Abstract

We studied single-sideband (SSB) photonic microwave generation with a high sideband rejection ratio (SRR) based on the period-one dynamical states of an optically injected quantum-dot (QD) semiconductor laser and demonstrated that the SSB signals have SRRs of approximately 15 dB higher than those generated with a conventional quantum-well semiconductor laser under conditions of optimal microwave power. The enhancement of SRR in the QD laser, which is important in mitigating the power penalty effect in applications such as radio-over-fiber optical communications, could be primarily attributed to a lower carrier decay rate in the dots, smaller linewidth enhancement factor, and reduced photon decay rate.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser

Sze-Chun Chan, Sheng-Kwang Hwang, and Jia-Ming Liu
Opt. Express 15(22) 14921-14935 (2007)

High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation

Li Fan, Guangqiong Xia, Jianjun Chen, Xi Tang, Qing Liang, and Zhengmao Wu
Opt. Express 24(16) 18252-18265 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
    [Crossref]
  2. S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31(15), 2254–2256 (2006).
    [Crossref] [PubMed]
  3. C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor laser for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 1482–1484 (2012).
    [Crossref]
  4. Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38(9), 1482–1484 (2013).
    [Crossref] [PubMed]
  5. K. L. Hsieh, Y. H. Hung, S. K. Hwang, and C. C. Lin, “Radio-over-fiber DSB-to-SSB conversion using semiconductor lasers at stable locking dynamics,” Opt. Express 24(9), 9854–9868 (2016).
    [Crossref] [PubMed]
  6. H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photonics Technol. Lett. 16(8), 1942–1944 (2004).
    [Crossref]
  7. A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photonics Technol. Lett. 16(2), 605–607 (2004).
    [Crossref]
  8. J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
    [Crossref]
  9. G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
    [Crossref]
  10. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
    [Crossref]
  11. R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett. 28(1), 82–83 (1992).
    [Crossref]
  12. D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
    [Crossref]
  13. S. C. Chan and J. M. Liu, “Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 42(7), 699–705 (2006).
    [Crossref]
  14. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
    [Crossref]
  15. S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
    [Crossref] [PubMed]
  16. S. K. Hwang and J. M. Liu, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
    [Crossref]
  17. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
    [Crossref] [PubMed]
  18. T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
    [Crossref]
  19. S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generatio using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
    [Crossref]
  20. J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
    [Crossref] [PubMed]
  21. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
    [Crossref]
  22. Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express 23(5), 6520–6532 (2015).
    [Crossref] [PubMed]
  23. Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
    [Crossref]
  24. Y. H. Liao, J. M. Liu, and F. Y. Lin, “Dynamical characteristics of a dual-beam optically injected semiconductor laser,” IEEE J. of Sel. Top. Quantum Electron. 19(4), 1500606 (2013).
    [Crossref]
  25. M. AlMulla and J. M. Liu, “Effects of the gain saturation factor on the nonlinear dynamics of optically injected semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 158–165 (2014).
    [Crossref]
  26. G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163–1165 (1999).
    [Crossref]
  27. H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
    [Crossref]
  28. Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3 mm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86(15), 153109 (2005).
    [Crossref]
  29. D. O’Brien, S. P. Hegaty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29(10), 1072–1074 (2004).
    [Crossref]
  30. B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 83(2), 026207 (2011).
    [Crossref]
  31. D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
    [Crossref] [PubMed]
  32. A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection,” Appl. Phys. Lett. 102(20), 201117 (2013).
    [Crossref]
  33. A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser,” Opt. Express 21(9), 10772–10778 (2013).
    [Crossref] [PubMed]
  34. A. Hurtado, R. Raghunathan, I. D. Henning, M. J. Adams, and L. F. Lester, “Simultaneous Microwave- and Millimeter-Wave Signal Generation With a 1310-nm Quantum-Dot-Distributed Feedback Laser,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1801207 (2015).
    [Crossref]
  35. C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41(6), 1153–1156 (2016).
    [Crossref] [PubMed]
  36. P. A. Morton, T. Tanbun-Ek, R. A. Logan, A. M. Sergent, P. F. Sciortino, and D. L. Coblentz, “Frequency response subtraction for simple measurement of intrinsic laser dynamic properties,” IEEE Photonics Technol. Lett. 4(2), 133–136 (1992).
    [Crossref]
  37. M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Yu. M. Shemyakov, “Spectrotemporal response of 1.3 μ m quantum-dot lasers,” Appl. Phys. Lett. 81(20), 3846–3848 (2002).
    [Crossref]
  38. H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D: Appl. Phys. 38(13), 2112–2118 (2005).
    [Crossref]
  39. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
    [Crossref]
  40. S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89(6), 061120 (2006).
    [Crossref]
  41. T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett. 35(7), 937–939 (2010).
    [Crossref] [PubMed]
  42. J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
    [Crossref]
  43. C. H. Lin, H. H. Lin, and F. Y. Lin, “Four-wave mixing analysis of quantum dot semiconductor lasers for linewidth enhancement factor extraction,” Opt. Express 20(1), 101–110 (2012).
    [Crossref] [PubMed]
  44. C. H. Lin and F. Y. Lin, “Four-wave mixing analysis on injection-locked quantum dot semiconductor lasers,” Opt. Express 21(18), 21242–21253 (2013).
    [Crossref] [PubMed]
  45. M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3 Îijm self-assembled InAsGaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett.,  85(18), 4145–4147 (2004).
    [Crossref]

2016 (2)

2015 (2)

A. Hurtado, R. Raghunathan, I. D. Henning, M. J. Adams, and L. F. Lester, “Simultaneous Microwave- and Millimeter-Wave Signal Generation With a 1310-nm Quantum-Dot-Distributed Feedback Laser,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1801207 (2015).
[Crossref]

Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express 23(5), 6520–6532 (2015).
[Crossref] [PubMed]

2014 (2)

M. AlMulla and J. M. Liu, “Effects of the gain saturation factor on the nonlinear dynamics of optically injected semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 158–165 (2014).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

2013 (7)

J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38(9), 1482–1484 (2013).
[Crossref] [PubMed]

Y. H. Liao, J. M. Liu, and F. Y. Lin, “Dynamical characteristics of a dual-beam optically injected semiconductor laser,” IEEE J. of Sel. Top. Quantum Electron. 19(4), 1500606 (2013).
[Crossref]

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection,” Appl. Phys. Lett. 102(20), 201117 (2013).
[Crossref]

A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser,” Opt. Express 21(9), 10772–10778 (2013).
[Crossref] [PubMed]

C. H. Lin and F. Y. Lin, “Four-wave mixing analysis on injection-locked quantum dot semiconductor lasers,” Opt. Express 21(18), 21242–21253 (2013).
[Crossref] [PubMed]

2012 (2)

C. H. Lin, H. H. Lin, and F. Y. Lin, “Four-wave mixing analysis of quantum dot semiconductor lasers for linewidth enhancement factor extraction,” Opt. Express 20(1), 101–110 (2012).
[Crossref] [PubMed]

C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor laser for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 1482–1484 (2012).
[Crossref]

2011 (3)

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[Crossref]

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 83(2), 026207 (2011).
[Crossref]

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

2010 (2)

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
[Crossref]

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett. 35(7), 937–939 (2010).
[Crossref] [PubMed]

2007 (2)

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

2006 (3)

S. C. Chan and J. M. Liu, “Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 42(7), 699–705 (2006).
[Crossref]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31(15), 2254–2256 (2006).
[Crossref] [PubMed]

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89(6), 061120 (2006).
[Crossref]

2005 (2)

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D: Appl. Phys. 38(13), 2112–2118 (2005).
[Crossref]

Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3 mm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86(15), 153109 (2005).
[Crossref]

2004 (6)

D. O’Brien, S. P. Hegaty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29(10), 1072–1074 (2004).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generatio using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photonics Technol. Lett. 16(8), 1942–1944 (2004).
[Crossref]

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photonics Technol. Lett. 16(2), 605–607 (2004).
[Crossref]

S. K. Hwang and J. M. Liu, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3 Îijm self-assembled InAsGaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett.,  85(18), 4145–4147 (2004).
[Crossref]

2003 (1)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

2002 (1)

M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Yu. M. Shemyakov, “Spectrotemporal response of 1.3 μ m quantum-dot lasers,” Appl. Phys. Lett. 81(20), 3846–3848 (2002).
[Crossref]

2000 (1)

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

1999 (2)

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163–1165 (1999).
[Crossref]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

1997 (3)

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

1995 (1)

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

1994 (1)

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[Crossref]

1992 (2)

R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett. 28(1), 82–83 (1992).
[Crossref]

P. A. Morton, T. Tanbun-Ek, R. A. Logan, A. M. Sergent, P. F. Sciortino, and D. L. Coblentz, “Frequency response subtraction for simple measurement of intrinsic laser dynamic properties,” IEEE Photonics Technol. Lett. 4(2), 133–136 (1992).
[Crossref]

Adams, M. J.

A. Hurtado, R. Raghunathan, I. D. Henning, M. J. Adams, and L. F. Lester, “Simultaneous Microwave- and Millimeter-Wave Signal Generation With a 1310-nm Quantum-Dot-Distributed Feedback Laser,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1801207 (2015).
[Crossref]

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection,” Appl. Phys. Lett. 102(20), 201117 (2013).
[Crossref]

A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser,” Opt. Express 21(9), 10772–10778 (2013).
[Crossref] [PubMed]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

Akiyama, T.

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3 Îijm self-assembled InAsGaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett.,  85(18), 4145–4147 (2004).
[Crossref]

AlMulla, M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

M. AlMulla and J. M. Liu, “Effects of the gain saturation factor on the nonlinear dynamics of optically injected semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 158–165 (2014).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Anandarajah, P.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photonics Technol. Lett. 16(2), 605–607 (2004).
[Crossref]

Arakawa, Y.

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3 Îijm self-assembled InAsGaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett.,  85(18), 4145–4147 (2004).
[Crossref]

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

Barry, L. P.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photonics Technol. Lett. 16(2), 605–607 (2004).
[Crossref]

Bhattacharya, P.

Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3 mm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86(15), 153109 (2005).
[Crossref]

Bimberg, D.

M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Yu. M. Shemyakov, “Spectrotemporal response of 1.3 μ m quantum-dot lasers,” Appl. Phys. Lett. 81(20), 3846–3848 (2002).
[Crossref]

Bonatto, C.

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 83(2), 026207 (2011).
[Crossref]

Chan, S. C.

C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41(6), 1153–1156 (2016).
[Crossref] [PubMed]

J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
[Crossref] [PubMed]

C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor laser for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 1482–1484 (2012).
[Crossref]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
[Crossref]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31(15), 2254–2256 (2006).
[Crossref] [PubMed]

S. C. Chan and J. M. Liu, “Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 42(7), 699–705 (2006).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generatio using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

Choi, W. Y.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photonics Technol. Lett. 16(8), 1942–1944 (2004).
[Crossref]

Chu, C. H.

Coblentz, D. L.

P. A. Morton, T. Tanbun-Ek, R. A. Logan, A. M. Sergent, P. F. Sciortino, and D. L. Coblentz, “Frequency response subtraction for simple measurement of intrinsic laser dynamic properties,” IEEE Photonics Technol. Lett. 4(2), 133–136 (1992).
[Crossref]

Cui, C.

C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor laser for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 1482–1484 (2012).
[Crossref]

Davies, P. A.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

Doft, F.

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

Ebe, H.

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3 Îijm self-assembled InAsGaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett.,  85(18), 4145–4147 (2004).
[Crossref]

Erneux, T.

Fathpour, S.

Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3 mm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86(15), 153109 (2005).
[Crossref]

Goulding, D.

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett. 35(7), 937–939 (2010).
[Crossref] [PubMed]

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Greene, G.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Grillot, F.

Hartnett, M.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Hatori, N.

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3 Îijm self-assembled InAsGaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett.,  85(18), 4145–4147 (2004).
[Crossref]

Hegarty, S. P.

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 83(2), 026207 (2011).
[Crossref]

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett. 35(7), 937–939 (2010).
[Crossref] [PubMed]

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Hegaty, S. P.

Henning, I. D.

A. Hurtado, R. Raghunathan, I. D. Henning, M. J. Adams, and L. F. Lester, “Simultaneous Microwave- and Millimeter-Wave Signal Generation With a 1310-nm Quantum-Dot-Distributed Feedback Laser,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1801207 (2015).
[Crossref]

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection,” Appl. Phys. Lett. 102(20), 201117 (2013).
[Crossref]

A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser,” Opt. Express 21(9), 10772–10778 (2013).
[Crossref] [PubMed]

Hsieh, K. L.

Hung, Y. H.

Hurtado, A.

A. Hurtado, R. Raghunathan, I. D. Henning, M. J. Adams, and L. F. Lester, “Simultaneous Microwave- and Millimeter-Wave Signal Generation With a 1310-nm Quantum-Dot-Distributed Feedback Laser,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1801207 (2015).
[Crossref]

A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser,” Opt. Express 21(9), 10772–10778 (2013).
[Crossref] [PubMed]

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection,” Appl. Phys. Lett. 102(20), 201117 (2013).
[Crossref]

Huyet, G.

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 83(2), 026207 (2011).
[Crossref]

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett. 35(7), 937–939 (2010).
[Crossref] [PubMed]

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

D. O’Brien, S. P. Hegaty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29(10), 1072–1074 (2004).
[Crossref]

Hwang, S. K.

K. L. Hsieh, Y. H. Hung, S. K. Hwang, and C. C. Lin, “Radio-over-fiber DSB-to-SSB conversion using semiconductor lasers at stable locking dynamics,” Opt. Express 24(9), 9854–9868 (2016).
[Crossref] [PubMed]

Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express 23(5), 6520–6532 (2015).
[Crossref] [PubMed]

Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38(9), 1482–1484 (2013).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31(15), 2254–2256 (2006).
[Crossref] [PubMed]

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89(6), 061120 (2006).
[Crossref]

S. K. Hwang and J. M. Liu, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

Ishida, M.

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3 Îijm self-assembled InAsGaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett.,  85(18), 4145–4147 (2004).
[Crossref]

Juan, Y. S.

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

Kamei, A.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

Kaszubowska, A.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photonics Technol. Lett. 16(2), 605–607 (2004).
[Crossref]

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

Kelleher, B.

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 83(2), 026207 (2011).
[Crossref]

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett. 35(7), 937–939 (2010).
[Crossref] [PubMed]

Kovanis, V.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Kovsh, A. R.

M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Yu. M. Shemyakov, “Spectrotemporal response of 1.3 μ m quantum-dot lasers,” Appl. Phys. Lett. 81(20), 3846–3848 (2002).
[Crossref]

Kuntz, M.

M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Yu. M. Shemyakov, “Spectrotemporal response of 1.3 μ m quantum-dot lasers,” Appl. Phys. Lett. 81(20), 3846–3848 (2002).
[Crossref]

Lau, K. Y.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[Crossref]

Ledentsov, N. N.

M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Yu. M. Shemyakov, “Spectrotemporal response of 1.3 μ m quantum-dot lasers,” Appl. Phys. Lett. 81(20), 3846–3848 (2002).
[Crossref]

Lester, L. F.

C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41(6), 1153–1156 (2016).
[Crossref] [PubMed]

A. Hurtado, R. Raghunathan, I. D. Henning, M. J. Adams, and L. F. Lester, “Simultaneous Microwave- and Millimeter-Wave Signal Generation With a 1310-nm Quantum-Dot-Distributed Feedback Laser,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1801207 (2015).
[Crossref]

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection,” Appl. Phys. Lett. 102(20), 201117 (2013).
[Crossref]

A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser,” Opt. Express 21(9), 10772–10778 (2013).
[Crossref] [PubMed]

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D: Appl. Phys. 38(13), 2112–2118 (2005).
[Crossref]

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163–1165 (1999).
[Crossref]

Li, H.

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163–1165 (1999).
[Crossref]

Liang, D. H.

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89(6), 061120 (2006).
[Crossref]

Liao, Y. H.

Y. H. Liao, J. M. Liu, and F. Y. Lin, “Dynamical characteristics of a dual-beam optically injected semiconductor laser,” IEEE J. of Sel. Top. Quantum Electron. 19(4), 1500606 (2013).
[Crossref]

Lima, C. R.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

Lin, C. C.

Lin, C. H.

Lin, F. Y.

C. H. Lin and F. Y. Lin, “Four-wave mixing analysis on injection-locked quantum dot semiconductor lasers,” Opt. Express 21(18), 21242–21253 (2013).
[Crossref] [PubMed]

Y. H. Liao, J. M. Liu, and F. Y. Lin, “Dynamical characteristics of a dual-beam optically injected semiconductor laser,” IEEE J. of Sel. Top. Quantum Electron. 19(4), 1500606 (2013).
[Crossref]

C. H. Lin, H. H. Lin, and F. Y. Lin, “Four-wave mixing analysis of quantum dot semiconductor lasers for linewidth enhancement factor extraction,” Opt. Express 20(1), 101–110 (2012).
[Crossref] [PubMed]

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

Lin, H. H.

Liu, G. T.

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163–1165 (1999).
[Crossref]

Liu, J. M.

M. AlMulla and J. M. Liu, “Effects of the gain saturation factor on the nonlinear dynamics of optically injected semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 158–165 (2014).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

Y. H. Liao, J. M. Liu, and F. Y. Lin, “Dynamical characteristics of a dual-beam optically injected semiconductor laser,” IEEE J. of Sel. Top. Quantum Electron. 19(4), 1500606 (2013).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[Crossref]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31(15), 2254–2256 (2006).
[Crossref] [PubMed]

S. C. Chan and J. M. Liu, “Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 42(7), 699–705 (2006).
[Crossref]

S. K. Hwang and J. M. Liu, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generatio using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[Crossref]

Logan, R. A.

P. A. Morton, T. Tanbun-Ek, R. A. Logan, A. M. Sergent, P. F. Sciortino, and D. L. Coblentz, “Frequency response subtraction for simple measurement of intrinsic laser dynamic properties,” IEEE Photonics Technol. Lett. 4(2), 133–136 (1992).
[Crossref]

Malloy, K. J.

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163–1165 (1999).
[Crossref]

McInerney, J. G.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Mee, J.

Melnik, S.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Mi, Z.

Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3 mm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86(15), 153109 (2005).
[Crossref]

Morton, P. A.

P. A. Morton, T. Tanbun-Ek, R. A. Logan, A. M. Sergent, P. F. Sciortino, and D. L. Coblentz, “Frequency response subtraction for simple measurement of intrinsic laser dynamic properties,” IEEE Photonics Technol. Lett. 4(2), 133–136 (1992).
[Crossref]

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

Nakata, Y.

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3 Îijm self-assembled InAsGaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett.,  85(18), 4145–4147 (2004).
[Crossref]

Nami, M.

Nishi, K.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

O’Brien, D.

Otsubo, K.

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3 Îijm self-assembled InAsGaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett.,  85(18), 4145–4147 (2004).
[Crossref]

Park, J.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[Crossref]

Qi, X. Q.

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[Crossref]

Rachinskii, D.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Raghunathan, R.

C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41(6), 1153–1156 (2016).
[Crossref] [PubMed]

A. Hurtado, R. Raghunathan, I. D. Henning, M. J. Adams, and L. F. Lester, “Simultaneous Microwave- and Millimeter-Wave Signal Generation With a 1310-nm Quantum-Dot-Distributed Feedback Laser,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1801207 (2015).
[Crossref]

Ramos, R. T.

R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett. 28(1), 82–83 (1992).
[Crossref]

Rasskazov, O.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Ryu, H. S.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photonics Technol. Lett. 16(8), 1942–1944 (2004).
[Crossref]

Saito, H.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

Schires, K.

Sciortino, P. F.

P. A. Morton, T. Tanbun-Ek, R. A. Logan, A. M. Sergent, P. F. Sciortino, and D. L. Coblentz, “Frequency response subtraction for simple measurement of intrinsic laser dynamic properties,” IEEE Photonics Technol. Lett. 4(2), 133–136 (1992).
[Crossref]

Seeds, A. J.

R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett. 28(1), 82–83 (1992).
[Crossref]

Seo, Y. K.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photonics Technol. Lett. 16(8), 1942–1944 (2004).
[Crossref]

Sergent, A. M.

P. A. Morton, T. Tanbun-Ek, R. A. Logan, A. M. Sergent, P. F. Sciortino, and D. L. Coblentz, “Frequency response subtraction for simple measurement of intrinsic laser dynamic properties,” IEEE Photonics Technol. Lett. 4(2), 133–136 (1992).
[Crossref]

Shemyakov, Yu. M.

M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Yu. M. Shemyakov, “Spectrotemporal response of 1.3 μ m quantum-dot lasers,” Appl. Phys. Lett. 81(20), 3846–3848 (2002).
[Crossref]

Simpson, T. B.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[Crossref]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

Sorin, W. V.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[Crossref]

Stintz, A.

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163–1165 (1999).
[Crossref]

Su, H.

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D: Appl. Phys. 38(13), 2112–2118 (2005).
[Crossref]

Sugawara, M.

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3 Îijm self-assembled InAsGaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett.,  85(18), 4145–4147 (2004).
[Crossref]

Sugou, S.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

Tanbun-Ek, T.

P. A. Morton, T. Tanbun-Ek, R. A. Logan, A. M. Sergent, P. F. Sciortino, and D. L. Coblentz, “Frequency response subtraction for simple measurement of intrinsic laser dynamic properties,” IEEE Photonics Technol. Lett. 4(2), 133–136 (1992).
[Crossref]

Usechak, N. G.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Uskov, A. V.

Ustinov, V. M.

M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Yu. M. Shemyakov, “Spectrotemporal response of 1.3 μ m quantum-dot lasers,” Appl. Phys. Lett. 81(20), 3846–3848 (2002).
[Crossref]

Viktorov, E. A.

Wake, D.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

Wang, C.

Zhuang, J. P.

Zhukov, A. E.

M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Yu. M. Shemyakov, “Spectrotemporal response of 1.3 μ m quantum-dot lasers,” Appl. Phys. Lett. 81(20), 3846–3848 (2002).
[Crossref]

Appl. Phys. Lett. (5)

Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3 mm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86(15), 153109 (2005).
[Crossref]

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection,” Appl. Phys. Lett. 102(20), 201117 (2013).
[Crossref]

M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Yu. M. Shemyakov, “Spectrotemporal response of 1.3 μ m quantum-dot lasers,” Appl. Phys. Lett. 81(20), 3846–3848 (2002).
[Crossref]

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89(6), 061120 (2006).
[Crossref]

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3 Îijm self-assembled InAsGaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett.,  85(18), 4145–4147 (2004).
[Crossref]

Electron. Lett. (4)

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163–1165 (1999).
[Crossref]

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett. 28(1), 82–83 (1992).
[Crossref]

IEEE J. of Sel. Top. Quantum Electron. (1)

Y. H. Liao, J. M. Liu, and F. Y. Lin, “Dynamical characteristics of a dual-beam optically injected semiconductor laser,” IEEE J. of Sel. Top. Quantum Electron. 19(4), 1500606 (2013).
[Crossref]

IEEE J. Quantum Electron. (6)

M. AlMulla and J. M. Liu, “Effects of the gain saturation factor on the nonlinear dynamics of optically injected semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 158–165 (2014).
[Crossref]

S. C. Chan and J. M. Liu, “Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 42(7), 699–705 (2006).
[Crossref]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
[Crossref]

C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor laser for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 1482–1484 (2012).
[Crossref]

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[Crossref]

S. K. Hwang and J. M. Liu, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generatio using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

A. Hurtado, R. Raghunathan, I. D. Henning, M. J. Adams, and L. F. Lester, “Simultaneous Microwave- and Millimeter-Wave Signal Generation With a 1310-nm Quantum-Dot-Distributed Feedback Laser,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1801207 (2015).
[Crossref]

IEEE Photonics J. (1)

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (5)

P. A. Morton, T. Tanbun-Ek, R. A. Logan, A. M. Sergent, P. F. Sciortino, and D. L. Coblentz, “Frequency response subtraction for simple measurement of intrinsic laser dynamic properties,” IEEE Photonics Technol. Lett. 4(2), 133–136 (1992).
[Crossref]

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photonics Technol. Lett. 16(8), 1942–1944 (2004).
[Crossref]

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photonics Technol. Lett. 16(2), 605–607 (2004).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

J. Phys. D: Appl. Phys. (1)

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D: Appl. Phys. 38(13), 2112–2118 (2005).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. (1)

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 83(2), 026207 (2011).
[Crossref]

Phys. Rev. Lett. (2)

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of an optically injected semiconductor laser.
Fig. 2
Fig. 2 Optical spectra and corresponding microwave spectra at a fixed microwave frequency f0 = 15 GHz of the (a) QD and (b) QW lasers under maximum microwave power P0 condition.
Fig. 3
Fig. 3 Mappings of the generated microwave frequency f0 and SRR as functions of the ξ and Δf for the (a)–(b) QD and (c)–(d) QW lasers biased at 1.6 Ith.
Fig. 4
Fig. 4 SRR differences between the QD and QW lasers as f0 is changed under optimal microwave power P0 conditions.
Fig. 5
Fig. 5 SRR as a function of microwave frequency f0 under optimal microwave power P0 conditions with linewidth enhancement factor α = 0.1, 1.0, 3.31 and 5.0 for the (a) QD and (b) QW lasers.
Fig. 6
Fig. 6 SRR as a function of microwave frequency f0 under optimal microwave power P0 conditions with photon decay rate γph = (a) 13.22, 26.22, 39.33 and 52.44 ns−1 for the QD laser and (b) 89.38, 178.76, 357.51 and 715.02 ns−1 for the QW laser.
Fig. 7
Fig. 7 SRR as a function of microwave frequency f0 under optimal microwave power P0 conditions with carrier decay rate (a) γc,dot for the QD laser and (b) γc,well for the QW laser at values of 0.02, 0.2, 2.63 and 5.0 ns−1, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d E d t = γ p h { 1 2 ( 1 i α ) [ g ( 2 ρ 1 ) 1 ] E + E i n j e i 2 π Δ f t }
d ρ d t = γ c , d o t [ ρ + J 2 q γ c , d o t ( 2 ρ 1 ) | E | 2 ]
d a d t = 1 2 [ γ p h γ n γ c , w e l l J n ˜ γ p ( 2 a + a 2 ) ] ( 1 + a ) + ξ i n j γ p h c o s ( 2 π Δ f t + ϕ )
d ϕ d t = α 2 [ γ p h γ n γ c , w e l l J n ˜ γ p ( 2 a + a 2 ) ] ξ i n j γ p h 1 + a s i n ( 2 π Δ f t + ϕ )
d n ˜ d t = γ c , w e l l n ˜ γ n ( 1 + a ) 2 n ˜ γ c , w e l l J ( 2 a + a 2 ) + γ c , w e l l γ p γ p h J ( 2 a + a 2 ) ( 1 + a ) 2

Metrics