Abstract

We present the design, optical simulation, and experiment of a modified optical fiber daylighting system (M-OFDS) for indoor lighting. The M-OFDS is comprised of three sub-systems: concentration, collimation, and distribution. The concentration part is formed by coupling a Fresnel lens with a large-core plastic optical fiber. The sunlight collected by the concentration sub-system is propagated in a plastic optical fiber and then collimated by the collimator, which is a combination of a parabolic mirror and a convex lens. The collimated beam of sunlight travels in free space and is guided to the interior by directing flat mirrors, where it is diffused uniformly by a distributor. All parameters of the system are calculated theoretically. Based on the designed system, our simulation results demonstrated a maximum optical efficiency of 71%. The simulation results also showed that sunlight could be delivered to the illumination destination at distance of 30 m. A prototype of the M-OFDS was fabricated, and preliminary experiments were performed outdoors. The simulation results and experimental results confirmed that the M-OFDS was designed effectively. A large-scale system constructed by several M-OFDSs is also proposed. The results showed that the presented optical fiber daylighting system is a strong candidate for an inexpensive and highly efficient application of solar energy in buildings.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passive optical solar tracking system

Ross McCluney
Appl. Opt. 22(21) 3433-3439 (1983)

Concentrated and piped sunlight for indoor illumination

L. M. Fraas, W. R. Pyle, and P. R. Ryason
Appl. Opt. 22(4) 578-582 (1983)

References

  • View by:
  • |
  • |
  • |

  1. Annual Energy Outlook 2016. U.S. Energy Information, 2015.
  2. M. C. Dubois and A. Blomsterberg, “Energy saving potential and strategies for electric lighting in future north european, low energy office buildings: A literature review,” Energy Build. 43(10), 2572–2582 (2011).
    [Crossref]
  3. D. Lingfors and T. Volotinen, “Illumination performance and energy saving of a solar fiber optic lighting system,” Opt. Express 21(4), A642–A655 (2013).
    [Crossref] [PubMed]
  4. I. Ullah and S. Shin, “Development of optical fiber-based daylighting system with uniform illumination,” J. Opt. Soc. Korea 16(3), 247–255 (2012).
    [Crossref]
  5. N. Vu and S. Shin, “A Large Scale Daylighting System Based on a Stepped Thickness Waveguide,” Energies 9(2), 71 (2016).
    [Crossref]
  6. I. Ullah and S. Shin, “Highly concentrated optical fiber-based daylighting systems for multi-floor office buildings,” Energy Build. 72, 246–261 (2014).
    [Crossref]
  7. N.-H. Vu and S. Shin, “Cost-effective optical fiber daylighting system using modified compound parabolic concentrators,” Sol. Energy 136, 145–152 (2016).
    [Crossref]
  8. Himawari Co, Ltd., “Himawari solar fiber optic lighting systems.” http://www.himawari-net.co.jp/e_page-index01.html .
  9. Panrans, “Parans Daylighting System.” http://www.parans.com/products-en.cfm .
  10. Heliobus:the daylight company, “Heliobus.” http://www.heliobus.com/pages e/frames.htm .
  11. M. S. Mayhoub, “Innovative daylighting systems’ challenges: A critical study,” Energy Build. 80, 394–405 (2014).
    [Crossref]
  12. R. D. Rauh, “Electrochromic windows: an overview,” Electrochim. Acta 44(18), 3165–3176 (1999).
    [Crossref]
  13. J. M. Schultz, K. I. Jensen, and F. H. Kristiansen, “Super insulating aerogel glazing,” Sol. Energy Mater. Sol. Cells 89(2-3), 275–285 (2005).
    [Crossref]
  14. D. J. Carter, “Developments in tubular daylight guidance systems,” Build. Res. Inform. 32(3), 220–234 (2004).
    [Crossref]
  15. C. Sapia, “Daylighting in buildings: Developments of sunlight addressing by optical fiber,” Sol. Energy 89, 113–121 (2013).
    [Crossref]
  16. F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibers,” Proc. SPIE 6338, 63380O (2006).
    [Crossref]
  17. T. T. Volotinen and D. H. S. Lingfors, “Benefits of glass fibers in solar fiber optic lighting systems,” Appl. Opt. 52(27), 6685–6695 (2013).
    [Crossref] [PubMed]
  18. Synopsys Co, Ltd., “LightTools ” http://www.synopsys.com/home.aspx .
  19. DiYPRO Fresnel lenses, “Fresnel Lens for CPV” http://www.diypro.co.kr/ .
  20. T. Patra, “Numerical Aperture of A Plastic Optical Fiber,” in Proceedings of International Journal of Innovations in Engineering and Technology (IJIET) vol. 2, no. 1, pp. 258–263.
  21. L. I. Grossweiner, The Science of Phototherapy (CRC Press, 1994).
  22. W.-F. Hsu, Y.-T. Shen, and I.-L. Chu, “Asymmetric and symmetric light couplers of daylighting systems for direct indoor lighting,” J. Opt. 14(12), 1–7 (2012).
    [Crossref]
  23. J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49(9), 0930011 (2010).
    [Crossref]
  24. J. Mendes-Lopes, P. Benítez, J. C. Miñano, and A. Santamaría, “Simultaneous multiple surface design method for diffractive surfaces,” Opt. Express 24(5), 5584–5590 (2016).
    [Crossref]
  25. P. Thanh Tuan, “A Novel Technique to Design Flat Fresnel Lens with Uniform Irradiance Distribution,” Int. J. Energy Power Eng. 5(2), 73–82 (2016).
    [Crossref]
  26. S. C. Shen, S. J. Chang, C. Y. Yeh, and P. C. Teng, “Design and testing of a uniformly solar energy TIR-R concentration lenses for HCPV systems,” Opt. Express 21(106), A942–A952 (2013).
    [Crossref] [PubMed]
  27. Huiyuan Plastic Optical Fiber Co, Ltd., “large core plastic optical fiber,” http://en.pof.com.cn/ .
  28. M. S. Mayhoub and D. J. Carter, “Towards hybrid lighting systems: A review,” Light. Res. Technol. 42(1), 51–71 (2010).
    [Crossref]
  29. Edmund optics, “Extended Hot Mirrors. ”, http://www.edmundoptics.com/optics/optical-mirrors/hot-cold-mirrors/extended-hot-mirrors/1949/ .
  30. W. D. Olaf Ziemann, J. Krauser, and P. E. Zamzow, eds., POF Handbook: Optical Short Range Transmission Systems (Springer-Verlag Berlin Heidelberg, 2008).
  31. G. S. DiLaura, K. Houser, and R. Mistrick, eds., Lighting Handbook (Illumination Engineering Society, 2011).

2016 (4)

N. Vu and S. Shin, “A Large Scale Daylighting System Based on a Stepped Thickness Waveguide,” Energies 9(2), 71 (2016).
[Crossref]

N.-H. Vu and S. Shin, “Cost-effective optical fiber daylighting system using modified compound parabolic concentrators,” Sol. Energy 136, 145–152 (2016).
[Crossref]

P. Thanh Tuan, “A Novel Technique to Design Flat Fresnel Lens with Uniform Irradiance Distribution,” Int. J. Energy Power Eng. 5(2), 73–82 (2016).
[Crossref]

J. Mendes-Lopes, P. Benítez, J. C. Miñano, and A. Santamaría, “Simultaneous multiple surface design method for diffractive surfaces,” Opt. Express 24(5), 5584–5590 (2016).
[Crossref]

2014 (2)

M. S. Mayhoub, “Innovative daylighting systems’ challenges: A critical study,” Energy Build. 80, 394–405 (2014).
[Crossref]

I. Ullah and S. Shin, “Highly concentrated optical fiber-based daylighting systems for multi-floor office buildings,” Energy Build. 72, 246–261 (2014).
[Crossref]

2013 (4)

2012 (2)

I. Ullah and S. Shin, “Development of optical fiber-based daylighting system with uniform illumination,” J. Opt. Soc. Korea 16(3), 247–255 (2012).
[Crossref]

W.-F. Hsu, Y.-T. Shen, and I.-L. Chu, “Asymmetric and symmetric light couplers of daylighting systems for direct indoor lighting,” J. Opt. 14(12), 1–7 (2012).
[Crossref]

2011 (1)

M. C. Dubois and A. Blomsterberg, “Energy saving potential and strategies for electric lighting in future north european, low energy office buildings: A literature review,” Energy Build. 43(10), 2572–2582 (2011).
[Crossref]

2010 (2)

J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49(9), 0930011 (2010).
[Crossref]

M. S. Mayhoub and D. J. Carter, “Towards hybrid lighting systems: A review,” Light. Res. Technol. 42(1), 51–71 (2010).
[Crossref]

2006 (1)

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibers,” Proc. SPIE 6338, 63380O (2006).
[Crossref]

2005 (1)

J. M. Schultz, K. I. Jensen, and F. H. Kristiansen, “Super insulating aerogel glazing,” Sol. Energy Mater. Sol. Cells 89(2-3), 275–285 (2005).
[Crossref]

2004 (1)

D. J. Carter, “Developments in tubular daylight guidance systems,” Build. Res. Inform. 32(3), 220–234 (2004).
[Crossref]

1999 (1)

R. D. Rauh, “Electrochromic windows: an overview,” Electrochim. Acta 44(18), 3165–3176 (1999).
[Crossref]

Benítez, P.

Blomsterberg, A.

M. C. Dubois and A. Blomsterberg, “Energy saving potential and strategies for electric lighting in future north european, low energy office buildings: A literature review,” Energy Build. 43(10), 2572–2582 (2011).
[Crossref]

Carter, D. J.

M. S. Mayhoub and D. J. Carter, “Towards hybrid lighting systems: A review,” Light. Res. Technol. 42(1), 51–71 (2010).
[Crossref]

D. J. Carter, “Developments in tubular daylight guidance systems,” Build. Res. Inform. 32(3), 220–234 (2004).
[Crossref]

Chang, S. J.

Chen, J.-J.

J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49(9), 0930011 (2010).
[Crossref]

Chu, I.-L.

W.-F. Hsu, Y.-T. Shen, and I.-L. Chu, “Asymmetric and symmetric light couplers of daylighting systems for direct indoor lighting,” J. Opt. 14(12), 1–7 (2012).
[Crossref]

Dubois, M. C.

M. C. Dubois and A. Blomsterberg, “Energy saving potential and strategies for electric lighting in future north european, low energy office buildings: A literature review,” Energy Build. 43(10), 2572–2582 (2011).
[Crossref]

Fontani, D.

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibers,” Proc. SPIE 6338, 63380O (2006).
[Crossref]

Francini, F.

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibers,” Proc. SPIE 6338, 63380O (2006).
[Crossref]

Hsu, W.-F.

W.-F. Hsu, Y.-T. Shen, and I.-L. Chu, “Asymmetric and symmetric light couplers of daylighting systems for direct indoor lighting,” J. Opt. 14(12), 1–7 (2012).
[Crossref]

Jafrancesco, D.

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibers,” Proc. SPIE 6338, 63380O (2006).
[Crossref]

Jensen, K. I.

J. M. Schultz, K. I. Jensen, and F. H. Kristiansen, “Super insulating aerogel glazing,” Sol. Energy Mater. Sol. Cells 89(2-3), 275–285 (2005).
[Crossref]

Kristiansen, F. H.

J. M. Schultz, K. I. Jensen, and F. H. Kristiansen, “Super insulating aerogel glazing,” Sol. Energy Mater. Sol. Cells 89(2-3), 275–285 (2005).
[Crossref]

Lin, C.-T.

J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49(9), 0930011 (2010).
[Crossref]

Lingfors, D.

Lingfors, D. H. S.

Mayhoub, M. S.

M. S. Mayhoub, “Innovative daylighting systems’ challenges: A critical study,” Energy Build. 80, 394–405 (2014).
[Crossref]

M. S. Mayhoub and D. J. Carter, “Towards hybrid lighting systems: A review,” Light. Res. Technol. 42(1), 51–71 (2010).
[Crossref]

Mendes-Lopes, J.

Mercatelli, L.

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibers,” Proc. SPIE 6338, 63380O (2006).
[Crossref]

Miñano, J. C.

Rauh, R. D.

R. D. Rauh, “Electrochromic windows: an overview,” Electrochim. Acta 44(18), 3165–3176 (1999).
[Crossref]

Sansoni, P.

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibers,” Proc. SPIE 6338, 63380O (2006).
[Crossref]

Santamaría, A.

Sapia, C.

C. Sapia, “Daylighting in buildings: Developments of sunlight addressing by optical fiber,” Sol. Energy 89, 113–121 (2013).
[Crossref]

Schultz, J. M.

J. M. Schultz, K. I. Jensen, and F. H. Kristiansen, “Super insulating aerogel glazing,” Sol. Energy Mater. Sol. Cells 89(2-3), 275–285 (2005).
[Crossref]

Shen, S. C.

Shen, Y.-T.

W.-F. Hsu, Y.-T. Shen, and I.-L. Chu, “Asymmetric and symmetric light couplers of daylighting systems for direct indoor lighting,” J. Opt. 14(12), 1–7 (2012).
[Crossref]

Shin, S.

N.-H. Vu and S. Shin, “Cost-effective optical fiber daylighting system using modified compound parabolic concentrators,” Sol. Energy 136, 145–152 (2016).
[Crossref]

N. Vu and S. Shin, “A Large Scale Daylighting System Based on a Stepped Thickness Waveguide,” Energies 9(2), 71 (2016).
[Crossref]

I. Ullah and S. Shin, “Highly concentrated optical fiber-based daylighting systems for multi-floor office buildings,” Energy Build. 72, 246–261 (2014).
[Crossref]

I. Ullah and S. Shin, “Development of optical fiber-based daylighting system with uniform illumination,” J. Opt. Soc. Korea 16(3), 247–255 (2012).
[Crossref]

Teng, P. C.

Thanh Tuan, P.

P. Thanh Tuan, “A Novel Technique to Design Flat Fresnel Lens with Uniform Irradiance Distribution,” Int. J. Energy Power Eng. 5(2), 73–82 (2016).
[Crossref]

Ullah, I.

I. Ullah and S. Shin, “Highly concentrated optical fiber-based daylighting systems for multi-floor office buildings,” Energy Build. 72, 246–261 (2014).
[Crossref]

I. Ullah and S. Shin, “Development of optical fiber-based daylighting system with uniform illumination,” J. Opt. Soc. Korea 16(3), 247–255 (2012).
[Crossref]

Volotinen, T.

Volotinen, T. T.

Vu, N.

N. Vu and S. Shin, “A Large Scale Daylighting System Based on a Stepped Thickness Waveguide,” Energies 9(2), 71 (2016).
[Crossref]

Vu, N.-H.

N.-H. Vu and S. Shin, “Cost-effective optical fiber daylighting system using modified compound parabolic concentrators,” Sol. Energy 136, 145–152 (2016).
[Crossref]

Yeh, C. Y.

Appl. Opt. (1)

Build. Res. Inform. (1)

D. J. Carter, “Developments in tubular daylight guidance systems,” Build. Res. Inform. 32(3), 220–234 (2004).
[Crossref]

Electrochim. Acta (1)

R. D. Rauh, “Electrochromic windows: an overview,” Electrochim. Acta 44(18), 3165–3176 (1999).
[Crossref]

Energies (1)

N. Vu and S. Shin, “A Large Scale Daylighting System Based on a Stepped Thickness Waveguide,” Energies 9(2), 71 (2016).
[Crossref]

Energy Build. (3)

I. Ullah and S. Shin, “Highly concentrated optical fiber-based daylighting systems for multi-floor office buildings,” Energy Build. 72, 246–261 (2014).
[Crossref]

M. C. Dubois and A. Blomsterberg, “Energy saving potential and strategies for electric lighting in future north european, low energy office buildings: A literature review,” Energy Build. 43(10), 2572–2582 (2011).
[Crossref]

M. S. Mayhoub, “Innovative daylighting systems’ challenges: A critical study,” Energy Build. 80, 394–405 (2014).
[Crossref]

Int. J. Energy Power Eng. (1)

P. Thanh Tuan, “A Novel Technique to Design Flat Fresnel Lens with Uniform Irradiance Distribution,” Int. J. Energy Power Eng. 5(2), 73–82 (2016).
[Crossref]

J. Opt. (1)

W.-F. Hsu, Y.-T. Shen, and I.-L. Chu, “Asymmetric and symmetric light couplers of daylighting systems for direct indoor lighting,” J. Opt. 14(12), 1–7 (2012).
[Crossref]

J. Opt. Soc. Korea (1)

Light. Res. Technol. (1)

M. S. Mayhoub and D. J. Carter, “Towards hybrid lighting systems: A review,” Light. Res. Technol. 42(1), 51–71 (2010).
[Crossref]

Opt. Eng. (1)

J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49(9), 0930011 (2010).
[Crossref]

Opt. Express (3)

Proc. SPIE (1)

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibers,” Proc. SPIE 6338, 63380O (2006).
[Crossref]

Sol. Energy (2)

N.-H. Vu and S. Shin, “Cost-effective optical fiber daylighting system using modified compound parabolic concentrators,” Sol. Energy 136, 145–152 (2016).
[Crossref]

C. Sapia, “Daylighting in buildings: Developments of sunlight addressing by optical fiber,” Sol. Energy 89, 113–121 (2013).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

J. M. Schultz, K. I. Jensen, and F. H. Kristiansen, “Super insulating aerogel glazing,” Sol. Energy Mater. Sol. Cells 89(2-3), 275–285 (2005).
[Crossref]

Other (12)

Himawari Co, Ltd., “Himawari solar fiber optic lighting systems.” http://www.himawari-net.co.jp/e_page-index01.html .

Panrans, “Parans Daylighting System.” http://www.parans.com/products-en.cfm .

Heliobus:the daylight company, “Heliobus.” http://www.heliobus.com/pages e/frames.htm .

Synopsys Co, Ltd., “LightTools ” http://www.synopsys.com/home.aspx .

DiYPRO Fresnel lenses, “Fresnel Lens for CPV” http://www.diypro.co.kr/ .

T. Patra, “Numerical Aperture of A Plastic Optical Fiber,” in Proceedings of International Journal of Innovations in Engineering and Technology (IJIET) vol. 2, no. 1, pp. 258–263.

L. I. Grossweiner, The Science of Phototherapy (CRC Press, 1994).

Annual Energy Outlook 2016. U.S. Energy Information, 2015.

Huiyuan Plastic Optical Fiber Co, Ltd., “large core plastic optical fiber,” http://en.pof.com.cn/ .

Edmund optics, “Extended Hot Mirrors. ”, http://www.edmundoptics.com/optics/optical-mirrors/hot-cold-mirrors/extended-hot-mirrors/1949/ .

W. D. Olaf Ziemann, J. Krauser, and P. E. Zamzow, eds., POF Handbook: Optical Short Range Transmission Systems (Springer-Verlag Berlin Heidelberg, 2008).

G. S. DiLaura, K. Houser, and R. Mistrick, eds., Lighting Handbook (Illumination Engineering Society, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of the proposed M-OFDS.

Fig. 2
Fig. 2

(a) Layout of the sunlight concentration part of the M-OFDS with ray tracing and (b) the design of solar concentration part with sun tracking system.

Fig. 3
Fig. 3

(a) Structure of the POF with a taper at the end and ray tracing using LightTools; (b) dependence of POF taper efficiency on the diameter of exit aperture dTaper; (c) structure of the proposed collimator using the combination of a parabolic mirror and a lens.

Fig. 4
Fig. 4

(a) Illustration of the collimator structure for the simulation and the ray tracing analysis for design verification; (b) light distribution on a receiver placed at output of collimator; (c) light distribution at distance of 30m from collimator.

Fig. 5
Fig. 5

(a) The design method for linear Fresnel lens based on the SMS method; (b) ray tracing analyze to verify the performance of designed linear Fresnel lens.

Fig. 6
Fig. 6

(a) A sunlight distributer is composed of two linear Fresnel lenses placed perpendicularly and its ray tracing analysis; (b) 3D irradiance distributions on the receiver.

Fig. 7
Fig. 7

Illustration of the structure of the simulation.

Fig. 8
Fig. 8

Variation in the optical efficiency of the concentrator at different angular deviations.

Fig. 9
Fig. 9

(a) A prototype M-OFDS was used to collect sunlight in an outdoor setting; (b) fabricated POF taper and collimator.

Fig. 10
Fig. 10

The dependence of luminous flux on the surface of the sunlight collector (Fresnel lens) and the output at the collimator aperture at different times during a sunny day.

Fig. 11
Fig. 11

Sunlight distribution on the screen placed at (a) the output aperture of the collimator and (b) 30 m from the collimator.

Fig. 12
Fig. 12

(a) Proposed large-scale M-OFDS; (b) illustration of the illumination performance of large-scale M-OFDS for a multi-floor building.

Fig. 13
Fig. 13

(a) Simulation configuration and ray tracing to verify the uniform light distribution in the virtual room; (b) 3D view of the test site, and (c) light distribution on the floor.

Tables (1)

Tables Icon

Table 1 Fresnel lens and POF technical specifications

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

N A POF =sin θ POF = n 2 2 n 1 2 ,
N A Fresnellens =sin θ F =sin(ta n 1 D/2f)=sin( tan 1 (2/ f number ))
θ 2 =  θ 3 ; sin θ 2  >  n core n air
θ 2 =  π 2 ( θ 1 +  α 2 )
θ 4 =  θ 1 + α; sin θ 4 <  n air n core
OPL=  a 1 = n×a ' end + a end
OPL=  a 1 = n×a ' n + a n
Uniformity=( 1 Maximum IrradiationMinimum Irradiation 2 ×Average irradiation  )×100%
η 1 =  Flux on  R 2 Flux on  R 1 ;  η 2 =  Flux on  R 3 Flux on  R 2 ;  η 3 =  Flux on  R 4 Flux on  R 3 ; η 4 =  η 1 η 2 η 3

Metrics