Gjessing, A. S. Sudbø, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110(3), 033104 (2011).
[Crossref]

Sulima, O.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

Tanaka, Y.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Tsai, T.-D.

Y.-C. Chang, S.-C. Lu, H.-C. Chung, S.-M. Wang, T.-D. Tsai, and T.-F. Guo, “High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography,” Sci. Rep. 3, 3339 (2013).
[Crossref] [PubMed]

Tsakalakos, L.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

Turner-Evans, D. B.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

van Engers, C. D.

K. M. McPeak, C. D. van Engers, M. Blome, J. H. Park, S. Burger, M. A. Gosálvez, A. Faridi, Y. R. Ries, A. Sahu, and D. J. Norris, “Complex chiral colloids and surfaces via high-index off-cut silicon,” Nano Lett. 14(5), 2934–2940 (2014).
[Crossref] [PubMed]

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Vynck, K.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Wang, S.-M.

Y.-C. Chang, S.-C. Lu, H.-C. Chung, S.-M. Wang, T.-D. Tsai, and T.-F. Guo, “High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography,” Sci. Rep. 3, 3339 (2013).
[Crossref] [PubMed]

Ward, A. J.

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85(2), 306–322 (1995).
[Crossref]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Wenham, S. R.

P. Campbell, S. R. Wenham, and M. A. Green, “Light trapping and reflection control in solar cells using tilted crystallographic surface textures,” Sol. Energy Mater. Sol. Cells 31(2), 133–153 (1993).
[Crossref]

Wiersma, D. S.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Wu, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[Crossref] [PubMed]

Xia, Y.

Y. Yin, Z.-Y. Li, and Y. Xia, “Template-directed growth of (100)-oriented colloidal crystals,” Langmuir 19(3), 622–631 (2003).
[Crossref]

Xu, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[Crossref] [PubMed]

Yablonovitch, E.

Yamaguchi, M.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Yan, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[Crossref] [PubMed]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Yerci, S.

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

Yin, Y.

Y. Yin, Z.-Y. Li, and Y. Xia, “Template-directed growth of (100)-oriented colloidal crystals,” Langmuir 19(3), 622–631 (2003).
[Crossref]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process. 105(2), 329–339 (2011).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Zeng, L.

Zhou, D.

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[Crossref]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Zhu, J.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[Crossref] [PubMed]

Zukotynski, S.

ACS Nano (1)

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

M. S. Branham, W.-C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
[Crossref]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process. 105(2), 329–339 (2011).
[Crossref]

Comput. Phys. Commun. (1)

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85(2), 306–322 (1995).
[Crossref]

Energy Environ. Sci. (1)

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

Energy Procedia (1)

S. Duttagupta, F. Ma, B. Hoex, T. Mueller, and A. G. Aberle, “Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling,” Energy Procedia 15, 78–83 (2012).
[Crossref]

J. Appl. Phys. (6)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
[Crossref]

J. Gjessing, A. S. Sudbø, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110(3), 033104 (2011).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Langmuir (1)

Y. Yin, Z.-Y. Li, and Y. Xia, “Template-directed growth of (100)-oriented colloidal crystals,” Langmuir 19(3), 622–631 (2003).
[Crossref]

Nano Lett. (9)

K. M. McPeak, C. D. van Engers, M. Blome, J. H. Park, S. Burger, M. A. Gosálvez, A. Faridi, Y. R. Ries, A. Sahu, and D. J. Norris, “Complex chiral colloids and surfaces via high-index off-cut silicon,” Nano Lett. 14(5), 2934–2940 (2014).
[Crossref] [PubMed]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Nat. Mater. (3)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Opt. Express (6)

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (1)

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Sci. Rep. (1)

Y.-C. Chang, S.-C. Lu, H.-C. Chung, S.-M. Wang, T.-D. Tsai, and T.-F. Guo, “High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography,” Sci. Rep. 3, 3339 (2013).
[Crossref] [PubMed]

Small (1)

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

P. Campbell, S. R. Wenham, and M. A. Green, “Light trapping and reflection control in solar cells using tilted crystallographic surface textures,” Sol. Energy Mater. Sol. Cells 31(2), 133–153 (1993).
[Crossref]

Thin Solid Films (1)

S. V. Kesapragada and D. Gall, “Two-component nanopillar arrays grown by Glancing Angle Deposition,” Thin Solid Films 494(1–2), 234–239 (2006).
[Crossref]

Other (4)

C. Kittel, Introduction to Solid State Physics. 8th ed. (Wiley, 2004).

D. F. Edwards, “Silicon (Si)”; D. W. Lynch and W. R. Hunter, “Silver (Ag),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

B. C. Boots, EGY123A - Alternative Photovoltaic Solar Cell Technologies: Global Markets, BCC Research, 2014.

International Technology Roadmap for Photovoltaic (ITRPV), 6th Ed., http://www.itrpv.net/Reports/Downloads/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic approach to systematically break the symmetry by rotating the etch template (inset) and arranging the openings in various lattice types. Left figures show the etch template rotated about the [001] axis. The flat region on the right side of each c-Si wafer indicates the [110] direction. Subsequent etching in an alkaline solution defines inverted nanopyramids on c-Si(001) surfaces (right figures). The resulting symmetries are labeled in Schönflies notation.
Fig. 2
Fig. 2 (a) Illustration of fabrication process for light-trapping structures on thin c-Si films. (b)-(d) Scanning electron micrographs of the inverted nanopyramid arrays with (b) C4v, (c) C4, and (d) C2 symmetry. The insets are a de-magnified view of each structure. These structures are obtained after 8-min anisotropic etching at 55°C followed by 10-min isotropic etching at 25°C. In (c) and (d), each pyramid is rotated by approximately 22.5° around its own apex from a lattice vector. The periodicity in the two orthogonal directions is 700 nm × 700 nm for (b)-(c) and 800 nm × 900 nm for (d).
Fig. 3
Fig. 3 (a) Calculated photovoltaic efficiency based on absorption in a 2.33-μm-thick and 2-μm-thick c-Si film for the C4v and C4 symmetry light-trapping structures, respectively, as a function of the periodicity. (b) Calculated efficiency for the C2 symmetry structures based on a rotated rectangular lattice with various periodicities in x and y directions, where the angle between x-axis and [110] direction is 22.5°.
Fig. 4
Fig. 4 Calculated spectra of absorption in a 10-μm-thick c-Si film for the C4v, C4, and C2 symmetry light-trapping structures shown in Figs. 2(b)-2(d). Arrows indicate peak positions found from the second derivatives of the spectra.
Fig. 5
Fig. 5 (a)-(c) Comparison of experimental (solid line) and calculated (dashed line) total absorptance and calculated absorption in Ag (dot-dashed) for the inverted nanopyramid arrays of (a) C4v, (b) C4 and (c) C2 symmetry shown in Figs. 2(b)-2(d). For the calculated absorption, the spectra are averaged over a photon energy range of 0.06 eV to smoothen sharp peaks. The refractive index of the SiNx coating is 1.7 for (a), (b) and 1.9 for (c) in the calculations. (d) Absorptance in c-Si for the inverted nanopyramid arrays of C4v (blue), C4 (black), and C2 (red) symmetry. The calculated photovoltaic efficiency for each nanopyramid structure is introduced in the parenthesis.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J(V)= 0 λ g λ hc A Si (λ)I(λ)dλ+ 2πe E g 2 k B T h 3 c 2 e E g k B T ( 1 e eV k B T ),

Metrics