Abstract

Here, we report on the successful operation of a NbN thin film superconducting nanowire single-photon detector (SNSPD) in a coherent mode (as a mixer) at the telecommunication wavelength of 1550 nm. Providing the local oscillator power of the order of a few picowatts, we were practically able to reach the quantum noise limited sensitivity. The intermediate frequency gain bandwidth (also referred to as response or conversion bandwidth) was limited by the spectral band of a single-photon response pulse of the detector, which is proportional to the detector size. We observed a gain bandwidth of 65 MHz and 140 MHz for 7 × 7 µm2 and 3 × 3 µm2 devices, respectively. A tiny amount of the required local oscillator power and wide gain and noise bandwidths, along with unnecessary low noise amplification, make this technology prominent for various applications, with the possibility for future development of a photon counting heterodyne-born large-scale array.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Superconducting series nanowire detector counting up to twelve photons

Zili Zhou, Saeedeh Jahanmirinejad, Francesco Mattioli, Döndü Sahin, Giulia Frucci, Alessandro Gaggero, Roberto Leoni, and Andrea Fiore
Opt. Express 22(3) 3475-3489 (2014)

High-speed and high-efficiency superconducting nanowire single photon detector array

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler
Opt. Express 21(2) 1440-1447 (2013)

Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths

Chandra M. Natarajan, Lijian Zhang, Hendrik Coldenstrodt-Ronge, Gaia Donati, Sander N. Dorenbos, Val Zwiller, Ian A. Walmsley, and Robert H. Hadfield
Opt. Express 21(1) 893-902 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. T. Forrester, W. E. Parkins, and E. Gerjouy, “On the possibility of observing beat frequencies between lines in the visible spectrum,” Phys. Rev. 72(8), 728 (1947).
    [Crossref]
  2. A. T. Forrester, R. A. Gudioindsen, and P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99(6), 1691–1700 (1955).
    [Crossref]
  3. M. C. Teich, “Infrared heterodyne detection,” Proceedings of the IEEE (IEEE,1968), pp.37 - 46.
  4. S. F. Jacobs, “Optical heterodyne (coherent) detection,” Am. J. Phys. 56(3), 235–245 (1988).
    [Crossref]
  5. K. M. Evenson and F. R. Petersen, Laser frequency measurements, the speed of light, and the meter,” in Handbook of Laser Spectroscopy of Atoms and Molecules (Springer, 1976), pp 349–368.
  6. T. Kostiuk and M. J. Mumma, “Remote sensing by IR heterodyne spectroscopy,” Appl. Opt. 22(17), 2644–2654 (1983).
    [Crossref] [PubMed]
  7. M. J. Mumma, J. D. Rogers, T. Kostiuk, D. Deming, J. J. Hillman, and D. Zipoy, “Is there any chlorine monoxide in the stratosphere?” Science 221(4607), 268–271 (1983).
    [Crossref] [PubMed]
  8. Th. De Graauw and H. van de Stadt, “Infrared heterodyne detection of the moon, planets and stars at 10 µm,” Nat. Phys. Sci (Lond.) 246(153), 73–75 (1973).
    [Crossref]
  9. D. W. Peterson, M. A. Johnson, and A. L. Betz, “Infrared heterodyne spectroscopy of CO2 on Mars,” Nature 250(5462), 128–130 (1974).
    [Crossref]
  10. M. A. Johnson, A. L. Betz, and C. H. Townes, “10-µm heterodyne stellar interferometer,” Phys. Rev. Lett. 33(27), 1617 (1974).
    [Crossref]
  11. P. Richter, I. Peczeli, and S. Borocz, “Coherent infrared lidar with enhanced optical heterodyne detection,” J. Mod. Opt. 41(11), 2079–2084 (1994).
    [Crossref]
  12. J. H. Shapiro, B. A. Capron, and R. C. Harney, “Imaging and target detection with a heterodyne-reception optical radar,” Appl. Opt. 20(19), 3292–3313 (1981).
    [Crossref] [PubMed]
  13. T. Okoshi and K. Kikuchi, “Frequency stabilization of semiconductor lasers for heterodyne-type optical communication systems,” Electron. Lett. 16(5), 179 (1980).
    [Crossref]
  14. F. Favre and D. LeGuen, “High frequency stability of laser diode for heterodyne communication systems,” Electron. Lett. 16(18), 709 (1980).
    [Crossref]
  15. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [Crossref] [PubMed]
  16. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  17. V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, “High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32(4), 361–363 (2007).
    [Crossref] [PubMed]
  18. A. Klimchuk, A. Nadezhdinskii, Ya. Ponurovskii, Yu. Shapovalov, and A. Rodin, “On the possibility of designing a high-resolution heterodyne spectrometer for near-IR range on the basis of a tunable diode laser,” Quantum Electron. 42(3), 244–249 (2012).
    [Crossref]
  19. J. F. Holmes and B. J. Rask, “Optimum optical local-oscillator power levels for coherent detection with photodiodes,” Appl. Opt. 34(6), 927–933 (1995).
    [Crossref] [PubMed]
  20. Y.C. Li, L. Gao, H. F. Cong, Y. Qu, J. Gao, A. Wang, C. H. Wang, “Optimum optical local oscillator power levels impact on signal-to-noise ratio in heterodyne,” in Proceedings of IEEE Symposium on Photonics and Optoelectronics (IEEE, 2010), pp. 1 - 3.
  21. D. E. Sawyer, “Heterodyne operation of avalanche photodiodes,” NASA Tech. Note, D-4190 (1967).
  22. Y. Lobanov, M. Shcherbatenko, A. Shurakov, A. V. Rodin, A. Klimchuk, A. I. Nadezhdinsky, S. Maslennikov, P. Larionov, M. Finkel, A. Semenov, A. A. Verevkin, B. M. Voronov, Y. Ponurovsky, T. M. Klapwijk, and G. N. Gol’tsman, “Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer,” Opt. Lett. 39(6), 1429–1432 (2014).
    [Crossref] [PubMed]
  23. Y. Lobanov, M. Shcherbatenko, M. Finkel, S. Maslennikov, A. Semenov, B. M. Voronov, A. V. Rodin, T. M. Klapwijk, and G. N. Gol’tsman, “NbN hot-electron-bolometer mixer for operation in the near-IR frequency range,” IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015).
    [Crossref]
  24. B. S. Karasik and A. I. Elantiev, “Noise temperature limit of a superconducting hot‐electron bolometer mixer,” Appl. Phys. Lett. 68(6), 853–855 (1996).
    [Crossref]
  25. J. X. Luu and L. A. Jiang, “Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays,” Appl. Opt. 45(16), 3798–3804 (2006).
    [Crossref] [PubMed]
  26. L. A. Jiang and J. X. Luu, “Heterodyne detection with a weak local oscillator,” Appl. Opt. 47(10), 1486–1503 (2008).
    [Crossref] [PubMed]
  27. J. X. Luu and L. A. Jiang, “Coherent photon counting ladar,” Technical Digest 2006, CWB5, (Optical Society of America, USA).
  28. M. Rezeghi, Technology of Quantum Devices (Springer, 2010).
  29. J. C. Campbell, “Recent advances in avalanche photodiodes,” J. Lightwave Technol. 34(2), 278–285 (2016).
    [Crossref]
  30. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
    [Crossref]
  31. C. Natarajan, M. Tanner, and R. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
    [Crossref]
  32. A. Engel, J. J. Renema, K. Il’in, and A. Semenov, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28(11), 114003 (2015).
    [Crossref]
  33. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
    [Crossref]
  34. F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11(4), 045022 (2009).
    [Crossref]
  35. X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express 19(1), 17–31 (2011).
    [Crossref] [PubMed]
  36. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  37. D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 2014 (2014).
  38. A. Biswas, J. M. Kovalik, M. W. Wright, W. T. Roberts, M. K. Cheng, K. J. Quirk, M. Srinivasan, M. D. Shaw, and K. M. Birnbaum, “LLCD operations using the Optical Communications Telescope Laboratory (OCTL),” Proc. SPIE8971 (2014).
  39. E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
    [Crossref]
  40. D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8(10), 801–807 (2014).
    [Crossref]
  41. F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
    [Crossref]
  42. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
    [Crossref]
  43. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
    [Crossref] [PubMed]
  44. N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21(4), 5005–5013 (2013).
    [Crossref] [PubMed]
  45. T. Yamashita, D. Liu, S. Miki, J. Yamamoto, T. Haraguchi, M. Kinjo, Y. Hiraoka, Z. Wang, and H. Terai, “Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector,” Opt. Express 22(23), 28783–28789 (2014).
    [Crossref] [PubMed]
  46. V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
    [Crossref]
  47. M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
    [Crossref]
  48. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
    [Crossref] [PubMed]
  49. O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
    [Crossref] [PubMed]
  50. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
    [Crossref] [PubMed]
  51. J. L. O’Brien, “Optical Quantum Computing,” Science 318(5856), 1567–1570 (2007).
    [Crossref] [PubMed]
  52. G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
    [Crossref]
  53. K. Smirnov, Yu. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
    [Crossref]
  54. L. Mandel, “Heterodyne detection of a weak light beam,” J. Opt. Soc. Am. 56(9), 1200–1206 (1966).
    [Crossref]
  55. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
    [Crossref]
  56. V. Shcheslavskiy, P. Morozov, A. Divochiy, Y. Vakhtomin, K. Smirnov, and W. Becker, “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector,” Rev. Sci. Instrum. 87(5), 053117 (2016).
    [Crossref] [PubMed]

2016 (2)

V. Shcheslavskiy, P. Morozov, A. Divochiy, Y. Vakhtomin, K. Smirnov, and W. Becker, “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector,” Rev. Sci. Instrum. 87(5), 053117 (2016).
[Crossref] [PubMed]

J. C. Campbell, “Recent advances in avalanche photodiodes,” J. Lightwave Technol. 34(2), 278–285 (2016).
[Crossref]

2015 (6)

K. Smirnov, Yu. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Y. Lobanov, M. Shcherbatenko, M. Finkel, S. Maslennikov, A. Semenov, B. M. Voronov, A. V. Rodin, T. M. Klapwijk, and G. N. Gol’tsman, “NbN hot-electron-bolometer mixer for operation in the near-IR frequency range,” IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015).
[Crossref]

A. Engel, J. J. Renema, K. Il’in, and A. Semenov, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28(11), 114003 (2015).
[Crossref]

2014 (6)

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 2014 (2014).

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8(10), 801–807 (2014).
[Crossref]

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Y. Lobanov, M. Shcherbatenko, A. Shurakov, A. V. Rodin, A. Klimchuk, A. I. Nadezhdinsky, S. Maslennikov, P. Larionov, M. Finkel, A. Semenov, A. A. Verevkin, B. M. Voronov, Y. Ponurovsky, T. M. Klapwijk, and G. N. Gol’tsman, “Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer,” Opt. Lett. 39(6), 1429–1432 (2014).
[Crossref] [PubMed]

T. Yamashita, D. Liu, S. Miki, J. Yamamoto, T. Haraguchi, M. Kinjo, Y. Hiraoka, Z. Wang, and H. Terai, “Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector,” Opt. Express 22(23), 28783–28789 (2014).
[Crossref] [PubMed]

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

2013 (3)

2012 (3)

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

A. Klimchuk, A. Nadezhdinskii, Ya. Ponurovskii, Yu. Shapovalov, and A. Rodin, “On the possibility of designing a high-resolution heterodyne spectrometer for near-IR range on the basis of a tunable diode laser,” Quantum Electron. 42(3), 244–249 (2012).
[Crossref]

C. Natarajan, M. Tanner, and R. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

2011 (1)

2010 (1)

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

2009 (1)

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11(4), 045022 (2009).
[Crossref]

2008 (2)

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

L. A. Jiang and J. X. Luu, “Heterodyne detection with a weak local oscillator,” Appl. Opt. 47(10), 1486–1503 (2008).
[Crossref] [PubMed]

2007 (3)

V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, “High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32(4), 361–363 (2007).
[Crossref] [PubMed]

J. L. O’Brien, “Optical Quantum Computing,” Science 318(5856), 1567–1570 (2007).
[Crossref] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

2006 (2)

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

J. X. Luu and L. A. Jiang, “Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays,” Appl. Opt. 45(16), 3798–3804 (2006).
[Crossref] [PubMed]

2003 (1)

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

1997 (1)

1996 (1)

B. S. Karasik and A. I. Elantiev, “Noise temperature limit of a superconducting hot‐electron bolometer mixer,” Appl. Phys. Lett. 68(6), 853–855 (1996).
[Crossref]

1995 (1)

1994 (1)

P. Richter, I. Peczeli, and S. Borocz, “Coherent infrared lidar with enhanced optical heterodyne detection,” J. Mod. Opt. 41(11), 2079–2084 (1994).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1988 (1)

S. F. Jacobs, “Optical heterodyne (coherent) detection,” Am. J. Phys. 56(3), 235–245 (1988).
[Crossref]

1983 (2)

M. J. Mumma, J. D. Rogers, T. Kostiuk, D. Deming, J. J. Hillman, and D. Zipoy, “Is there any chlorine monoxide in the stratosphere?” Science 221(4607), 268–271 (1983).
[Crossref] [PubMed]

T. Kostiuk and M. J. Mumma, “Remote sensing by IR heterodyne spectroscopy,” Appl. Opt. 22(17), 2644–2654 (1983).
[Crossref] [PubMed]

1981 (1)

1980 (2)

T. Okoshi and K. Kikuchi, “Frequency stabilization of semiconductor lasers for heterodyne-type optical communication systems,” Electron. Lett. 16(5), 179 (1980).
[Crossref]

F. Favre and D. LeGuen, “High frequency stability of laser diode for heterodyne communication systems,” Electron. Lett. 16(18), 709 (1980).
[Crossref]

1974 (2)

D. W. Peterson, M. A. Johnson, and A. L. Betz, “Infrared heterodyne spectroscopy of CO2 on Mars,” Nature 250(5462), 128–130 (1974).
[Crossref]

M. A. Johnson, A. L. Betz, and C. H. Townes, “10-µm heterodyne stellar interferometer,” Phys. Rev. Lett. 33(27), 1617 (1974).
[Crossref]

1973 (1)

Th. De Graauw and H. van de Stadt, “Infrared heterodyne detection of the moon, planets and stars at 10 µm,” Nat. Phys. Sci (Lond.) 246(153), 73–75 (1973).
[Crossref]

1966 (1)

1955 (1)

A. T. Forrester, R. A. Gudioindsen, and P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99(6), 1691–1700 (1955).
[Crossref]

1947 (1)

A. T. Forrester, W. E. Parkins, and E. Gerjouy, “On the possibility of observing beat frequencies between lines in the visible spectrum,” Phys. Rev. 72(8), 728 (1947).
[Crossref]

Afzelius, M.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Allman, M. S.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Antipov, A.

K. Smirnov, Yu. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
[Crossref]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Becker, W.

V. Shcheslavskiy, P. Morozov, A. Divochiy, Y. Vakhtomin, K. Smirnov, and W. Becker, “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector,” Rev. Sci. Instrum. 87(5), 053117 (2016).
[Crossref] [PubMed]

Benkhaoul, M.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Berggren, K.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Berggren, K. K.

Betz, A. L.

D. W. Peterson, M. A. Johnson, and A. L. Betz, “Infrared heterodyne spectroscopy of CO2 on Mars,” Nature 250(5462), 128–130 (1974).
[Crossref]

M. A. Johnson, A. L. Betz, and C. H. Townes, “10-µm heterodyne stellar interferometer,” Phys. Rev. Lett. 33(27), 1617 (1974).
[Crossref]

Beyer, A.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Birnbaum, K. M.

A. Biswas, J. M. Kovalik, M. W. Wright, W. T. Roberts, M. K. Cheng, K. J. Quirk, M. Srinivasan, M. D. Shaw, and K. M. Birnbaum, “LLCD operations using the Optical Communications Telescope Laboratory (OCTL),” Proc. SPIE8971 (2014).

Biswas, A.

A. Biswas, J. M. Kovalik, M. W. Wright, W. T. Roberts, M. K. Cheng, K. J. Quirk, M. Srinivasan, M. D. Shaw, and K. M. Birnbaum, “LLCD operations using the Optical Communications Telescope Laboratory (OCTL),” Proc. SPIE8971 (2014).

Bitauld, D.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11(4), 045022 (2009).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Borocz, S.

P. Richter, I. Peczeli, and S. Borocz, “Coherent infrared lidar with enhanced optical heterodyne detection,” J. Mod. Opt. 41(11), 2079–2084 (1994).
[Crossref]

Boroson, D. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 2014 (2014).

Buller, G. S.

Burianek, D. A.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 2014 (2014).

Bussières, F.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Cable, A. E.

Campbell, J. C.

Capron, B. A.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cheng, M. K.

A. Biswas, J. M. Kovalik, M. W. Wright, W. T. Roberts, M. K. Cheng, K. J. Quirk, M. Srinivasan, M. D. Shaw, and K. M. Birnbaum, “LLCD operations using the Optical Communications Telescope Laboratory (OCTL),” Proc. SPIE8971 (2014).

Chinn, S. R.

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Clausen, C.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Cornwell, D. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 2014 (2014).

Dauler, E. A.

X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express 19(1), 17–31 (2011).
[Crossref] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

De Graauw, Th.

Th. De Graauw and H. van de Stadt, “Infrared heterodyne detection of the moon, planets and stars at 10 µm,” Nat. Phys. Sci (Lond.) 246(153), 73–75 (1973).
[Crossref]

Deming, D.

M. J. Mumma, J. D. Rogers, T. Kostiuk, D. Deming, J. J. Hillman, and D. Zipoy, “Is there any chlorine monoxide in the stratosphere?” Science 221(4607), 268–271 (1983).
[Crossref] [PubMed]

Divochiy, A.

V. Shcheslavskiy, P. Morozov, A. Divochiy, Y. Vakhtomin, K. Smirnov, and W. Becker, “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector,” Rev. Sci. Instrum. 87(5), 053117 (2016).
[Crossref] [PubMed]

K. Smirnov, Yu. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Dorenbos, S. D.

Dorenbos, S. N.

Drakinsky, V.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Elantiev, A. I.

B. S. Karasik and A. I. Elantiev, “Noise temperature limit of a superconducting hot‐electron bolometer mixer,” Appl. Phys. Lett. 68(6), 853–855 (1996).
[Crossref]

Engel, A.

A. Engel, J. J. Renema, K. Il’in, and A. Semenov, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28(11), 114003 (2015).
[Crossref]

Favre, F.

F. Favre and D. LeGuen, “High frequency stability of laser diode for heterodyne communication systems,” Electron. Lett. 16(18), 709 (1980).
[Crossref]

Ferrari, S.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

Ferrier, A.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Finkel, M.

Y. Lobanov, M. Shcherbatenko, M. Finkel, S. Maslennikov, A. Semenov, B. M. Voronov, A. V. Rodin, T. M. Klapwijk, and G. N. Gol’tsman, “NbN hot-electron-bolometer mixer for operation in the near-IR frequency range,” IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015).
[Crossref]

Y. Lobanov, M. Shcherbatenko, A. Shurakov, A. V. Rodin, A. Klimchuk, A. I. Nadezhdinsky, S. Maslennikov, P. Larionov, M. Finkel, A. Semenov, A. A. Verevkin, B. M. Voronov, Y. Ponurovsky, T. M. Klapwijk, and G. N. Gol’tsman, “Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer,” Opt. Lett. 39(6), 1429–1432 (2014).
[Crossref] [PubMed]

Fiore, A.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11(4), 045022 (2009).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Forrester, A. T.

A. T. Forrester, R. A. Gudioindsen, and P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99(6), 1691–1700 (1955).
[Crossref]

A. T. Forrester, W. E. Parkins, and E. Gerjouy, “On the possibility of observing beat frequencies between lines in the visible spectrum,” Phys. Rev. 72(8), 728 (1947).
[Crossref]

Fujimoto, J. G.

Gaggero, A.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11(4), 045022 (2009).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Gemmell, N. R.

Gerjouy, E.

A. T. Forrester, W. E. Parkins, and E. Gerjouy, “On the possibility of observing beat frequencies between lines in the visible spectrum,” Phys. Rev. 72(8), 728 (1947).
[Crossref]

Gerrits, T.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Gisin, N.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Gol’tsman, G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Gol’tsman, G. N.

Y. Lobanov, M. Shcherbatenko, M. Finkel, S. Maslennikov, A. Semenov, B. M. Voronov, A. V. Rodin, T. M. Klapwijk, and G. N. Gol’tsman, “NbN hot-electron-bolometer mixer for operation in the near-IR frequency range,” IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015).
[Crossref]

Y. Lobanov, M. Shcherbatenko, A. Shurakov, A. V. Rodin, A. Klimchuk, A. I. Nadezhdinsky, S. Maslennikov, P. Larionov, M. Finkel, A. Semenov, A. A. Verevkin, B. M. Voronov, Y. Ponurovsky, T. M. Klapwijk, and G. N. Gol’tsman, “Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer,” Opt. Lett. 39(6), 1429–1432 (2014).
[Crossref] [PubMed]

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Goldner, P.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Goltsman, G.

K. Smirnov, Yu. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
[Crossref]

Goltsman, G. N.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gudioindsen, R. A.

A. T. Forrester, R. A. Gudioindsen, and P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99(6), 1691–1700 (1955).
[Crossref]

Hadfield, R.

C. Natarajan, M. Tanner, and R. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

Hadfield, R. H.

Hamel, D. R.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8(10), 801–807 (2014).
[Crossref]

Haraguchi, T.

Harney, R. C.

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Herrmann, H.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Hillman, J. J.

M. J. Mumma, J. D. Rogers, T. Kostiuk, D. Deming, J. J. Hillman, and D. Zipoy, “Is there any chlorine monoxide in the stratosphere?” Science 221(4607), 268–271 (1983).
[Crossref] [PubMed]

Hiraoka, Y.

Holmes, J. F.

Honjo, T.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

Horansky, R.

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

Horansky, R. D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Hu, X.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hübel, H.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8(10), 801–807 (2014).
[Crossref]

Huber, R.

Il’in, K.

A. Engel, J. J. Renema, K. Il’in, and A. Semenov, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28(11), 114003 (2015).
[Crossref]

Jacobs, S. F.

S. F. Jacobs, “Optical heterodyne (coherent) detection,” Am. J. Phys. 56(3), 235–245 (1988).
[Crossref]

Jahanmirinejad, S.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11(4), 045022 (2009).
[Crossref]

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Jennewein, T.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8(10), 801–807 (2014).
[Crossref]

Jiang, J. Y.

Jiang, L. A.

Jin, J.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

Johnson, M. A.

D. W. Peterson, M. A. Johnson, and A. L. Betz, “Infrared heterodyne spectroscopy of CO2 on Mars,” Nature 250(5462), 128–130 (1974).
[Crossref]

M. A. Johnson, A. L. Betz, and C. H. Townes, “10-µm heterodyne stellar interferometer,” Phys. Rev. Lett. 33(27), 1617 (1974).
[Crossref]

Johnson, P. O.

A. T. Forrester, R. A. Gudioindsen, and P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99(6), 1691–1700 (1955).
[Crossref]

Kahl, O.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

Karasik, B. S.

B. S. Karasik and A. I. Elantiev, “Noise temperature limit of a superconducting hot‐electron bolometer mixer,” Appl. Phys. Lett. 68(6), 853–855 (1996).
[Crossref]

Kaurova, N.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

Keicher, W. E.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Kerman, A. J.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Khatri, F.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 2014 (2014).

Kikuchi, K.

T. Okoshi and K. Kikuchi, “Frequency stabilization of semiconductor lasers for heterodyne-type optical communication systems,” Electron. Lett. 16(5), 179 (1980).
[Crossref]

Kinjo, M.

Klapwijk, T. M.

Y. Lobanov, M. Shcherbatenko, M. Finkel, S. Maslennikov, A. Semenov, B. M. Voronov, A. V. Rodin, T. M. Klapwijk, and G. N. Gol’tsman, “NbN hot-electron-bolometer mixer for operation in the near-IR frequency range,” IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015).
[Crossref]

Y. Lobanov, M. Shcherbatenko, A. Shurakov, A. V. Rodin, A. Klimchuk, A. I. Nadezhdinsky, S. Maslennikov, P. Larionov, M. Finkel, A. Semenov, A. A. Verevkin, B. M. Voronov, Y. Ponurovsky, T. M. Klapwijk, and G. N. Gol’tsman, “Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer,” Opt. Lett. 39(6), 1429–1432 (2014).
[Crossref] [PubMed]

Klimchuk, A.

Korneev, A.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Korzh, B.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Kostiuk, T.

M. J. Mumma, J. D. Rogers, T. Kostiuk, D. Deming, J. J. Hillman, and D. Zipoy, “Is there any chlorine monoxide in the stratosphere?” Science 221(4607), 268–271 (1983).
[Crossref] [PubMed]

T. Kostiuk and M. J. Mumma, “Remote sensing by IR heterodyne spectroscopy,” Appl. Opt. 22(17), 2644–2654 (1983).
[Crossref] [PubMed]

Kouminov, P.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

Kovalik, J. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 2014 (2014).

A. Biswas, J. M. Kovalik, M. W. Wright, W. T. Roberts, M. K. Cheng, K. J. Quirk, M. Srinivasan, M. D. Shaw, and K. M. Birnbaum, “LLCD operations using the Optical Communications Telescope Laboratory (OCTL),” Proc. SPIE8971 (2014).

Kovalyuk, V.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

Krichel, N. J.

Kumor, D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Lagoudakis, K. G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Larionov, P.

LeGuen, D.

F. Favre and D. LeGuen, “High frequency stability of laser diode for heterodyne communication systems,” Electron. Lett. 16(18), 709 (1980).
[Crossref]

Leoni, R.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11(4), 045022 (2009).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Lévy, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Li, M.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Lita, A. E.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Liu, B.

Liu, D.

Lobanov, Y.

Y. Lobanov, M. Shcherbatenko, M. Finkel, S. Maslennikov, A. Semenov, B. M. Voronov, A. V. Rodin, T. M. Klapwijk, and G. N. Gol’tsman, “NbN hot-electron-bolometer mixer for operation in the near-IR frequency range,” IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015).
[Crossref]

Y. Lobanov, M. Shcherbatenko, A. Shurakov, A. V. Rodin, A. Klimchuk, A. I. Nadezhdinsky, S. Maslennikov, P. Larionov, M. Finkel, A. Semenov, A. A. Verevkin, B. M. Voronov, Y. Ponurovsky, T. M. Klapwijk, and G. N. Gol’tsman, “Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer,” Opt. Lett. 39(6), 1429–1432 (2014).
[Crossref] [PubMed]

Luu, J. X.

Mandel, L.

Marsili, F.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8(10), 801–807 (2014).
[Crossref]

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11(4), 045022 (2009).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Maslennikov, S.

Y. Lobanov, M. Shcherbatenko, M. Finkel, S. Maslennikov, A. Semenov, B. M. Voronov, A. V. Rodin, T. M. Klapwijk, and G. N. Gol’tsman, “NbN hot-electron-bolometer mixer for operation in the near-IR frequency range,” IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015).
[Crossref]

Y. Lobanov, M. Shcherbatenko, A. Shurakov, A. V. Rodin, A. Klimchuk, A. I. Nadezhdinsky, S. Maslennikov, P. Larionov, M. Finkel, A. Semenov, A. A. Verevkin, B. M. Voronov, Y. Ponurovsky, T. M. Klapwijk, and G. N. Gol’tsman, “Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer,” Opt. Lett. 39(6), 1429–1432 (2014).
[Crossref] [PubMed]

Mattioli, F.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11(4), 045022 (2009).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

McCarthy, A.

Miki, S.

Miller, A. J.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8(10), 801–807 (2014).
[Crossref]

Minaeva, O.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Mirin, R.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Mirin, R. P.

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8(10), 801–807 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Molnar, R. J.

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Morozov, P.

V. Shcheslavskiy, P. Morozov, A. Divochiy, Y. Vakhtomin, K. Smirnov, and W. Becker, “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector,” Rev. Sci. Instrum. 87(5), 053117 (2016).
[Crossref] [PubMed]

Mumma, M. J.

T. Kostiuk and M. J. Mumma, “Remote sensing by IR heterodyne spectroscopy,” Appl. Opt. 22(17), 2644–2654 (1983).
[Crossref] [PubMed]

M. J. Mumma, J. D. Rogers, T. Kostiuk, D. Deming, J. J. Hillman, and D. Zipoy, “Is there any chlorine monoxide in the stratosphere?” Science 221(4607), 268–271 (1983).
[Crossref] [PubMed]

Murphy, D. V.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 2014 (2014).

Nadezhdinskii, A.

A. Klimchuk, A. Nadezhdinskii, Ya. Ponurovskii, Yu. Shapovalov, and A. Rodin, “On the possibility of designing a high-resolution heterodyne spectrometer for near-IR range on the basis of a tunable diode laser,” Quantum Electron. 42(3), 244–249 (2012).
[Crossref]

Nadezhdinsky, A. I.

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Nam, S. W.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8(10), 801–807 (2014).
[Crossref]

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

Natarajan, C.

C. Natarajan, M. Tanner, and R. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

J. L. O’Brien, “Optical Quantum Computing,” Science 318(5856), 1567–1570 (2007).
[Crossref] [PubMed]

Oblak, D.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

Okoshi, T.

T. Okoshi and K. Kikuchi, “Frequency stabilization of semiconductor lasers for heterodyne-type optical communication systems,” Electron. Lett. 16(5), 179 (1980).
[Crossref]

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Parkins, W. E.

A. T. Forrester, W. E. Parkins, and E. Gerjouy, “On the possibility of observing beat frequencies between lines in the visible spectrum,” Phys. Rev. 72(8), 728 (1947).
[Crossref]

Patterson, M. S.

Peczeli, I.

P. Richter, I. Peczeli, and S. Borocz, “Coherent infrared lidar with enhanced optical heterodyne detection,” J. Mod. Opt. 41(11), 2079–2084 (1994).
[Crossref]

Pernice, W. H.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

Pernice, W. H. P.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Peterson, D. W.

D. W. Peterson, M. A. Johnson, and A. L. Betz, “Infrared heterodyne spectroscopy of CO2 on Mars,” Nature 250(5462), 128–130 (1974).
[Crossref]

Ponurovskii, Ya.

A. Klimchuk, A. Nadezhdinskii, Ya. Ponurovskii, Yu. Shapovalov, and A. Rodin, “On the possibility of designing a high-resolution heterodyne spectrometer for near-IR range on the basis of a tunable diode laser,” Quantum Electron. 42(3), 244–249 (2012).
[Crossref]

Ponurovsky, Y.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Quirk, K. J.

A. Biswas, J. M. Kovalik, M. W. Wright, W. T. Roberts, M. K. Cheng, K. J. Quirk, M. Srinivasan, M. D. Shaw, and K. M. Birnbaum, “LLCD operations using the Optical Communications Telescope Laboratory (OCTL),” Proc. SPIE8971 (2014).

Rask, B. J.

Reisen, P.

Ren, X.

Renema, J. J.

A. Engel, J. J. Renema, K. Il’in, and A. Semenov, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28(11), 114003 (2015).
[Crossref]

Resch, K. J.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8(10), 801–807 (2014).
[Crossref]

Richter, P.

P. Richter, I. Peczeli, and S. Borocz, “Coherent infrared lidar with enhanced optical heterodyne detection,” J. Mod. Opt. 41(11), 2079–2084 (1994).
[Crossref]

Roberts, W. T.

A. Biswas, J. M. Kovalik, M. W. Wright, W. T. Roberts, M. K. Cheng, K. J. Quirk, M. Srinivasan, M. D. Shaw, and K. M. Birnbaum, “LLCD operations using the Optical Communications Telescope Laboratory (OCTL),” Proc. SPIE8971 (2014).

Robinson, B. S.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 2014 (2014).

Rodin, A.

A. Klimchuk, A. Nadezhdinskii, Ya. Ponurovskii, Yu. Shapovalov, and A. Rodin, “On the possibility of designing a high-resolution heterodyne spectrometer for near-IR range on the basis of a tunable diode laser,” Quantum Electron. 42(3), 244–249 (2012).
[Crossref]

Rodin, A. V.

Y. Lobanov, M. Shcherbatenko, M. Finkel, S. Maslennikov, A. Semenov, B. M. Voronov, A. V. Rodin, T. M. Klapwijk, and G. N. Gol’tsman, “NbN hot-electron-bolometer mixer for operation in the near-IR frequency range,” IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015).
[Crossref]

Y. Lobanov, M. Shcherbatenko, A. Shurakov, A. V. Rodin, A. Klimchuk, A. I. Nadezhdinsky, S. Maslennikov, P. Larionov, M. Finkel, A. Semenov, A. A. Verevkin, B. M. Voronov, Y. Ponurovsky, T. M. Klapwijk, and G. N. Gol’tsman, “Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer,” Opt. Lett. 39(6), 1429–1432 (2014).
[Crossref] [PubMed]

Rogers, J. D.

M. J. Mumma, J. D. Rogers, T. Kostiuk, D. Deming, J. J. Hillman, and D. Zipoy, “Is there any chlorine monoxide in the stratosphere?” Science 221(4607), 268–271 (1983).
[Crossref] [PubMed]

Saglamyurek, E.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

Schuck, C.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Seleznev, V.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Semenov, A.

A. Engel, J. J. Renema, K. Il’in, and A. Semenov, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28(11), 114003 (2015).
[Crossref]

Y. Lobanov, M. Shcherbatenko, M. Finkel, S. Maslennikov, A. Semenov, B. M. Voronov, A. V. Rodin, T. M. Klapwijk, and G. N. Gol’tsman, “NbN hot-electron-bolometer mixer for operation in the near-IR frequency range,” IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015).
[Crossref]

Y. Lobanov, M. Shcherbatenko, A. Shurakov, A. V. Rodin, A. Klimchuk, A. I. Nadezhdinsky, S. Maslennikov, P. Larionov, M. Finkel, A. Semenov, A. A. Verevkin, B. M. Voronov, Y. Ponurovsky, T. M. Klapwijk, and G. N. Gol’tsman, “Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer,” Opt. Lett. 39(6), 1429–1432 (2014).
[Crossref] [PubMed]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Sergienko, A. V.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Shalm, L. K.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8(10), 801–807 (2014).
[Crossref]

Shapiro, J. H.

Shapovalov, Yu.

A. Klimchuk, A. Nadezhdinskii, Ya. Ponurovskii, Yu. Shapovalov, and A. Rodin, “On the possibility of designing a high-resolution heterodyne spectrometer for near-IR range on the basis of a tunable diode laser,” Quantum Electron. 42(3), 244–249 (2012).
[Crossref]

Shaw, M. D.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

A. Biswas, J. M. Kovalik, M. W. Wright, W. T. Roberts, M. K. Cheng, K. J. Quirk, M. Srinivasan, M. D. Shaw, and K. M. Birnbaum, “LLCD operations using the Optical Communications Telescope Laboratory (OCTL),” Proc. SPIE8971 (2014).

Shcherbatenko, M.

Y. Lobanov, M. Shcherbatenko, M. Finkel, S. Maslennikov, A. Semenov, B. M. Voronov, A. V. Rodin, T. M. Klapwijk, and G. N. Gol’tsman, “NbN hot-electron-bolometer mixer for operation in the near-IR frequency range,” IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015).
[Crossref]

Y. Lobanov, M. Shcherbatenko, A. Shurakov, A. V. Rodin, A. Klimchuk, A. I. Nadezhdinsky, S. Maslennikov, P. Larionov, M. Finkel, A. Semenov, A. A. Verevkin, B. M. Voronov, Y. Ponurovsky, T. M. Klapwijk, and G. N. Gol’tsman, “Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer,” Opt. Lett. 39(6), 1429–1432 (2014).
[Crossref] [PubMed]

Shcheslavskiy, V.

V. Shcheslavskiy, P. Morozov, A. Divochiy, Y. Vakhtomin, K. Smirnov, and W. Becker, “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector,” Rev. Sci. Instrum. 87(5), 053117 (2016).
[Crossref] [PubMed]

Shurakov, A.

Silberhorn, C.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Smirnov, K.

V. Shcheslavskiy, P. Morozov, A. Divochiy, Y. Vakhtomin, K. Smirnov, and W. Becker, “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector,” Rev. Sci. Instrum. 87(5), 053117 (2016).
[Crossref] [PubMed]

K. Smirnov, Yu. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
[Crossref]

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Sobolewski, R.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Sodnik, Z.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 2014 (2014).

Sohler, W.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Srinivasan, M.

A. Biswas, J. M. Kovalik, M. W. Wright, W. T. Roberts, M. K. Cheng, K. J. Quirk, M. Srinivasan, M. D. Shaw, and K. M. Birnbaum, “LLCD operations using the Optical Communications Telescope Laboratory (OCTL),” Proc. SPIE8971 (2014).

Srinivasan, V. J.

Stern, J. A.

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Stevens, M.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Takesue, H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

Tang, H. X.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Tanner, M.

C. Natarajan, M. Tanner, and R. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

Tanner, M. G.

Teich, M. C.

M. C. Teich, “Infrared heterodyne detection,” Proceedings of the IEEE (IEEE,1968), pp.37 - 46.

Terai, H.

Tiranov, A.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Tittel, W.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

Townes, C. H.

M. A. Johnson, A. L. Betz, and C. H. Townes, “10-µm heterodyne stellar interferometer,” Phys. Rev. Lett. 33(27), 1617 (1974).
[Crossref]

Vachtomin, Yu.

K. Smirnov, Yu. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
[Crossref]

Vakhtomin, Y.

V. Shcheslavskiy, P. Morozov, A. Divochiy, Y. Vakhtomin, K. Smirnov, and W. Becker, “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector,” Rev. Sci. Instrum. 87(5), 053117 (2016).
[Crossref] [PubMed]

van de Stadt, H.

Th. De Graauw and H. van de Stadt, “Infrared heterodyne detection of the moon, planets and stars at 10 µm,” Nat. Phys. Sci (Lond.) 246(153), 73–75 (1973).
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Verevkin, A.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

Verevkin, A. A.

Verma, V. B.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8(10), 801–807 (2014).
[Crossref]

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Voronov, B.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Voronov, B. M.

Y. Lobanov, M. Shcherbatenko, M. Finkel, S. Maslennikov, A. Semenov, B. M. Voronov, A. V. Rodin, T. M. Klapwijk, and G. N. Gol’tsman, “NbN hot-electron-bolometer mixer for operation in the near-IR frequency range,” IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015).
[Crossref]

Y. Lobanov, M. Shcherbatenko, A. Shurakov, A. V. Rodin, A. Klimchuk, A. I. Nadezhdinsky, S. Maslennikov, P. Larionov, M. Finkel, A. Semenov, A. A. Verevkin, B. M. Voronov, Y. Ponurovsky, T. M. Klapwijk, and G. N. Gol’tsman, “Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer,” Opt. Lett. 39(6), 1429–1432 (2014).
[Crossref] [PubMed]

Wang, Z.

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Wilson, B. C.

Wright, M. W.

A. Biswas, J. M. Kovalik, M. W. Wright, W. T. Roberts, M. K. Cheng, K. J. Quirk, M. Srinivasan, M. D. Shaw, and K. M. Birnbaum, “LLCD operations using the Optical Communications Telescope Laboratory (OCTL),” Proc. SPIE8971 (2014).

Yamamoto, J.

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

Yamashita, T.

Yang, J. K. W.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Zhang, J.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

Zipoy, D.

M. J. Mumma, J. D. Rogers, T. Kostiuk, D. Deming, J. J. Hillman, and D. Zipoy, “Is there any chlorine monoxide in the stratosphere?” Science 221(4607), 268–271 (1983).
[Crossref] [PubMed]

Zwiller, V.

Am. J. Phys. (1)

S. F. Jacobs, “Optical heterodyne (coherent) detection,” Am. J. Phys. 56(3), 235–245 (1988).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Express (1)

K. Smirnov, Yu. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
[Crossref]

Appl. Phys. Lett. (5)

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

B. S. Karasik and A. I. Elantiev, “Noise temperature limit of a superconducting hot‐electron bolometer mixer,” Appl. Phys. Lett. 68(6), 853–855 (1996).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Electron. Lett. (2)

T. Okoshi and K. Kikuchi, “Frequency stabilization of semiconductor lasers for heterodyne-type optical communication systems,” Electron. Lett. 16(5), 179 (1980).
[Crossref]

F. Favre and D. LeGuen, “High frequency stability of laser diode for heterodyne communication systems,” Electron. Lett. 16(18), 709 (1980).
[Crossref]

IEEE Trans. Appl. Supercond. (2)

Y. Lobanov, M. Shcherbatenko, M. Finkel, S. Maslennikov, A. Semenov, B. M. Voronov, A. V. Rodin, T. M. Klapwijk, and G. N. Gol’tsman, “NbN hot-electron-bolometer mixer for operation in the near-IR frequency range,” IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015).
[Crossref]

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

P. Richter, I. Peczeli, and S. Borocz, “Coherent infrared lidar with enhanced optical heterodyne detection,” J. Mod. Opt. 41(11), 2079–2084 (1994).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Commun. (1)

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Nat. Photonics (6)

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8(10), 801–807 (2014).
[Crossref]

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

Nat. Phys. Sci (Lond.) (1)

Th. De Graauw and H. van de Stadt, “Infrared heterodyne detection of the moon, planets and stars at 10 µm,” Nat. Phys. Sci (Lond.) 246(153), 73–75 (1973).
[Crossref]

Nature (2)

D. W. Peterson, M. A. Johnson, and A. L. Betz, “Infrared heterodyne spectroscopy of CO2 on Mars,” Nature 250(5462), 128–130 (1974).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

New J. Phys. (1)

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11(4), 045022 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. (2)

A. T. Forrester, W. E. Parkins, and E. Gerjouy, “On the possibility of observing beat frequencies between lines in the visible spectrum,” Phys. Rev. 72(8), 728 (1947).
[Crossref]

A. T. Forrester, R. A. Gudioindsen, and P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99(6), 1691–1700 (1955).
[Crossref]

Phys. Rev. Lett. (1)

M. A. Johnson, A. L. Betz, and C. H. Townes, “10-µm heterodyne stellar interferometer,” Phys. Rev. Lett. 33(27), 1617 (1974).
[Crossref]

Proc. SPIE (1)

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 2014 (2014).

Quantum Electron. (1)

A. Klimchuk, A. Nadezhdinskii, Ya. Ponurovskii, Yu. Shapovalov, and A. Rodin, “On the possibility of designing a high-resolution heterodyne spectrometer for near-IR range on the basis of a tunable diode laser,” Quantum Electron. 42(3), 244–249 (2012).
[Crossref]

Rev. Sci. Instrum. (1)

V. Shcheslavskiy, P. Morozov, A. Divochiy, Y. Vakhtomin, K. Smirnov, and W. Becker, “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector,” Rev. Sci. Instrum. 87(5), 053117 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

Science (3)

J. L. O’Brien, “Optical Quantum Computing,” Science 318(5856), 1567–1570 (2007).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

M. J. Mumma, J. D. Rogers, T. Kostiuk, D. Deming, J. J. Hillman, and D. Zipoy, “Is there any chlorine monoxide in the stratosphere?” Science 221(4607), 268–271 (1983).
[Crossref] [PubMed]

Supercond. Sci. Technol. (2)

C. Natarajan, M. Tanner, and R. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

A. Engel, J. J. Renema, K. Il’in, and A. Semenov, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28(11), 114003 (2015).
[Crossref]

Other (7)

Y.C. Li, L. Gao, H. F. Cong, Y. Qu, J. Gao, A. Wang, C. H. Wang, “Optimum optical local oscillator power levels impact on signal-to-noise ratio in heterodyne,” in Proceedings of IEEE Symposium on Photonics and Optoelectronics (IEEE, 2010), pp. 1 - 3.

D. E. Sawyer, “Heterodyne operation of avalanche photodiodes,” NASA Tech. Note, D-4190 (1967).

M. C. Teich, “Infrared heterodyne detection,” Proceedings of the IEEE (IEEE,1968), pp.37 - 46.

K. M. Evenson and F. R. Petersen, Laser frequency measurements, the speed of light, and the meter,” in Handbook of Laser Spectroscopy of Atoms and Molecules (Springer, 1976), pp 349–368.

A. Biswas, J. M. Kovalik, M. W. Wright, W. T. Roberts, M. K. Cheng, K. J. Quirk, M. Srinivasan, M. D. Shaw, and K. M. Birnbaum, “LLCD operations using the Optical Communications Telescope Laboratory (OCTL),” Proc. SPIE8971 (2014).

J. X. Luu and L. A. Jiang, “Coherent photon counting ladar,” Technical Digest 2006, CWB5, (Optical Society of America, USA).

M. Rezeghi, Technology of Quantum Devices (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A schematic view of the experimental setup (see the details in the text). Insets: (a) interference of the LO and signal electric fields incident on the detector which represent the electric field beating, (b) schematic representation of distribution of pulses with time, (c) IF power spectrum in 1 MHz to 3 GHz window due to direct response of the SNSPD to incident radiation of a light source, (d) a train of pulses registered by the oscilloscope, (e) SEM image of the SNSPD chip and its central part – meandered NbN film.

Fig. 2
Fig. 2

(a) SNSPD output signal processed with the RF spectrum analyzer with resolution bandwidth (RBW) set to 300 kHz. Red curve is obtained when SNSPD is illuminated by both LO and signal lasers. The signal at the IF is ~2 MHz wide peak (marked Ppeak(f)). The noise floor (green curve marked as Pnoise(f)) is essentially the spectrum of the single-photon response pulse of the SNSPD. (b) The same result is obtained by mathematical Fourier-analysis of the 1-ms-long trace of the SNSPD pulses recorded with the digital oscilloscope. Solid (green) curve is the fit by the Cauchy-Lorentzian distribution formula.

Fig. 3
Fig. 3

IF power vs input signal power for 15.6 pW LO power measured at RBW 300 kHz. Lines are guides for an eye. Inset shows the ratio of PSD of output signal to PSD of noise (left vertical axis) and corresponding SNR (right axis) for minimal levels of signal power. Line is the quantum limit of noise for η = 0.08.

Fig. 4
Fig. 4

(a) Gain bandwidth (GBW) measured for SNSPDs of two sizes: 7×7 µm2 (blue triangles) and #2: 3×3 µm2 (red crosses), which differ in photo-response pulse duration. The GBW is limited by the duration of the single-photon response pulse: magenta squares is the Fourier transform of the single-photon response of 7×7 µm2 SNSPD, shown in the inset. (b) Signal-to-noise ratio (SNR) bandwidth for 3×3 µm2 SNSPD. (c) Signal-to-noise ratio (SNR) bandwidth for 7×7 µm2 SNSPD. Experimental points are fitted by Eq. (6). Actual level of the SNR plateau before its decay is determined by power of the LO and signal lasers, which were different for the two detectors. In order to emphasize comparison on the SNR-bandwidth we use relative-SNR rather than actual SNR values.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P( t )=( P S + P LO )( 1+αcos(2π f IF t+ϕ) ).
d dt p( t )=η P S + P LO hf ( 1+αcos(2π f IF t+ϕ) ),
PSD( f )=ε( f ) r S r LO s IF ( f )+[ ε( f )( r S + r LO + r D )+ S el ( f ) ] PS D S ( f )+PS D N ( f ),
PS D S ( f ) PS D N ( f ) = r S r LO s IF ( f ) r S + r LO + r D + S el ( f ) / ε( f ) < r S s IF ( f ) r S Δf s IF ( f ) s IF ( f IF ) .
SNR= P S P N = PS D S ( f )df RBW×PS D N ( f IF ) = PS D S ( f IF ) PS D N ( f IF ) Δf RBW .
SNR= r S r LO r S + r LO + r D + S el ( f IF ) / ε( f IF ) 1 RBW < r S RBW .

Metrics