Abstract

For the first time to our knowledge, we demonstrate a coherent supercontinuum in silica fibers reaching 2.2 µm in a long wavelength range. The process of supercontinuum generation was studied experimentally and numerically in two microstructured fibers with a germanium doped core, having flat all-normal chromatic dispersion optimized for pumping at 1.55 µm. The fibers were pumped with two pulse lasers operating at 1.56 µm with different pulse duration times equal respectively to 23 fs and 460 fs. The experimental results are in a good agreement with the simulations conducted by solving the generalized nonlinear Schrödinger equation with the split-step Fourier method. The simulations also confirmed high coherence of the generated spectra and revealed that their long wavelength edge (2.2 µm) is related to OH contamination. Therefore, improving the fibers purity will result in further up-shift of the long wavelength spectra limit.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarized all-normal dispersion supercontinuum reaching 2.5 µm generated in a birefringent microstructured silica fiber

Karol Tarnowski, Tadeusz Martynkien, Paweł Mergo, Krzysztof Poturaj, Alicja Anuszkiewicz, Pierre Béjot, Franck Billard, Olivier Faucher, Bertrand Kibler, and Waclaw Urbanczyk
Opt. Express 25(22) 27452-27463 (2017)

Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion

Mariusz Klimczak, Bartłomiej Siwicki, Piotr Skibiński, Dariusz Pysz, Ryszard Stępień, Alexander Heidt, Czesław Radzewicz, and Ryszard Buczyński
Opt. Express 22(15) 18824-18832 (2014)

Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion

Chunlei Huang, Meisong Liao, Wanjun Bi, Xia Li, Lili Hu, Long Zhang, Longfei Wang, Guanshi Qin, Tianfeng Xue, Danping Chen, and Weiqing Gao
Photon. Res. 6(6) 601-608 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [Crossref] [PubMed]
  2. C. Lin and R. H. Stolen, “New nanosecond continuum for excited state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
    [Crossref]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [Crossref] [PubMed]
  4. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
    [Crossref] [PubMed]
  5. A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19(8), 7742–7749 (2011).
    [Crossref] [PubMed]
  6. C. C. Wang, M. H. Wang, and J. Wu, “Heavily germanium-doped silica fiber with a flat normal dispersion profile,” IEEE Photonics J. 7(2), 7101110 (2015).
    [Crossref]
  7. S. K. Chatterjee, S. N. Khan, and P. R. Chaudhuri, “Designing a two-octave spanning flat-top supercontinuum source by control of nonlinear dynamics through multi-order dispersion engineering in binary multi-clad microstructured fiber,” J. Opt. Soc. Am. B 32(7), 1499–1509 (2015).
    [Crossref]
  8. T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39(8), 2342–2345 (2014).
    [Crossref] [PubMed]
  9. M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
    [Crossref] [PubMed]
  10. M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
    [Crossref] [PubMed]
  11. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express 12(2), 317–324 (2004).
    [Crossref] [PubMed]
  12. K. Tarnowski and W. Urbanczyk, “All-normal dispersion hole-assisted silica fibers for generation of supercontinuum reaching midinfrared,” IEEE Photonics J. 8(1), 7100311 (2016).
    [Crossref]
  13. R. B. Dyott, Elliptical Fiber Waveguides (Artech, 1995).
  14. H. R. D. Sunak and S. P. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6-1.8 μm wavelength region,” IEEE Photonics Technol. Lett. 1(6), 142–145 (1989).
    [Crossref]
  15. D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-doped microstructured multicore fiber for customizable supercontinuum generation,” IEEE Photonics J. 3(6), 1149–1156 (2011).
    [Crossref]
  16. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34(23), 3631–3633 (2009).
    [Crossref] [PubMed]
  17. P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).
    [Crossref]
  18. F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175(1–3), 209–213 (2000).
    [Crossref]
  19. P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).
    [Crossref]
  20. E.-G. Neumann, Single-mode Fibers (Springer-Verlag, 1988).
  21. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
    [Crossref]
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).
  23. T. O. P. T. I. C. A. Photonics, “FemtoFiber pro IRS,” http://www.toptica.com/products/ultrafast_fiber_lasers/femtofiber_pro/femtofiber_pro_irs.html (access 20th July 2016).
  24. G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
    [Crossref]
  25. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  26. J. Laegsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15(24), 16110–16123 (2007).
    [Crossref] [PubMed]
  27. P. D. Drummond and J. F. Corney, “Quantum noise in optical fibers. I. Stochastic equations,” J. Opt. Soc. Am. B 18(2), 139–152 (2001).
    [Crossref]
  28. J. C. Diels and W. Rudoplh, Ultrashort Laser Pulse Phenomena (Academic, 2006).
  29. M. Klimczak, G. Soboń, K. Abramski, and R. Buczyński, “Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump,” Opt. Express 22(26), 31635–31645 (2014).
    [Crossref] [PubMed]

2016 (2)

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref] [PubMed]

K. Tarnowski and W. Urbanczyk, “All-normal dispersion hole-assisted silica fibers for generation of supercontinuum reaching midinfrared,” IEEE Photonics J. 8(1), 7100311 (2016).
[Crossref]

2015 (2)

2014 (3)

2013 (1)

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

2012 (1)

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).
[Crossref]

2011 (3)

2010 (1)

P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).
[Crossref]

2009 (1)

2007 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2004 (1)

2001 (1)

2000 (2)

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
[Crossref] [PubMed]

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175(1–3), 209–213 (2000).
[Crossref]

1996 (2)

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[Crossref] [PubMed]

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

1989 (1)

H. R. D. Sunak and S. P. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6-1.8 μm wavelength region,” IEEE Photonics Technol. Lett. 1(6), 142–145 (1989).
[Crossref]

1976 (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[Crossref]

Abramski, K.

Abramski, K. M.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref] [PubMed]

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Atkin, D. M.

Bartelt, H.

Bastien, S. P.

H. R. D. Sunak and S. P. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6-1.8 μm wavelength region,” IEEE Photonics Technol. Lett. 1(6), 142–145 (1989).
[Crossref]

Bigot, L.

Birks, T. A.

Bosman, G. W.

Bouwmans, G.

Buczynski, R.

Chatterjee, S. K.

Chaudhuri, P. R.

Chernikov, S. V.

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175(1–3), 209–213 (2000).
[Crossref]

Ciprian, D.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).
[Crossref]

P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Corney, J. F.

Couderc, V.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-doped microstructured multicore fiber for customizable supercontinuum generation,” IEEE Photonics J. 3(6), 1149–1156 (2011).
[Crossref]

De Angelis, C.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-doped microstructured multicore fiber for customizable supercontinuum generation,” IEEE Photonics J. 3(6), 1149–1156 (2011).
[Crossref]

Drummond, P. D.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Goto, T.

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Hartung, A.

Heidt, A.

Heidt, A. M.

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Hlubina, P.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).
[Crossref]

P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).
[Crossref]

Hori, T.

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Kaczmarek, P.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Kadulova, M.

P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).
[Crossref]

Kadulová, M.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).
[Crossref]

Kasztelanic, R.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref] [PubMed]

Khan, S. N.

Klimczak, M.

Knight, J. C.

Koch, F.

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175(1–3), 209–213 (2000).
[Crossref]

Krok, P.

Krzempek, K.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Kudlinski, A.

Laegsgaard, J.

Le Rouge, A.

Lin, C.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[Crossref]

Manili, G.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-doped microstructured multicore fiber for customizable supercontinuum generation,” IEEE Photonics J. 3(6), 1149–1156 (2011).
[Crossref]

Martynkien, T.

Mélin, G.

Minoni, U.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-doped microstructured multicore fiber for customizable supercontinuum generation,” IEEE Photonics J. 3(6), 1149–1156 (2011).
[Crossref]

Modotto, D.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-doped microstructured multicore fiber for customizable supercontinuum generation,” IEEE Photonics J. 3(6), 1149–1156 (2011).
[Crossref]

Mussot, A.

Nishizawa, N.

Pasternak, I.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Pysz, D.

Quiquempois, Y.

Radzewicz, C.

Ranka, J. K.

Rohwer, E. G.

Russell, P. St. J.

Schwoerer, H.

Siwicki, B.

Skibinski, P.

Sobon, G.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref] [PubMed]

M. Klimczak, G. Soboń, K. Abramski, and R. Buczyński, “Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump,” Opt. Express 22(26), 31635–31645 (2014).
[Crossref] [PubMed]

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Sotor, J.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Stentz, A. J.

Stepien, R.

Stolen, R. H.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[Crossref]

Strupinski, W.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Sunak, H. R. D.

H. R. D. Sunak and S. P. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6-1.8 μm wavelength region,” IEEE Photonics Technol. Lett. 1(6), 142–145 (1989).
[Crossref]

Takayanagi, J.

Tarnowski, K.

K. Tarnowski and W. Urbanczyk, “All-normal dispersion hole-assisted silica fibers for generation of supercontinuum reaching midinfrared,” IEEE Photonics J. 8(1), 7100311 (2016).
[Crossref]

Taylor, J. R.

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175(1–3), 209–213 (2000).
[Crossref]

Tonello, A.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-doped microstructured multicore fiber for customizable supercontinuum generation,” IEEE Photonics J. 3(6), 1149–1156 (2011).
[Crossref]

Town, G.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-doped microstructured multicore fiber for customizable supercontinuum generation,” IEEE Photonics J. 3(6), 1149–1156 (2011).
[Crossref]

Urbanczyk, W.

K. Tarnowski and W. Urbanczyk, “All-normal dispersion hole-assisted silica fibers for generation of supercontinuum reaching midinfrared,” IEEE Photonics J. 8(1), 7100311 (2016).
[Crossref]

Vanvincq, O.

Wabnitz, S.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-doped microstructured multicore fiber for customizable supercontinuum generation,” IEEE Photonics J. 3(6), 1149–1156 (2011).
[Crossref]

Wang, C. C.

C. C. Wang, M. H. Wang, and J. Wu, “Heavily germanium-doped silica fiber with a flat normal dispersion profile,” IEEE Photonics J. 7(2), 7101110 (2015).
[Crossref]

Wang, M. H.

C. C. Wang, M. H. Wang, and J. Wu, “Heavily germanium-doped silica fiber with a flat normal dispersion profile,” IEEE Photonics J. 7(2), 7101110 (2015).
[Crossref]

Windeler, R. S.

Wu, J.

C. C. Wang, M. H. Wang, and J. Wu, “Heavily germanium-doped silica fiber with a flat normal dispersion profile,” IEEE Photonics J. 7(2), 7101110 (2015).
[Crossref]

Appl. Phys. Lett. (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[Crossref]

IEEE Photonics J. (3)

C. C. Wang, M. H. Wang, and J. Wu, “Heavily germanium-doped silica fiber with a flat normal dispersion profile,” IEEE Photonics J. 7(2), 7101110 (2015).
[Crossref]

K. Tarnowski and W. Urbanczyk, “All-normal dispersion hole-assisted silica fibers for generation of supercontinuum reaching midinfrared,” IEEE Photonics J. 8(1), 7100311 (2016).
[Crossref]

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-doped microstructured multicore fiber for customizable supercontinuum generation,” IEEE Photonics J. 3(6), 1149–1156 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. R. D. Sunak and S. P. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6-1.8 μm wavelength region,” IEEE Photonics Technol. Lett. 1(6), 142–145 (1989).
[Crossref]

J. Eur. Opt. Soc (1)

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc 7, 12017 (2012).
[Crossref]

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett. 10(3), 035104 (2013).
[Crossref]

Meas. Sci. Technol. (1)

P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).
[Crossref]

Opt. Commun. (1)

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175(1–3), 209–213 (2000).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Sci. Rep. (1)

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref] [PubMed]

Other (5)

R. B. Dyott, Elliptical Fiber Waveguides (Artech, 1995).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).

T. O. P. T. I. C. A. Photonics, “FemtoFiber pro IRS,” http://www.toptica.com/products/ultrafast_fiber_lasers/femtofiber_pro/femtofiber_pro_irs.html (access 20th July 2016).

E.-G. Neumann, Single-mode Fibers (Springer-Verlag, 1988).

J. C. Diels and W. Rudoplh, Ultrashort Laser Pulse Phenomena (Academic, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Images of fabricated fibers: (a)-(d) fiber A, (e)-(h) fiber B. (a), (b), (e), (f) SEM images; (c), (g) post-processed images used in FEM model: white – air, light grey – silica, dark grey – germanium doped silica; (d), (h) calculated electric field distributions at 1.55 μm.
Fig. 2
Fig. 2 Calculated characteristics of the idealized fiber with the geometry as fiber B (circular core and four air holes rings) and different GeO2 doping levels: (a) chromatic dispersion (b) effective mode area.
Fig. 3
Fig. 3 The chromatic dispersion in fabricated fibers – comparison between experimental and numerical data: (a) fiber A, (b) fiber B. Solid lines and points correspond to numerical and experimental data, respectively. The insets show same plot in wider wavelength range.
Fig. 4
Fig. 4 The attenuation coefficient of fabricated fibers: circles – measured up to 2.1 µm, solid line – extrapolated up to 2.4 µm.
Fig. 5
Fig. 5 Calculated spectral dependence of the effective mode area of the fundamental mode in the fabricated fibers.
Fig. 6
Fig. 6 Characteristics of initial ultra-short pulse: (a) measured pulse spectrum, (b) measured and calculated interferometric autocorrelation.
Fig. 7
Fig. 7 Supercontinuum spectra registered at the output of: (a) 10 cm long fiber A, (b) 10 cm long fiber B, (c) 80 cm long fiber A, (d) 80 cm long fiber B, all pumped with 23 fs pulses.
Fig. 8
Fig. 8 Supercontinuum spectra calculated for ideal 23 fs pulse pump (Eq. (1)) by solving GNLSE: (a) 10 cm long fiber A, (b) 10 cm long fiber B, (c) 80 cm long fiber A, (d) 80 cm long fiber B. Solid color lines correspond to the fibers with the loss level evaluated experimentally, while black dashed line to lossless fibers.
Fig. 9
Fig. 9 Pulse shapes calculated for ideal 23 fs pulse pump (Eq. (1)) by solving GNLSE: (a) 10 cm long fiber A, (b) 10 cm long fiber B, (c) 80 cm long fiber A, (d) 80 cm long fiber B. Solid color lines correspond to the fibers with the loss level evaluated experimentally, while black dashed line to lossless fibers.
Fig. 10
Fig. 10 Supercontinuum spectra calculated for distorted 23 fs pulse pump (Eq. (2)) by solving GNLSE: (a) 10 cm long fiber A, (b) 10 cm long fiber B, (c) 80 cm long fiber A, (d) 80 cm long fiber B. Solid color lines correspond to the fibers with the loss level evaluated experimentally, while black dashed line to lossless fibers.
Fig. 11
Fig. 11 Pulse shapes calculated for distorted 23 fs pulse pump (Eq. (2)) by solving GNLSE: (a) 10 cm long fiber A, (b) 10 cm long fiber B, (c) 80 cm long fiber A, (d) 80 cm long fiber B. Solid color lines correspond to the fibers with the loss level evaluated experimentally, while black dashed line to lossless fibers.
Fig. 12
Fig. 12 Spectrograms comparing SC generation at 1, 5, 10, 80 cm propagation distance: (a), (b) fiber A; (c), (d) fiber B; (a), (c) ideal 23 fs pulse; (b), (d) distorted 23 fs pulse.
Fig. 13
Fig. 13 First-order coherence degree g calculated for supercontinuum spectra based on 100 simulation runs for 23 fs pulse pumping: (a), (c) fiber A; (b), (d) fiber B; (a), (b) ideal pulse pump; (c), (d) distorted pulse pump.
Fig. 14
Fig. 14 Supercontinuum spectra registered at the output of: (a) 10 cm long fiber A, (b) 10 cm long fiber B, (c) 80 cm long fiber A, (d) 80 cm long fiber B, all pumped with 460 fs pulses.
Fig. 15
Fig. 15 Supercontinuum spectra calculated by solving GNLSE for: (a) 10 cm long fiber A, (b) 10 cm long fiber B, (c) 80 cm long fiber A, (d) 80 cm long fiber B. Solid color lines correspond to the fibers with the loss level evaluated experimentally, while black dashed line to lossless fibers.
Fig. 16
Fig. 16 Pulse shapes spectra calculated by solving GNLSE for: (a) 10 cm long fiber A, (b) 10 cm long fiber B, (c) 80 cm long fiber A, (d) 80 cm long fiber B. Solid color lines correspond to the fibers with the loss level evaluated experimentally, while black dashed line to lossless fibers.
Fig. 17
Fig. 17 First-order coherence degree g calculated for supercontinuum spectra based on 100 simulation runs with subpicosecond pumping of: (a) fiber A; (b) fiber B.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E( t )= E ( A ) sech( t T ( A ) );
E( t )= E ( A ) sech( t T ( A ) )exp( i C ( A ) 2 ( t T ( A ) ) 2 )+ E ( B ) sech( t t ( B ) T ( B ) )+ E ( C ) sech( t t ( C ) T ( C ) ).

Metrics