Abstract

An X-ray interference-monochromator combining a Fabry-Perot resonator (FPR) and a double-crystal monochromator (DCM) is proposed and realized for obtaining single-mode X-rays with 3.45 meV energy resolution. The monochromator is based on the generation of cavity interference fringes from a FPR and single-mode selection of the transmission spectrum by a DCM of a nearly backward symmetric reflection geometry. The energy of the monochromator can be tuned within 2500 meV(= ΔE) by temperature control of the FPR and the DCM crystals in the range of ΔT = 70 K at room temperature. The diffraction geometry and small size of the optical components used make the interference-monochromator very easy to be adapted in modern synchrotron beamlines and X-ray optics applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Inclined-incidence hard-X-ray resonator with ultrahigh efficiency and resolution

Y.-H. Wu, Y.-W. Tsai, C.-H. Chu, W.-C. Liu, Y.-Y. Chang, and S.-L. Chang
Opt. Express 23(8) 9994-10001 (2015)

Hybrid diamond-silicon angular-dispersive x-ray monochromator with 0.25-meV energy bandwidth and high spectral efficiency

S. Stoupin, Y. V. Shvyd’ko, D. Shu, V. D. Blank, S. A. Terentyev, S. N. Polyakov, M. S. Kuznetsov, I. Lemesh, K. Mundboth, S. P. Collins, J. P. Sutter, and M. Tolkiehn
Opt. Express 21(25) 30932-30946 (2013)

High-resolution monochromator using a high-efficiency single-mode x-ray resonator at Laue incidence

Yu-Hsin Wu, Yi-Wei Tsai, Wen-Chung Liu, Yu-Chieh Chih, and Shih-Lin Chang
Opt. Lett. 42(13) 2575-2578 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72, 4080 (2001).
    [Crossref]
  2. A. Caticha and S. Caticha-Ellis, “Dynamical theory of x-ray diffraction at Bragg angles near π/2,” Phys. Rev. B 25, 971 (1982).
    [Crossref]
  3. R. Verbeni, F. Sette, M. H. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad. 3, 62–64 (1996).
    [Crossref]
  4. K.-D. Liss, R. Hock, M. Gomm, B. Waibel, A. Magerl, M. Krisch, and R. Tucoulou, “Storage of X-ray photons in a crystal resonator,” Nature 404, 371 (2000).
    [Crossref] [PubMed]
  5. C. Fabry and A. Pérot, “Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Ann. de Chim. et de Phys 16, 115–144 (1899).
  6. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Taylor & Francis, 1989).
  7. W. L. Bond, M. A. Duguay, and P. M. Rentzepis, “Proposed resonator for an x-ray laser,” Appl. Phys. Lett. 10, 216 (1967).
    [Crossref]
  8. R. D. Deslattes, “X-ray monochromators and resonators from single crystals,” Appl. Phys. Lett. 12, 133 (1968).
    [Crossref]
  9. M. Hart, “Bragg reflection x ray optics,” Rep. Prog. Phys. 34, 435–490 (1971).
    [Crossref]
  10. A. Steyerl and K.-A. Steinhauser, “Proposal of a Fabry-Perot-type interferometer for X-rays,” Z. Physik B 34, 221–227 (1979).
    [Crossref]
  11. A. Caticha and S. Caticha-Ellis, “A Fabry-Perot interferometer for hard X-rays,” Phys. Stat. Sol. (a) 119, 643 (1990).
    [Crossref]
  12. S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Rad. 5, 670–672 (1998).
    [Crossref]
  13. Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, and H. D. Rüter, “X-ray interferometry with micro-electronvolt resolution,” Phys. Rev. Lett. 90, 013904 (2003).
    [Crossref]
  14. S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: Realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94, 174801 (2005).
    [Crossref] [PubMed]
  15. S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
    [Crossref]
  16. X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity x-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108, 224801 (2012).
    [Crossref] [PubMed]
  17. Y.-H. Wu, Y.-W. Tsai, C.-H. Chu, W.-C. Liu, Y.-Y. Chang, and S.-L. Chang, “Inclined-incidence hard X-ray resonator with ultrahigh efficiency and resolution,” Opt. Express 23, 232934 (2015).
  18. Y.-W. Tsai, Y.-Y. Chang, Y.-H. Wu, W.-C. Liu, C.-C. Peng, W.-F. Hsieh, and S.-L. Chang, “Single-mode selection for hard x-ray cavity resonance,” Opt. Lett 40, 2969 (2015).
    [Crossref] [PubMed]
  19. Y. P. Stetsko and S.-L. Chang, “An algorithm for solving multiple-wave dynamical x-ray diffraction equations,” Acta Cryst. A 53, 28–34 (1997).
    [Crossref]
  20. V. G. Kohn, Y. V. Shvyd’ko, and E. Gerdau, “On the theory of an x-ray Fabry-Perot interferometer,” Phys. Stat. Sol. (b) 221, 597 (2000).
    [Crossref]

2015 (2)

Y.-H. Wu, Y.-W. Tsai, C.-H. Chu, W.-C. Liu, Y.-Y. Chang, and S.-L. Chang, “Inclined-incidence hard X-ray resonator with ultrahigh efficiency and resolution,” Opt. Express 23, 232934 (2015).

Y.-W. Tsai, Y.-Y. Chang, Y.-H. Wu, W.-C. Liu, C.-C. Peng, W.-F. Hsieh, and S.-L. Chang, “Single-mode selection for hard x-ray cavity resonance,” Opt. Lett 40, 2969 (2015).
[Crossref] [PubMed]

2012 (1)

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity x-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108, 224801 (2012).
[Crossref] [PubMed]

2006 (1)

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

2005 (1)

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: Realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94, 174801 (2005).
[Crossref] [PubMed]

2003 (1)

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, and H. D. Rüter, “X-ray interferometry with micro-electronvolt resolution,” Phys. Rev. Lett. 90, 013904 (2003).
[Crossref]

2001 (1)

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72, 4080 (2001).
[Crossref]

2000 (2)

K.-D. Liss, R. Hock, M. Gomm, B. Waibel, A. Magerl, M. Krisch, and R. Tucoulou, “Storage of X-ray photons in a crystal resonator,” Nature 404, 371 (2000).
[Crossref] [PubMed]

V. G. Kohn, Y. V. Shvyd’ko, and E. Gerdau, “On the theory of an x-ray Fabry-Perot interferometer,” Phys. Stat. Sol. (b) 221, 597 (2000).
[Crossref]

1998 (1)

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Rad. 5, 670–672 (1998).
[Crossref]

1997 (1)

Y. P. Stetsko and S.-L. Chang, “An algorithm for solving multiple-wave dynamical x-ray diffraction equations,” Acta Cryst. A 53, 28–34 (1997).
[Crossref]

1996 (1)

R. Verbeni, F. Sette, M. H. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad. 3, 62–64 (1996).
[Crossref]

1990 (1)

A. Caticha and S. Caticha-Ellis, “A Fabry-Perot interferometer for hard X-rays,” Phys. Stat. Sol. (a) 119, 643 (1990).
[Crossref]

1982 (1)

A. Caticha and S. Caticha-Ellis, “Dynamical theory of x-ray diffraction at Bragg angles near π/2,” Phys. Rev. B 25, 971 (1982).
[Crossref]

1979 (1)

A. Steyerl and K.-A. Steinhauser, “Proposal of a Fabry-Perot-type interferometer for X-rays,” Z. Physik B 34, 221–227 (1979).
[Crossref]

1971 (1)

M. Hart, “Bragg reflection x ray optics,” Rep. Prog. Phys. 34, 435–490 (1971).
[Crossref]

1968 (1)

R. D. Deslattes, “X-ray monochromators and resonators from single crystals,” Appl. Phys. Lett. 12, 133 (1968).
[Crossref]

1967 (1)

W. L. Bond, M. A. Duguay, and P. M. Rentzepis, “Proposed resonator for an x-ray laser,” Appl. Phys. Lett. 10, 216 (1967).
[Crossref]

1899 (1)

C. Fabry and A. Pérot, “Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Ann. de Chim. et de Phys 16, 115–144 (1899).

Bergmann, U.

R. Verbeni, F. Sette, M. H. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad. 3, 62–64 (1996).
[Crossref]

Bond, W. L.

W. L. Bond, M. A. Duguay, and P. M. Rentzepis, “Proposed resonator for an x-ray laser,” Appl. Phys. Lett. 10, 216 (1967).
[Crossref]

Caticha, A.

A. Caticha and S. Caticha-Ellis, “A Fabry-Perot interferometer for hard X-rays,” Phys. Stat. Sol. (a) 119, 643 (1990).
[Crossref]

A. Caticha and S. Caticha-Ellis, “Dynamical theory of x-ray diffraction at Bragg angles near π/2,” Phys. Rev. B 25, 971 (1982).
[Crossref]

Caticha-Ellis, S.

A. Caticha and S. Caticha-Ellis, “A Fabry-Perot interferometer for hard X-rays,” Phys. Stat. Sol. (a) 119, 643 (1990).
[Crossref]

A. Caticha and S. Caticha-Ellis, “Dynamical theory of x-ray diffraction at Bragg angles near π/2,” Phys. Rev. B 25, 971 (1982).
[Crossref]

Chang, S.-L.

Y.-H. Wu, Y.-W. Tsai, C.-H. Chu, W.-C. Liu, Y.-Y. Chang, and S.-L. Chang, “Inclined-incidence hard X-ray resonator with ultrahigh efficiency and resolution,” Opt. Express 23, 232934 (2015).

Y.-W. Tsai, Y.-Y. Chang, Y.-H. Wu, W.-C. Liu, C.-C. Peng, W.-F. Hsieh, and S.-L. Chang, “Single-mode selection for hard x-ray cavity resonance,” Opt. Lett 40, 2969 (2015).
[Crossref] [PubMed]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: Realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94, 174801 (2005).
[Crossref] [PubMed]

Y. P. Stetsko and S.-L. Chang, “An algorithm for solving multiple-wave dynamical x-ray diffraction equations,” Acta Cryst. A 53, 28–34 (1997).
[Crossref]

Chang, Y.-Y.

Y.-W. Tsai, Y.-Y. Chang, Y.-H. Wu, W.-C. Liu, C.-C. Peng, W.-F. Hsieh, and S.-L. Chang, “Single-mode selection for hard x-ray cavity resonance,” Opt. Lett 40, 2969 (2015).
[Crossref] [PubMed]

Y.-H. Wu, Y.-W. Tsai, C.-H. Chu, W.-C. Liu, Y.-Y. Chang, and S.-L. Chang, “Inclined-incidence hard X-ray resonator with ultrahigh efficiency and resolution,” Opt. Express 23, 232934 (2015).

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

Chen, S.-Y.

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

Chu, C.-H.

Y.-H. Wu, Y.-W. Tsai, C.-H. Chu, W.-C. Liu, Y.-Y. Chang, and S.-L. Chang, “Inclined-incidence hard X-ray resonator with ultrahigh efficiency and resolution,” Opt. Express 23, 232934 (2015).

Deslattes, R. D.

R. D. Deslattes, “X-ray monochromators and resonators from single crystals,” Appl. Phys. Lett. 12, 133 (1968).
[Crossref]

Duguay, M. A.

W. L. Bond, M. A. Duguay, and P. M. Rentzepis, “Proposed resonator for an x-ray laser,” Appl. Phys. Lett. 10, 216 (1967).
[Crossref]

Fabry, C.

C. Fabry and A. Pérot, “Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Ann. de Chim. et de Phys 16, 115–144 (1899).

Gerdau, E.

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, and H. D. Rüter, “X-ray interferometry with micro-electronvolt resolution,” Phys. Rev. Lett. 90, 013904 (2003).
[Crossref]

V. G. Kohn, Y. V. Shvyd’ko, and E. Gerdau, “On the theory of an x-ray Fabry-Perot interferometer,” Phys. Stat. Sol. (b) 221, 597 (2000).
[Crossref]

Gomm, M.

K.-D. Liss, R. Hock, M. Gomm, B. Waibel, A. Magerl, M. Krisch, and R. Tucoulou, “Storage of X-ray photons in a crystal resonator,” Nature 404, 371 (2000).
[Crossref] [PubMed]

Gorges, B.

R. Verbeni, F. Sette, M. H. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad. 3, 62–64 (1996).
[Crossref]

Halcoussis, C.

R. Verbeni, F. Sette, M. H. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad. 3, 62–64 (1996).
[Crossref]

Hart, M.

M. Hart, “Bragg reflection x ray optics,” Rep. Prog. Phys. 34, 435–490 (1971).
[Crossref]

Hirano, K.

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Rad. 5, 670–672 (1998).
[Crossref]

Hock, R.

K.-D. Liss, R. Hock, M. Gomm, B. Waibel, A. Magerl, M. Krisch, and R. Tucoulou, “Storage of X-ray photons in a crystal resonator,” Nature 404, 371 (2000).
[Crossref] [PubMed]

Hsieh, W.-F.

Y.-W. Tsai, Y.-Y. Chang, Y.-H. Wu, W.-C. Liu, C.-C. Peng, W.-F. Hsieh, and S.-L. Chang, “Single-mode selection for hard x-ray cavity resonance,” Opt. Lett 40, 2969 (2015).
[Crossref] [PubMed]

Huang, X. R.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity x-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108, 224801 (2012).
[Crossref] [PubMed]

Iizuka, T.

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Rad. 5, 670–672 (1998).
[Crossref]

Imai, Y.

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Rad. 5, 670–672 (1998).
[Crossref]

Ishikawa, T.

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: Realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94, 174801 (2005).
[Crossref] [PubMed]

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72, 4080 (2001).
[Crossref]

Kikuta, S.

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72, 4080 (2001).
[Crossref]

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Rad. 5, 670–672 (1998).
[Crossref]

Kohn, V. G.

V. G. Kohn, Y. V. Shvyd’ko, and E. Gerdau, “On the theory of an x-ray Fabry-Perot interferometer,” Phys. Stat. Sol. (b) 221, 597 (2000).
[Crossref]

Krisch, M.

K.-D. Liss, R. Hock, M. Gomm, B. Waibel, A. Magerl, M. Krisch, and R. Tucoulou, “Storage of X-ray photons in a crystal resonator,” Nature 404, 371 (2000).
[Crossref] [PubMed]

Krisch, M. H.

R. Verbeni, F. Sette, M. H. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad. 3, 62–64 (1996).
[Crossref]

Kuo, T.-T.

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

Lee, Y.-R.

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: Realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94, 174801 (2005).
[Crossref] [PubMed]

Lerche, M.

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, and H. D. Rüter, “X-ray interferometry with micro-electronvolt resolution,” Phys. Rev. Lett. 90, 013904 (2003).
[Crossref]

Lin, Y.-H.

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

Liss, K.-D.

K.-D. Liss, R. Hock, M. Gomm, B. Waibel, A. Magerl, M. Krisch, and R. Tucoulou, “Storage of X-ray photons in a crystal resonator,” Nature 404, 371 (2000).
[Crossref] [PubMed]

Liu, W.-C.

Y.-W. Tsai, Y.-Y. Chang, Y.-H. Wu, W.-C. Liu, C.-C. Peng, W.-F. Hsieh, and S.-L. Chang, “Single-mode selection for hard x-ray cavity resonance,” Opt. Lett 40, 2969 (2015).
[Crossref] [PubMed]

Y.-H. Wu, Y.-W. Tsai, C.-H. Chu, W.-C. Liu, Y.-Y. Chang, and S.-L. Chang, “Inclined-incidence hard X-ray resonator with ultrahigh efficiency and resolution,” Opt. Express 23, 232934 (2015).

Lucht, M.

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, and H. D. Rüter, “X-ray interferometry with micro-electronvolt resolution,” Phys. Rev. Lett. 90, 013904 (2003).
[Crossref]

Macrander, A. T.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity x-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108, 224801 (2012).
[Crossref] [PubMed]

Magerl, A.

K.-D. Liss, R. Hock, M. Gomm, B. Waibel, A. Magerl, M. Krisch, and R. Tucoulou, “Storage of X-ray photons in a crystal resonator,” Nature 404, 371 (2000).
[Crossref] [PubMed]

Martel, K.

R. Verbeni, F. Sette, M. H. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad. 3, 62–64 (1996).
[Crossref]

Masciovecchio, C.

R. Verbeni, F. Sette, M. H. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad. 3, 62–64 (1996).
[Crossref]

Miwa, D.

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

Peng, C.-C.

Y.-W. Tsai, Y.-Y. Chang, Y.-H. Wu, W.-C. Liu, C.-C. Peng, W.-F. Hsieh, and S.-L. Chang, “Single-mode selection for hard x-ray cavity resonance,” Opt. Lett 40, 2969 (2015).
[Crossref] [PubMed]

Peng, R. W.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity x-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108, 224801 (2012).
[Crossref] [PubMed]

Pérot, A.

C. Fabry and A. Pérot, “Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Ann. de Chim. et de Phys 16, 115–144 (1899).

Rentzepis, P. M.

W. L. Bond, M. A. Duguay, and P. M. Rentzepis, “Proposed resonator for an x-ray laser,” Appl. Phys. Lett. 10, 216 (1967).
[Crossref]

Ribois, J. F.

R. Verbeni, F. Sette, M. H. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad. 3, 62–64 (1996).
[Crossref]

Ruocco, G.

R. Verbeni, F. Sette, M. H. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad. 3, 62–64 (1996).
[Crossref]

Rüter, H. D.

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, and H. D. Rüter, “X-ray interferometry with micro-electronvolt resolution,” Phys. Rev. Lett. 90, 013904 (2003).
[Crossref]

Sette, F.

R. Verbeni, F. Sette, M. H. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad. 3, 62–64 (1996).
[Crossref]

Shew, B.-Y.

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

Shvyd’ko, Y. V.

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, and H. D. Rüter, “X-ray interferometry with micro-electronvolt resolution,” Phys. Rev. Lett. 90, 013904 (2003).
[Crossref]

V. G. Kohn, Y. V. Shvyd’ko, and E. Gerdau, “On the theory of an x-ray Fabry-Perot interferometer,” Phys. Stat. Sol. (b) 221, 597 (2000).
[Crossref]

Shy, J.-T.

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

Siddons, D. P.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity x-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108, 224801 (2012).
[Crossref] [PubMed]

Sinn, H.

R. Verbeni, F. Sette, M. H. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad. 3, 62–64 (1996).
[Crossref]

Steinhauser, K.-A.

A. Steyerl and K.-A. Steinhauser, “Proposal of a Fabry-Perot-type interferometer for X-rays,” Z. Physik B 34, 221–227 (1979).
[Crossref]

Stetsko, Y. P.

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: Realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94, 174801 (2005).
[Crossref] [PubMed]

Y. P. Stetsko and S.-L. Chang, “An algorithm for solving multiple-wave dynamical x-ray diffraction equations,” Acta Cryst. A 53, 28–34 (1997).
[Crossref]

Steyerl, A.

A. Steyerl and K.-A. Steinhauser, “Proposal of a Fabry-Perot-type interferometer for X-rays,” Z. Physik B 34, 221–227 (1979).
[Crossref]

Sun, W.-H.

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: Realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94, 174801 (2005).
[Crossref] [PubMed]

Tamasaku, K.

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72, 4080 (2001).
[Crossref]

Tang, M.-T.

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: Realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94, 174801 (2005).
[Crossref] [PubMed]

Tsai, Y.-W.

Y.-H. Wu, Y.-W. Tsai, C.-H. Chu, W.-C. Liu, Y.-Y. Chang, and S.-L. Chang, “Inclined-incidence hard X-ray resonator with ultrahigh efficiency and resolution,” Opt. Express 23, 232934 (2015).

Y.-W. Tsai, Y.-Y. Chang, Y.-H. Wu, W.-C. Liu, C.-C. Peng, W.-F. Hsieh, and S.-L. Chang, “Single-mode selection for hard x-ray cavity resonance,” Opt. Lett 40, 2969 (2015).
[Crossref] [PubMed]

Tucoulou, R.

K.-D. Liss, R. Hock, M. Gomm, B. Waibel, A. Magerl, M. Krisch, and R. Tucoulou, “Storage of X-ray photons in a crystal resonator,” Nature 404, 371 (2000).
[Crossref] [PubMed]

Vaughan, M.

M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Taylor & Francis, 1989).

Verbeni, R.

R. Verbeni, F. Sette, M. H. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad. 3, 62–64 (1996).
[Crossref]

Waibel, B.

K.-D. Liss, R. Hock, M. Gomm, B. Waibel, A. Magerl, M. Krisch, and R. Tucoulou, “Storage of X-ray photons in a crystal resonator,” Nature 404, 371 (2000).
[Crossref] [PubMed]

Wille, H.-C.

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, and H. D. Rüter, “X-ray interferometry with micro-electronvolt resolution,” Phys. Rev. Lett. 90, 013904 (2003).
[Crossref]

Wu, H.-H.

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

Wu, X. S.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity x-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108, 224801 (2012).
[Crossref] [PubMed]

Wu, Y.-H.

Y.-H. Wu, Y.-W. Tsai, C.-H. Chu, W.-C. Liu, Y.-Y. Chang, and S.-L. Chang, “Inclined-incidence hard X-ray resonator with ultrahigh efficiency and resolution,” Opt. Express 23, 232934 (2015).

Y.-W. Tsai, Y.-Y. Chang, Y.-H. Wu, W.-C. Liu, C.-C. Peng, W.-F. Hsieh, and S.-L. Chang, “Single-mode selection for hard x-ray cavity resonance,” Opt. Lett 40, 2969 (2015).
[Crossref] [PubMed]

Yabashi, M.

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: Realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94, 174801 (2005).
[Crossref] [PubMed]

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72, 4080 (2001).
[Crossref]

Yoda, Y.

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Rad. 5, 670–672 (1998).
[Crossref]

Zhang, X.-W.

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Rad. 5, 670–672 (1998).
[Crossref]

Acta Cryst. A (1)

Y. P. Stetsko and S.-L. Chang, “An algorithm for solving multiple-wave dynamical x-ray diffraction equations,” Acta Cryst. A 53, 28–34 (1997).
[Crossref]

Ann. de Chim. et de Phys (1)

C. Fabry and A. Pérot, “Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Ann. de Chim. et de Phys 16, 115–144 (1899).

Appl. Phys. Lett. (2)

W. L. Bond, M. A. Duguay, and P. M. Rentzepis, “Proposed resonator for an x-ray laser,” Appl. Phys. Lett. 10, 216 (1967).
[Crossref]

R. D. Deslattes, “X-ray monochromators and resonators from single crystals,” Appl. Phys. Lett. 12, 133 (1968).
[Crossref]

J. Synchrotron Rad. (2)

R. Verbeni, F. Sette, M. H. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad. 3, 62–64 (1996).
[Crossref]

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Rad. 5, 670–672 (1998).
[Crossref]

Nature (1)

K.-D. Liss, R. Hock, M. Gomm, B. Waibel, A. Magerl, M. Krisch, and R. Tucoulou, “Storage of X-ray photons in a crystal resonator,” Nature 404, 371 (2000).
[Crossref] [PubMed]

Opt. Express (1)

Y.-H. Wu, Y.-W. Tsai, C.-H. Chu, W.-C. Liu, Y.-Y. Chang, and S.-L. Chang, “Inclined-incidence hard X-ray resonator with ultrahigh efficiency and resolution,” Opt. Express 23, 232934 (2015).

Opt. Lett (1)

Y.-W. Tsai, Y.-Y. Chang, Y.-H. Wu, W.-C. Liu, C.-C. Peng, W.-F. Hsieh, and S.-L. Chang, “Single-mode selection for hard x-ray cavity resonance,” Opt. Lett 40, 2969 (2015).
[Crossref] [PubMed]

Phys. Rev. B (2)

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74, 134111 (2006).
[Crossref]

A. Caticha and S. Caticha-Ellis, “Dynamical theory of x-ray diffraction at Bragg angles near π/2,” Phys. Rev. B 25, 971 (1982).
[Crossref]

Phys. Rev. Lett. (3)

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity x-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108, 224801 (2012).
[Crossref] [PubMed]

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, and H. D. Rüter, “X-ray interferometry with micro-electronvolt resolution,” Phys. Rev. Lett. 90, 013904 (2003).
[Crossref]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: Realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94, 174801 (2005).
[Crossref] [PubMed]

Phys. Stat. Sol. (a) (1)

A. Caticha and S. Caticha-Ellis, “A Fabry-Perot interferometer for hard X-rays,” Phys. Stat. Sol. (a) 119, 643 (1990).
[Crossref]

Phys. Stat. Sol. (b) (1)

V. G. Kohn, Y. V. Shvyd’ko, and E. Gerdau, “On the theory of an x-ray Fabry-Perot interferometer,” Phys. Stat. Sol. (b) 221, 597 (2000).
[Crossref]

Rep. Prog. Phys. (1)

M. Hart, “Bragg reflection x ray optics,” Rep. Prog. Phys. 34, 435–490 (1971).
[Crossref]

Rev. Sci. Instrum. (1)

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72, 4080 (2001).
[Crossref]

Z. Physik B (1)

A. Steyerl and K.-A. Steinhauser, “Proposal of a Fabry-Perot-type interferometer for X-rays,” Z. Physik B 34, 221–227 (1979).
[Crossref]

Other (1)

M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Taylor & Francis, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The schematic of an interference-monochromator. (b) A typical FPR. (c) The experimental arrangement of an interference-monochromator at Beam line TPS-09A in the Taiwan Photon Source (TPS).
Fig. 2
Fig. 2 (a) The simulated transmission spectra of (12 4 0) for a two-plate 70/45/70 FPR (solid curve) and for a 140 μm silicon crystal (dashed curve); (b) the simulated reflectivity and the transmittance spectra of a 500 μm silicon crystal plate of the steering plates; (c) the simulated effective spectrum of the interference-monochromator.
Fig. 3
Fig. 3 The diffracting energy shifts of Si (12 4 0) depend on the sample temperatures with respect to the Bragg angle of 89.98°, 14.4373 keV and 300 K, where the solid line is the estimated result and the squares are the measured data. The inserted figure is the observed spectrum of the interference-monochromator at 301.95 K.
Fig. 4
Fig. 4 The β-scan of the detector. The blue solid and the red open curves indicate respectively the transmitted-beam and bounced-beam profiles shown is Fig. 1(a).
Fig. 5
Fig. 5 (a) The transmission spectra of (12 4 0) measured at the transmitted beam position for the 70/45/70 FPR (the blue solid curve) and the silicon steering plate, SP1, alone (the red dashed curve); (b) the transmission spectra of (12 4 0) at the bounced beam position for the single-resonance-mode interference-monochromator (the open circles). Notes that the zero point of ΔE′ is defined as ΔE′ = E0 − 474.0 meV, where E0 = 14.4373 keV is consistent with that in Fig. 3.

Metrics