Abstract

Optical short pulse processors enable several systems including optical code division multiple access networks, optical secure communications, and optical pulse shapers. For instance, compact and low cost integrated solutions for optical short pulse en/de-coders with large code length and capable of processing large optical bandwidth may enable realization of Tbps communication networks. Here, we report an integrated 128-bit short pulse processor capable of signal processing on large amount of optical bandwidth, demonstrated ≈ 25 nm, using sub-ps optical short pulse signal. The chip fabricated in a commercial foundry SOI CMOS process and includes more than 500 distinct optical components and over 150,000 distinct electrical components.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Varghese, I. Glesk, R. J. Runser, R. Fischer, Y. Huang, C-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
    [Crossref]
  2. C-C. Chang, H. P. Sardesai, and A. M. Weiner, “Code-division multiple-access encoding and decoding of femtosecond optical pulses over a 2.5-km fiber link,” IEEE Photon. Technol. Lett. 10(1), 171–173 (1998).
    [Crossref]
  3. W. Ben, B. J. Shastri, and P. R. Prucnal, Secure Communication in Fiber-optic Networks (Elsevier, 2014).
  4. W. Zhenxing, M. P. Fok, and P. R. Prucnal, “Physical encoding in optical layer security,” J. Cyber Secur. Mobility 1, 83–100 (2012).
  5. P. F. Mable, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
    [Crossref]
  6. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Progress in Quantum Electronics 19(3), 161–237 (1995).
    [Crossref]
  7. M. J. Heck, P. Munoz, B. W. Tilma, E. A. Bente, Y. Barbarin, Y. Oei, Richard Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
    [Crossref]
  8. C. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PloS one 10(4), e0125106 (2015).
    [Crossref] [PubMed]
  9. C. Yang, R. P. Scott, D. J. Geisler, N. K. Fontaine, J. P. Heritage, and S. B. Yoo, “Four-state data encoding for enhanced security against upstream eavesdropping in SPECTS O-CDMA,” J. Lightw. Tech. 29(1), 62–68 (2011).
    [Crossref]
  10. J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightw. Tech. 8(3), 478–491 (1990).
    [Crossref]
  11. J.F. Huang, Y.T. Chang, and C.C. Hsu, “Hybrid WDM and optical CDMA implemented over waveguide-grating-based fiber-to-the-home networks,” Opt. Fiber Tech. 13(3), 215–225 (2007).
    [Crossref]
  12. V.J. Hernandez, W. Cong, J. Hu, C. Yang, N.K. Fontaine, R.P. Scott, Z. Ding, B.H. Kolner, J.P. Heritage, and S.B. Yoo, “A 320-Gb/s capacity (32-user × 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightw. Tech. 25(1), 79–86 (2007).
    [Crossref]
  13. P. Scott Ryan, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Yoo, “Demonstration of an error-free 4 × 10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
    [Crossref]
  14. J. C. R.G. Broeke, C. Ji, S.W. Seo, Y. Du, N.K. Fontaine, J.H. Baek, J. Yan, F.M. Soares, F. Olsson, and S. Lourdudoss, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1497–1507 (2007).
    [Crossref]
  15. X.P. Zhou, F.M. Soares, N.K. Fontaine, J.H. Baek, S. Cheung, M. Shearn, A. Scherer, F. Olsson, S. Lourdudoss, K.Y. Liu, and W.T. Tsang, “16-channel × 100-GHz monolithically integrated O-CDMA transmitter with SPECTS encoder and seven 10-GHz mode-locked lasers,” Proc. OFC, JWA32 (2010).
  16. S.T. Cheung, F. Soares, J.H. Baek, B. Guan, F. Olsson, S. Lourdudoss, and S.B. Yoo, “Monolithically integrated 10-GHz ring colliding pulse mode-locked laser for on-chip coherent communications,” CLEO: Science and Innovations.Optical Society of America, CW1N (2012).
  17. H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23(5), 6509–6519 (2015).
    [Crossref] [PubMed]
  18. A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
    [Crossref]
  19. S. Cheung, T. Su, K. Okamoto, and S.J.B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
    [Crossref]
  20. S.T. Cheung, B. Guan, S.S. Djordjevic, K. Okamoto, and S.B. Yoo, “Low-loss and high contrast silicon-on-insulator (SOI) arrayed waveguide grating,” In CLEO: Science and Innovations (pp. CM4A-5). Optical Society of America (2012).
  21. F.M. Soares, N.K. Fontaine, R.P. Scott, J.H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, and K.Y. Liou, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J. 3(6), 975–985 (2011).
    [Crossref]
  22. J. Brouckaert, “Integration of Photodetectors on Silicon Photonic Integrated Circuits (PICs) for Spectroscopic Applications,” PhD thesis, Ghent University, 92(1–3), 235–241 (2010).
  23. B. G. Lee, J. O. Plouchart, A. V. Rylyakov, J. H. Song, F. E. Doany, and C. L. Schow, “Passive photonics in an unmodified CMOS technology with no post-processing required,” IEEE Photonic Tech. Lett. 25(4), 393–396 (2013).
    [Crossref]
  24. H. Abediasl and H. Hashemi, “RF-inspired silicon photonics: Beamforming at optical frequencies,” In 2016 IEEE 16th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 42–45 (2016).
  25. R. Trebino, Frequency-resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer Science & Business Media, 2012).
  26. C. Ji, R.G. Broeke, Y. Du, J. Cao, N. Chubun, P. Bjeletich, F. Olsson, S. Lourdudoss, R. Welty, C. Reinhardt, and P.L. Stephan, “Monolithically integrated InP-based photonic chip development for O-CDMA systems,” IEEE J. Sel. Top. Quantum Electron. 11(1), 66–77 (2005).
    [Crossref]
  27. M.H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D.E. Leaird, A.M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4(2), 117–122 (2010).
    [Crossref]
  28. J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L.T. Varghese, Y. Xuan, D.E. Leaird, X. Wang, F. Gan, and A.M. Weiner, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nature Commun. 6, 6957 (2015).
    [Crossref]
  29. A. Rashidinejad, Y. Li, and A.M. Weiner, “Recent Advances in Programmable Photonic-Assisted Ultrabroadband Radio-Frequency Arbitrary Waveform Generation,” IEEE J. Quantum Electron. 52(1), 1–17 (2016).
    [Crossref]
  30. A.J. Metcalf, D.E. Leaird, J. Jaramillo, V. Lal, A. Hosseini, F. Kish, and A.M. Weiner, “32 channel, 25 GHz InP integrated pulse shaper with SOA amplitude control,” In 2015 IEEE Photonics Conference (IPC), TuF3, 500–501 (2015).
  31. S. Tahvili, S. Latkowski, B. Smalbrugge, X.J. Leijtens, P.J. Williams, M.J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M.K. Smit, and E.A.J.M. Bente, “InP-based integrated optical pulse shaper: demonstration of chirp compensation,” IEEE Photon. Technol. Lett. 25(5), 450–453 (2013).
    [Crossref]

2016 (1)

A. Rashidinejad, Y. Li, and A.M. Weiner, “Recent Advances in Programmable Photonic-Assisted Ultrabroadband Radio-Frequency Arbitrary Waveform Generation,” IEEE J. Quantum Electron. 52(1), 1–17 (2016).
[Crossref]

2015 (3)

C. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PloS one 10(4), e0125106 (2015).
[Crossref] [PubMed]

H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23(5), 6509–6519 (2015).
[Crossref] [PubMed]

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L.T. Varghese, Y. Xuan, D.E. Leaird, X. Wang, F. Gan, and A.M. Weiner, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nature Commun. 6, 6957 (2015).
[Crossref]

2014 (1)

S. Cheung, T. Su, K. Okamoto, and S.J.B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

2013 (2)

B. G. Lee, J. O. Plouchart, A. V. Rylyakov, J. H. Song, F. E. Doany, and C. L. Schow, “Passive photonics in an unmodified CMOS technology with no post-processing required,” IEEE Photonic Tech. Lett. 25(4), 393–396 (2013).
[Crossref]

S. Tahvili, S. Latkowski, B. Smalbrugge, X.J. Leijtens, P.J. Williams, M.J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M.K. Smit, and E.A.J.M. Bente, “InP-based integrated optical pulse shaper: demonstration of chirp compensation,” IEEE Photon. Technol. Lett. 25(5), 450–453 (2013).
[Crossref]

2012 (1)

W. Zhenxing, M. P. Fok, and P. R. Prucnal, “Physical encoding in optical layer security,” J. Cyber Secur. Mobility 1, 83–100 (2012).

2011 (3)

P. F. Mable, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

C. Yang, R. P. Scott, D. J. Geisler, N. K. Fontaine, J. P. Heritage, and S. B. Yoo, “Four-state data encoding for enhanced security against upstream eavesdropping in SPECTS O-CDMA,” J. Lightw. Tech. 29(1), 62–68 (2011).
[Crossref]

F.M. Soares, N.K. Fontaine, R.P. Scott, J.H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, and K.Y. Liou, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

2010 (1)

M.H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D.E. Leaird, A.M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4(2), 117–122 (2010).
[Crossref]

2008 (1)

M. J. Heck, P. Munoz, B. W. Tilma, E. A. Bente, Y. Barbarin, Y. Oei, Richard Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

2007 (3)

J. C. R.G. Broeke, C. Ji, S.W. Seo, Y. Du, N.K. Fontaine, J.H. Baek, J. Yan, F.M. Soares, F. Olsson, and S. Lourdudoss, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1497–1507 (2007).
[Crossref]

J.F. Huang, Y.T. Chang, and C.C. Hsu, “Hybrid WDM and optical CDMA implemented over waveguide-grating-based fiber-to-the-home networks,” Opt. Fiber Tech. 13(3), 215–225 (2007).
[Crossref]

V.J. Hernandez, W. Cong, J. Hu, C. Yang, N.K. Fontaine, R.P. Scott, Z. Ding, B.H. Kolner, J.P. Heritage, and S.B. Yoo, “A 320-Gb/s capacity (32-user × 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightw. Tech. 25(1), 79–86 (2007).
[Crossref]

2005 (2)

B. Varghese, I. Glesk, R. J. Runser, R. Fischer, Y. Huang, C-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[Crossref]

C. Ji, R.G. Broeke, Y. Du, J. Cao, N. Chubun, P. Bjeletich, F. Olsson, S. Lourdudoss, R. Welty, C. Reinhardt, and P.L. Stephan, “Monolithically integrated InP-based photonic chip development for O-CDMA systems,” IEEE J. Sel. Top. Quantum Electron. 11(1), 66–77 (2005).
[Crossref]

2004 (1)

P. Scott Ryan, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Yoo, “Demonstration of an error-free 4 × 10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[Crossref]

1998 (1)

C-C. Chang, H. P. Sardesai, and A. M. Weiner, “Code-division multiple-access encoding and decoding of femtosecond optical pulses over a 2.5-km fiber link,” IEEE Photon. Technol. Lett. 10(1), 171–173 (1998).
[Crossref]

1995 (1)

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Progress in Quantum Electronics 19(3), 161–237 (1995).
[Crossref]

1990 (1)

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightw. Tech. 8(3), 478–491 (1990).
[Crossref]

Abadeer, W.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Abediasl, H.

H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23(5), 6509–6519 (2015).
[Crossref] [PubMed]

H. Abediasl and H. Hashemi, “RF-inspired silicon photonics: Beamforming at optical frequencies,” In 2016 IEEE 16th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 42–45 (2016).

Abou-Khalil, M.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Baek, J.H.

F.M. Soares, N.K. Fontaine, R.P. Scott, J.H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, and K.Y. Liou, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

J. C. R.G. Broeke, C. Ji, S.W. Seo, Y. Du, N.K. Fontaine, J.H. Baek, J. Yan, F.M. Soares, F. Olsson, and S. Lourdudoss, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1497–1507 (2007).
[Crossref]

X.P. Zhou, F.M. Soares, N.K. Fontaine, J.H. Baek, S. Cheung, M. Shearn, A. Scherer, F. Olsson, S. Lourdudoss, K.Y. Liu, and W.T. Tsang, “16-channel × 100-GHz monolithically integrated O-CDMA transmitter with SPECTS encoder and seven 10-GHz mode-locked lasers,” Proc. OFC, JWA32 (2010).

S.T. Cheung, F. Soares, J.H. Baek, B. Guan, F. Olsson, S. Lourdudoss, and S.B. Yoo, “Monolithically integrated 10-GHz ring colliding pulse mode-locked laser for on-chip coherent communications,” CLEO: Science and Innovations.Optical Society of America, CW1N (2012).

Barbarin, Y.

M. J. Heck, P. Munoz, B. W. Tilma, E. A. Bente, Y. Barbarin, Y. Oei, Richard Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Ben, W.

W. Ben, B. J. Shastri, and P. R. Prucnal, Secure Communication in Fiber-optic Networks (Elsevier, 2014).

Benoit, J.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Bente, E. A.

M. J. Heck, P. Munoz, B. W. Tilma, E. A. Bente, Y. Barbarin, Y. Oei, Richard Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Bente, E.A.J.M.

S. Tahvili, S. Latkowski, B. Smalbrugge, X.J. Leijtens, P.J. Williams, M.J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M.K. Smit, and E.A.J.M. Bente, “InP-based integrated optical pulse shaper: demonstration of chirp compensation,” IEEE Photon. Technol. Lett. 25(5), 450–453 (2013).
[Crossref]

Bjeletich, P.

C. Ji, R.G. Broeke, Y. Du, J. Cao, N. Chubun, P. Bjeletich, F. Olsson, S. Lourdudoss, R. Welty, C. Reinhardt, and P.L. Stephan, “Monolithically integrated InP-based photonic chip development for O-CDMA systems,” IEEE J. Sel. Top. Quantum Electron. 11(1), 66–77 (2005).
[Crossref]

Botula, A.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Bres, C-S.

B. Varghese, I. Glesk, R. J. Runser, R. Fischer, Y. Huang, C-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[Crossref]

Broeke, J. C. R.G.

J. C. R.G. Broeke, C. Ji, S.W. Seo, Y. Du, N.K. Fontaine, J.H. Baek, J. Yan, F.M. Soares, F. Olsson, and S. Lourdudoss, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1497–1507 (2007).
[Crossref]

Broeke, R.G.

C. Ji, R.G. Broeke, Y. Du, J. Cao, N. Chubun, P. Bjeletich, F. Olsson, S. Lourdudoss, R. Welty, C. Reinhardt, and P.L. Stephan, “Monolithically integrated InP-based photonic chip development for O-CDMA systems,” IEEE J. Sel. Top. Quantum Electron. 11(1), 66–77 (2005).
[Crossref]

Brouckaert, J.

J. Brouckaert, “Integration of Photodetectors on Silicon Photonic Integrated Circuits (PICs) for Spectroscopic Applications,” PhD thesis, Ghent University, 92(1–3), 235–241 (2010).

Cao, J.

C. Ji, R.G. Broeke, Y. Du, J. Cao, N. Chubun, P. Bjeletich, F. Olsson, S. Lourdudoss, R. Welty, C. Reinhardt, and P.L. Stephan, “Monolithically integrated InP-based photonic chip development for O-CDMA systems,” IEEE J. Sel. Top. Quantum Electron. 11(1), 66–77 (2005).
[Crossref]

Chang, C-C.

C-C. Chang, H. P. Sardesai, and A. M. Weiner, “Code-division multiple-access encoding and decoding of femtosecond optical pulses over a 2.5-km fiber link,” IEEE Photon. Technol. Lett. 10(1), 171–173 (1998).
[Crossref]

Chang, Y.T.

J.F. Huang, Y.T. Chang, and C.C. Hsu, “Hybrid WDM and optical CDMA implemented over waveguide-grating-based fiber-to-the-home networks,” Opt. Fiber Tech. 13(3), 215–225 (2007).
[Crossref]

Chen, C.

C. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PloS one 10(4), e0125106 (2015).
[Crossref] [PubMed]

Cheung, S.

S. Cheung, T. Su, K. Okamoto, and S.J.B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

F.M. Soares, N.K. Fontaine, R.P. Scott, J.H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, and K.Y. Liou, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

X.P. Zhou, F.M. Soares, N.K. Fontaine, J.H. Baek, S. Cheung, M. Shearn, A. Scherer, F. Olsson, S. Lourdudoss, K.Y. Liu, and W.T. Tsang, “16-channel × 100-GHz monolithically integrated O-CDMA transmitter with SPECTS encoder and seven 10-GHz mode-locked lasers,” Proc. OFC, JWA32 (2010).

Cheung, S.T.

S.T. Cheung, F. Soares, J.H. Baek, B. Guan, F. Olsson, S. Lourdudoss, and S.B. Yoo, “Monolithically integrated 10-GHz ring colliding pulse mode-locked laser for on-chip coherent communications,” CLEO: Science and Innovations.Optical Society of America, CW1N (2012).

S.T. Cheung, B. Guan, S.S. Djordjevic, K. Okamoto, and S.B. Yoo, “Low-loss and high contrast silicon-on-insulator (SOI) arrayed waveguide grating,” In CLEO: Science and Innovations (pp. CM4A-5). Optical Society of America (2012).

Chubun, N.

C. Ji, R.G. Broeke, Y. Du, J. Cao, N. Chubun, P. Bjeletich, F. Olsson, S. Lourdudoss, R. Welty, C. Reinhardt, and P.L. Stephan, “Monolithically integrated InP-based photonic chip development for O-CDMA systems,” IEEE J. Sel. Top. Quantum Electron. 11(1), 66–77 (2005).
[Crossref]

Cong, W.

V.J. Hernandez, W. Cong, J. Hu, C. Yang, N.K. Fontaine, R.P. Scott, Z. Ding, B.H. Kolner, J.P. Heritage, and S.B. Yoo, “A 320-Gb/s capacity (32-user × 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightw. Tech. 25(1), 79–86 (2007).
[Crossref]

P. Scott Ryan, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Yoo, “Demonstration of an error-free 4 × 10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[Crossref]

Curtis, T. H.

B. Varghese, I. Glesk, R. J. Runser, R. Fischer, Y. Huang, C-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[Crossref]

Deng, Y.

P. F. Mable, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

Ding, Z.

V.J. Hernandez, W. Cong, J. Hu, C. Yang, N.K. Fontaine, R.P. Scott, Z. Ding, B.H. Kolner, J.P. Heritage, and S.B. Yoo, “A 320-Gb/s capacity (32-user × 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightw. Tech. 25(1), 79–86 (2007).
[Crossref]

Djordjevic, S.S.

S.T. Cheung, B. Guan, S.S. Djordjevic, K. Okamoto, and S.B. Yoo, “Low-loss and high contrast silicon-on-insulator (SOI) arrayed waveguide grating,” In CLEO: Science and Innovations (pp. CM4A-5). Optical Society of America (2012).

Doany, F. E.

B. G. Lee, J. O. Plouchart, A. V. Rylyakov, J. H. Song, F. E. Doany, and C. L. Schow, “Passive photonics in an unmodified CMOS technology with no post-processing required,” IEEE Photonic Tech. Lett. 25(4), 393–396 (2013).
[Crossref]

Du, Y.

J. C. R.G. Broeke, C. Ji, S.W. Seo, Y. Du, N.K. Fontaine, J.H. Baek, J. Yan, F.M. Soares, F. Olsson, and S. Lourdudoss, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1497–1507 (2007).
[Crossref]

C. Ji, R.G. Broeke, Y. Du, J. Cao, N. Chubun, P. Bjeletich, F. Olsson, S. Lourdudoss, R. Welty, C. Reinhardt, and P.L. Stephan, “Monolithically integrated InP-based photonic chip development for O-CDMA systems,” IEEE J. Sel. Top. Quantum Electron. 11(1), 66–77 (2005).
[Crossref]

Dunn, J.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Fan, L.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L.T. Varghese, Y. Xuan, D.E. Leaird, X. Wang, F. Gan, and A.M. Weiner, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nature Commun. 6, 6957 (2015).
[Crossref]

Fischer, R.

B. Varghese, I. Glesk, R. J. Runser, R. Fischer, Y. Huang, C-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[Crossref]

Fok, M. P.

W. Zhenxing, M. P. Fok, and P. R. Prucnal, “Physical encoding in optical layer security,” J. Cyber Secur. Mobility 1, 83–100 (2012).

Fontaine, N. K.

C. Yang, R. P. Scott, D. J. Geisler, N. K. Fontaine, J. P. Heritage, and S. B. Yoo, “Four-state data encoding for enhanced security against upstream eavesdropping in SPECTS O-CDMA,” J. Lightw. Tech. 29(1), 62–68 (2011).
[Crossref]

Fontaine, N.K.

F.M. Soares, N.K. Fontaine, R.P. Scott, J.H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, and K.Y. Liou, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

V.J. Hernandez, W. Cong, J. Hu, C. Yang, N.K. Fontaine, R.P. Scott, Z. Ding, B.H. Kolner, J.P. Heritage, and S.B. Yoo, “A 320-Gb/s capacity (32-user × 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightw. Tech. 25(1), 79–86 (2007).
[Crossref]

J. C. R.G. Broeke, C. Ji, S.W. Seo, Y. Du, N.K. Fontaine, J.H. Baek, J. Yan, F.M. Soares, F. Olsson, and S. Lourdudoss, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1497–1507 (2007).
[Crossref]

X.P. Zhou, F.M. Soares, N.K. Fontaine, J.H. Baek, S. Cheung, M. Shearn, A. Scherer, F. Olsson, S. Lourdudoss, K.Y. Liu, and W.T. Tsang, “16-channel × 100-GHz monolithically integrated O-CDMA transmitter with SPECTS encoder and seven 10-GHz mode-locked lasers,” Proc. OFC, JWA32 (2010).

Gan, F.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L.T. Varghese, Y. Xuan, D.E. Leaird, X. Wang, F. Gan, and A.M. Weiner, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nature Commun. 6, 6957 (2015).
[Crossref]

Gautsch, M.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Geisler, D. J.

C. Yang, R. P. Scott, D. J. Geisler, N. K. Fontaine, J. P. Heritage, and S. B. Yoo, “Four-state data encoding for enhanced security against upstream eavesdropping in SPECTS O-CDMA,” J. Lightw. Tech. 29(1), 62–68 (2011).
[Crossref]

Glesk, I.

B. Varghese, I. Glesk, R. J. Runser, R. Fischer, Y. Huang, C-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[Crossref]

Gordon, M.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Guan, B.

S.T. Cheung, F. Soares, J.H. Baek, B. Guan, F. Olsson, S. Lourdudoss, and S.B. Yoo, “Monolithically integrated 10-GHz ring colliding pulse mode-locked laser for on-chip coherent communications,” CLEO: Science and Innovations.Optical Society of America, CW1N (2012).

S.T. Cheung, B. Guan, S.S. Djordjevic, K. Okamoto, and S.B. Yoo, “Low-loss and high contrast silicon-on-insulator (SOI) arrayed waveguide grating,” In CLEO: Science and Innovations (pp. CM4A-5). Optical Society of America (2012).

Harmon, D.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Hashemi, H.

H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23(5), 6509–6519 (2015).
[Crossref] [PubMed]

H. Abediasl and H. Hashemi, “RF-inspired silicon photonics: Beamforming at optical frequencies,” In 2016 IEEE 16th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 42–45 (2016).

He, Z.-X.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Heck, M. J.

M. J. Heck, P. Munoz, B. W. Tilma, E. A. Bente, Y. Barbarin, Y. Oei, Richard Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Heritage, J. P.

C. Yang, R. P. Scott, D. J. Geisler, N. K. Fontaine, J. P. Heritage, and S. B. Yoo, “Four-state data encoding for enhanced security against upstream eavesdropping in SPECTS O-CDMA,” J. Lightw. Tech. 29(1), 62–68 (2011).
[Crossref]

P. Scott Ryan, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Yoo, “Demonstration of an error-free 4 × 10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[Crossref]

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightw. Tech. 8(3), 478–491 (1990).
[Crossref]

Heritage, J.P.

V.J. Hernandez, W. Cong, J. Hu, C. Yang, N.K. Fontaine, R.P. Scott, Z. Ding, B.H. Kolner, J.P. Heritage, and S.B. Yoo, “A 320-Gb/s capacity (32-user × 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightw. Tech. 25(1), 79–86 (2007).
[Crossref]

Hernandez, V. J.

P. Scott Ryan, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Yoo, “Demonstration of an error-free 4 × 10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[Crossref]

Hernandez, V.J.

V.J. Hernandez, W. Cong, J. Hu, C. Yang, N.K. Fontaine, R.P. Scott, Z. Ding, B.H. Kolner, J.P. Heritage, and S.B. Yoo, “A 320-Gb/s capacity (32-user × 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightw. Tech. 25(1), 79–86 (2007).
[Crossref]

Hosseini, A.

A.J. Metcalf, D.E. Leaird, J. Jaramillo, V. Lal, A. Hosseini, F. Kish, and A.M. Weiner, “32 channel, 25 GHz InP integrated pulse shaper with SOA amplitude control,” In 2015 IEEE Photonics Conference (IPC), TuF3, 500–501 (2015).

Hsu, C.C.

J.F. Huang, Y.T. Chang, and C.C. Hsu, “Hybrid WDM and optical CDMA implemented over waveguide-grating-based fiber-to-the-home networks,” Opt. Fiber Tech. 13(3), 215–225 (2007).
[Crossref]

Hu, J.

V.J. Hernandez, W. Cong, J. Hu, C. Yang, N.K. Fontaine, R.P. Scott, Z. Ding, B.H. Kolner, J.P. Heritage, and S.B. Yoo, “A 320-Gb/s capacity (32-user × 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightw. Tech. 25(1), 79–86 (2007).
[Crossref]

Huang, J.F.

J.F. Huang, Y.T. Chang, and C.C. Hsu, “Hybrid WDM and optical CDMA implemented over waveguide-grating-based fiber-to-the-home networks,” Opt. Fiber Tech. 13(3), 215–225 (2007).
[Crossref]

Huang, Y.

B. Varghese, I. Glesk, R. J. Runser, R. Fischer, Y. Huang, C-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[Crossref]

Ioannou, D.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Jalali, B.

C. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PloS one 10(4), e0125106 (2015).
[Crossref] [PubMed]

Jaramillo, J.

A.J. Metcalf, D.E. Leaird, J. Jaramillo, V. Lal, A. Hosseini, F. Kish, and A.M. Weiner, “32 channel, 25 GHz InP integrated pulse shaper with SOA amplitude control,” In 2015 IEEE Photonics Conference (IPC), TuF3, 500–501 (2015).

Ji, C.

J. C. R.G. Broeke, C. Ji, S.W. Seo, Y. Du, N.K. Fontaine, J.H. Baek, J. Yan, F.M. Soares, F. Olsson, and S. Lourdudoss, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1497–1507 (2007).
[Crossref]

C. Ji, R.G. Broeke, Y. Du, J. Cao, N. Chubun, P. Bjeletich, F. Olsson, S. Lourdudoss, R. Welty, C. Reinhardt, and P.L. Stephan, “Monolithically integrated InP-based photonic chip development for O-CDMA systems,” IEEE J. Sel. Top. Quantum Electron. 11(1), 66–77 (2005).
[Crossref]

Joseph, A.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Junesand, C.

F.M. Soares, N.K. Fontaine, R.P. Scott, J.H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, and K.Y. Liou, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Khan, M.H.

M.H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D.E. Leaird, A.M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4(2), 117–122 (2010).
[Crossref]

Kish, F.

A.J. Metcalf, D.E. Leaird, J. Jaramillo, V. Lal, A. Hosseini, F. Kish, and A.M. Weiner, “32 channel, 25 GHz InP integrated pulse shaper with SOA amplitude control,” In 2015 IEEE Photonics Conference (IPC), TuF3, 500–501 (2015).

Kolner, B. H.

P. Scott Ryan, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Yoo, “Demonstration of an error-free 4 × 10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[Crossref]

Kolner, B.H.

V.J. Hernandez, W. Cong, J. Hu, C. Yang, N.K. Fontaine, R.P. Scott, Z. Ding, B.H. Kolner, J.P. Heritage, and S.B. Yoo, “A 320-Gb/s capacity (32-user × 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightw. Tech. 25(1), 79–86 (2007).
[Crossref]

Kwong, W. C.

B. Varghese, I. Glesk, R. J. Runser, R. Fischer, Y. Huang, C-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[Crossref]

Lal, V.

A.J. Metcalf, D.E. Leaird, J. Jaramillo, V. Lal, A. Hosseini, F. Kish, and A.M. Weiner, “32 channel, 25 GHz InP integrated pulse shaper with SOA amplitude control,” In 2015 IEEE Photonics Conference (IPC), TuF3, 500–501 (2015).

Landais, P.

S. Tahvili, S. Latkowski, B. Smalbrugge, X.J. Leijtens, P.J. Williams, M.J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M.K. Smit, and E.A.J.M. Bente, “InP-based integrated optical pulse shaper: demonstration of chirp compensation,” IEEE Photon. Technol. Lett. 25(5), 450–453 (2013).
[Crossref]

Latkowski, S.

S. Tahvili, S. Latkowski, B. Smalbrugge, X.J. Leijtens, P.J. Williams, M.J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M.K. Smit, and E.A.J.M. Bente, “InP-based integrated optical pulse shaper: demonstration of chirp compensation,” IEEE Photon. Technol. Lett. 25(5), 450–453 (2013).
[Crossref]

Leaird, D.E.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L.T. Varghese, Y. Xuan, D.E. Leaird, X. Wang, F. Gan, and A.M. Weiner, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nature Commun. 6, 6957 (2015).
[Crossref]

M.H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D.E. Leaird, A.M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4(2), 117–122 (2010).
[Crossref]

A.J. Metcalf, D.E. Leaird, J. Jaramillo, V. Lal, A. Hosseini, F. Kish, and A.M. Weiner, “32 channel, 25 GHz InP integrated pulse shaper with SOA amplitude control,” In 2015 IEEE Photonics Conference (IPC), TuF3, 500–501 (2015).

Lee, B. G.

B. G. Lee, J. O. Plouchart, A. V. Rylyakov, J. H. Song, F. E. Doany, and C. L. Schow, “Passive photonics in an unmodified CMOS technology with no post-processing required,” IEEE Photonic Tech. Lett. 25(4), 393–396 (2013).
[Crossref]

Leijtens, X.J.

S. Tahvili, S. Latkowski, B. Smalbrugge, X.J. Leijtens, P.J. Williams, M.J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M.K. Smit, and E.A.J.M. Bente, “InP-based integrated optical pulse shaper: demonstration of chirp compensation,” IEEE Photon. Technol. Lett. 25(5), 450–453 (2013).
[Crossref]

Levy, M.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Li, K.

P. Scott Ryan, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Yoo, “Demonstration of an error-free 4 × 10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[Crossref]

Li, Y.

A. Rashidinejad, Y. Li, and A.M. Weiner, “Recent Advances in Programmable Photonic-Assisted Ultrabroadband Radio-Frequency Arbitrary Waveform Generation,” IEEE J. Quantum Electron. 52(1), 1–17 (2016).
[Crossref]

Liou, K.Y.

F.M. Soares, N.K. Fontaine, R.P. Scott, J.H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, and K.Y. Liou, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Liu, K.Y.

X.P. Zhou, F.M. Soares, N.K. Fontaine, J.H. Baek, S. Cheung, M. Shearn, A. Scherer, F. Olsson, S. Lourdudoss, K.Y. Liu, and W.T. Tsang, “16-channel × 100-GHz monolithically integrated O-CDMA transmitter with SPECTS encoder and seven 10-GHz mode-locked lasers,” Proc. OFC, JWA32 (2010).

Lourdudoss, S.

F.M. Soares, N.K. Fontaine, R.P. Scott, J.H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, and K.Y. Liou, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

J. C. R.G. Broeke, C. Ji, S.W. Seo, Y. Du, N.K. Fontaine, J.H. Baek, J. Yan, F.M. Soares, F. Olsson, and S. Lourdudoss, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1497–1507 (2007).
[Crossref]

C. Ji, R.G. Broeke, Y. Du, J. Cao, N. Chubun, P. Bjeletich, F. Olsson, S. Lourdudoss, R. Welty, C. Reinhardt, and P.L. Stephan, “Monolithically integrated InP-based photonic chip development for O-CDMA systems,” IEEE J. Sel. Top. Quantum Electron. 11(1), 66–77 (2005).
[Crossref]

X.P. Zhou, F.M. Soares, N.K. Fontaine, J.H. Baek, S. Cheung, M. Shearn, A. Scherer, F. Olsson, S. Lourdudoss, K.Y. Liu, and W.T. Tsang, “16-channel × 100-GHz monolithically integrated O-CDMA transmitter with SPECTS encoder and seven 10-GHz mode-locked lasers,” Proc. OFC, JWA32 (2010).

S.T. Cheung, F. Soares, J.H. Baek, B. Guan, F. Olsson, S. Lourdudoss, and S.B. Yoo, “Monolithically integrated 10-GHz ring colliding pulse mode-locked laser for on-chip coherent communications,” CLEO: Science and Innovations.Optical Society of America, CW1N (2012).

Mable, P. F.

P. F. Mable, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

Mahjoubfar, A.

C. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PloS one 10(4), e0125106 (2015).
[Crossref] [PubMed]

Maldonado-Basilio, R.

S. Tahvili, S. Latkowski, B. Smalbrugge, X.J. Leijtens, P.J. Williams, M.J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M.K. Smit, and E.A.J.M. Bente, “InP-based integrated optical pulse shaper: demonstration of chirp compensation,” IEEE Photon. Technol. Lett. 25(5), 450–453 (2013).
[Crossref]

Metcalf, A.J.

A.J. Metcalf, D.E. Leaird, J. Jaramillo, V. Lal, A. Hosseini, F. Kish, and A.M. Weiner, “32 channel, 25 GHz InP integrated pulse shaper with SOA amplitude control,” In 2015 IEEE Photonics Conference (IPC), TuF3, 500–501 (2015).

Munoz, P.

M. J. Heck, P. Munoz, B. W. Tilma, E. A. Bente, Y. Barbarin, Y. Oei, Richard Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Niu, B.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L.T. Varghese, Y. Xuan, D.E. Leaird, X. Wang, F. Gan, and A.M. Weiner, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nature Commun. 6, 6957 (2015).
[Crossref]

Notzel, Richard

M. J. Heck, P. Munoz, B. W. Tilma, E. A. Bente, Y. Barbarin, Y. Oei, Richard Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Oei, Y.

M. J. Heck, P. Munoz, B. W. Tilma, E. A. Bente, Y. Barbarin, Y. Oei, Richard Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Okamoto, K.

S. Cheung, T. Su, K. Okamoto, and S.J.B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

S.T. Cheung, B. Guan, S.S. Djordjevic, K. Okamoto, and S.B. Yoo, “Low-loss and high contrast silicon-on-insulator (SOI) arrayed waveguide grating,” In CLEO: Science and Innovations (pp. CM4A-5). Optical Society of America (2012).

Olsson, F.

J. C. R.G. Broeke, C. Ji, S.W. Seo, Y. Du, N.K. Fontaine, J.H. Baek, J. Yan, F.M. Soares, F. Olsson, and S. Lourdudoss, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1497–1507 (2007).
[Crossref]

C. Ji, R.G. Broeke, Y. Du, J. Cao, N. Chubun, P. Bjeletich, F. Olsson, S. Lourdudoss, R. Welty, C. Reinhardt, and P.L. Stephan, “Monolithically integrated InP-based photonic chip development for O-CDMA systems,” IEEE J. Sel. Top. Quantum Electron. 11(1), 66–77 (2005).
[Crossref]

X.P. Zhou, F.M. Soares, N.K. Fontaine, J.H. Baek, S. Cheung, M. Shearn, A. Scherer, F. Olsson, S. Lourdudoss, K.Y. Liu, and W.T. Tsang, “16-channel × 100-GHz monolithically integrated O-CDMA transmitter with SPECTS encoder and seven 10-GHz mode-locked lasers,” Proc. OFC, JWA32 (2010).

S.T. Cheung, F. Soares, J.H. Baek, B. Guan, F. Olsson, S. Lourdudoss, and S.B. Yoo, “Monolithically integrated 10-GHz ring colliding pulse mode-locked laser for on-chip coherent communications,” CLEO: Science and Innovations.Optical Society of America, CW1N (2012).

Parra-Cetina, J.

S. Tahvili, S. Latkowski, B. Smalbrugge, X.J. Leijtens, P.J. Williams, M.J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M.K. Smit, and E.A.J.M. Bente, “InP-based integrated optical pulse shaper: demonstration of chirp compensation,” IEEE Photon. Technol. Lett. 25(5), 450–453 (2013).
[Crossref]

Phelps, R.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Plouchart, J. O.

B. G. Lee, J. O. Plouchart, A. V. Rylyakov, J. H. Song, F. E. Doany, and C. L. Schow, “Passive photonics in an unmodified CMOS technology with no post-processing required,” IEEE Photonic Tech. Lett. 25(4), 393–396 (2013).
[Crossref]

Prucnal, P. R.

W. Zhenxing, M. P. Fok, and P. R. Prucnal, “Physical encoding in optical layer security,” J. Cyber Secur. Mobility 1, 83–100 (2012).

P. F. Mable, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

B. Varghese, I. Glesk, R. J. Runser, R. Fischer, Y. Huang, C-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[Crossref]

W. Ben, B. J. Shastri, and P. R. Prucnal, Secure Communication in Fiber-optic Networks (Elsevier, 2014).

Qi, M.

M.H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D.E. Leaird, A.M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4(2), 117–122 (2010).
[Crossref]

Rashidinejad, A.

A. Rashidinejad, Y. Li, and A.M. Weiner, “Recent Advances in Programmable Photonic-Assisted Ultrabroadband Radio-Frequency Arbitrary Waveform Generation,” IEEE J. Quantum Electron. 52(1), 1–17 (2016).
[Crossref]

Reinhardt, C.

C. Ji, R.G. Broeke, Y. Du, J. Cao, N. Chubun, P. Bjeletich, F. Olsson, S. Lourdudoss, R. Welty, C. Reinhardt, and P.L. Stephan, “Monolithically integrated InP-based photonic chip development for O-CDMA systems,” IEEE J. Sel. Top. Quantum Electron. 11(1), 66–77 (2005).
[Crossref]

Runser, R. J.

B. Varghese, I. Glesk, R. J. Runser, R. Fischer, Y. Huang, C-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[Crossref]

Rylyakov, A. V.

B. G. Lee, J. O. Plouchart, A. V. Rylyakov, J. H. Song, F. E. Doany, and C. L. Schow, “Passive photonics in an unmodified CMOS technology with no post-processing required,” IEEE Photonic Tech. Lett. 25(4), 393–396 (2013).
[Crossref]

Salehi, J. A.

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightw. Tech. 8(3), 478–491 (1990).
[Crossref]

Sardesai, H. P.

C-C. Chang, H. P. Sardesai, and A. M. Weiner, “Code-division multiple-access encoding and decoding of femtosecond optical pulses over a 2.5-km fiber link,” IEEE Photon. Technol. Lett. 10(1), 171–173 (1998).
[Crossref]

Scherer, A.

X.P. Zhou, F.M. Soares, N.K. Fontaine, J.H. Baek, S. Cheung, M. Shearn, A. Scherer, F. Olsson, S. Lourdudoss, K.Y. Liu, and W.T. Tsang, “16-channel × 100-GHz monolithically integrated O-CDMA transmitter with SPECTS encoder and seven 10-GHz mode-locked lasers,” Proc. OFC, JWA32 (2010).

Schow, C. L.

B. G. Lee, J. O. Plouchart, A. V. Rylyakov, J. H. Song, F. E. Doany, and C. L. Schow, “Passive photonics in an unmodified CMOS technology with no post-processing required,” IEEE Photonic Tech. Lett. 25(4), 393–396 (2013).
[Crossref]

Scott, R. P.

C. Yang, R. P. Scott, D. J. Geisler, N. K. Fontaine, J. P. Heritage, and S. B. Yoo, “Four-state data encoding for enhanced security against upstream eavesdropping in SPECTS O-CDMA,” J. Lightw. Tech. 29(1), 62–68 (2011).
[Crossref]

Scott, R.P.

F.M. Soares, N.K. Fontaine, R.P. Scott, J.H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, and K.Y. Liou, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

V.J. Hernandez, W. Cong, J. Hu, C. Yang, N.K. Fontaine, R.P. Scott, Z. Ding, B.H. Kolner, J.P. Heritage, and S.B. Yoo, “A 320-Gb/s capacity (32-user × 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightw. Tech. 25(1), 79–86 (2007).
[Crossref]

Scott Ryan, P.

P. Scott Ryan, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Yoo, “Demonstration of an error-free 4 × 10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[Crossref]

Seo, S.W.

J. C. R.G. Broeke, C. Ji, S.W. Seo, Y. Du, N.K. Fontaine, J.H. Baek, J. Yan, F.M. Soares, F. Olsson, and S. Lourdudoss, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1497–1507 (2007).
[Crossref]

Shastri, B. J.

W. Ben, B. J. Shastri, and P. R. Prucnal, Secure Communication in Fiber-optic Networks (Elsevier, 2014).

Shearn, M.

X.P. Zhou, F.M. Soares, N.K. Fontaine, J.H. Baek, S. Cheung, M. Shearn, A. Scherer, F. Olsson, S. Lourdudoss, K.Y. Liu, and W.T. Tsang, “16-channel × 100-GHz monolithically integrated O-CDMA transmitter with SPECTS encoder and seven 10-GHz mode-locked lasers,” Proc. OFC, JWA32 (2010).

Shen, H.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L.T. Varghese, Y. Xuan, D.E. Leaird, X. Wang, F. Gan, and A.M. Weiner, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nature Commun. 6, 6957 (2015).
[Crossref]

M.H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D.E. Leaird, A.M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4(2), 117–122 (2010).
[Crossref]

Slinkman, J.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Smalbrugge, B.

S. Tahvili, S. Latkowski, B. Smalbrugge, X.J. Leijtens, P.J. Williams, M.J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M.K. Smit, and E.A.J.M. Bente, “InP-based integrated optical pulse shaper: demonstration of chirp compensation,” IEEE Photon. Technol. Lett. 25(5), 450–453 (2013).
[Crossref]

Smit, M. K.

M. J. Heck, P. Munoz, B. W. Tilma, E. A. Bente, Y. Barbarin, Y. Oei, Richard Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Smit, M.K.

S. Tahvili, S. Latkowski, B. Smalbrugge, X.J. Leijtens, P.J. Williams, M.J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M.K. Smit, and E.A.J.M. Bente, “InP-based integrated optical pulse shaper: demonstration of chirp compensation,” IEEE Photon. Technol. Lett. 25(5), 450–453 (2013).
[Crossref]

Soares, F.

S.T. Cheung, F. Soares, J.H. Baek, B. Guan, F. Olsson, S. Lourdudoss, and S.B. Yoo, “Monolithically integrated 10-GHz ring colliding pulse mode-locked laser for on-chip coherent communications,” CLEO: Science and Innovations.Optical Society of America, CW1N (2012).

Soares, F.M.

F.M. Soares, N.K. Fontaine, R.P. Scott, J.H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, and K.Y. Liou, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

J. C. R.G. Broeke, C. Ji, S.W. Seo, Y. Du, N.K. Fontaine, J.H. Baek, J. Yan, F.M. Soares, F. Olsson, and S. Lourdudoss, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1497–1507 (2007).
[Crossref]

X.P. Zhou, F.M. Soares, N.K. Fontaine, J.H. Baek, S. Cheung, M. Shearn, A. Scherer, F. Olsson, S. Lourdudoss, K.Y. Liu, and W.T. Tsang, “16-channel × 100-GHz monolithically integrated O-CDMA transmitter with SPECTS encoder and seven 10-GHz mode-locked lasers,” Proc. OFC, JWA32 (2010).

Song, J. H.

B. G. Lee, J. O. Plouchart, A. V. Rylyakov, J. H. Song, F. E. Doany, and C. L. Schow, “Passive photonics in an unmodified CMOS technology with no post-processing required,” IEEE Photonic Tech. Lett. 25(4), 393–396 (2013).
[Crossref]

Stephan, P.L.

C. Ji, R.G. Broeke, Y. Du, J. Cao, N. Chubun, P. Bjeletich, F. Olsson, S. Lourdudoss, R. Welty, C. Reinhardt, and P.L. Stephan, “Monolithically integrated InP-based photonic chip development for O-CDMA systems,” IEEE J. Sel. Top. Quantum Electron. 11(1), 66–77 (2005).
[Crossref]

Su, T.

S. Cheung, T. Su, K. Okamoto, and S.J.B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

F.M. Soares, N.K. Fontaine, R.P. Scott, J.H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, and K.Y. Liou, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Tahvili, S.

S. Tahvili, S. Latkowski, B. Smalbrugge, X.J. Leijtens, P.J. Williams, M.J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M.K. Smit, and E.A.J.M. Bente, “InP-based integrated optical pulse shaper: demonstration of chirp compensation,” IEEE Photon. Technol. Lett. 25(5), 450–453 (2013).
[Crossref]

Tilma, B. W.

M. J. Heck, P. Munoz, B. W. Tilma, E. A. Bente, Y. Barbarin, Y. Oei, Richard Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Trebino, R.

R. Trebino, Frequency-resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer Science & Business Media, 2012).

Tsang, W.T.

X.P. Zhou, F.M. Soares, N.K. Fontaine, J.H. Baek, S. Cheung, M. Shearn, A. Scherer, F. Olsson, S. Lourdudoss, K.Y. Liu, and W.T. Tsang, “16-channel × 100-GHz monolithically integrated O-CDMA transmitter with SPECTS encoder and seven 10-GHz mode-locked lasers,” Proc. OFC, JWA32 (2010).

Varghese, B.

B. Varghese, I. Glesk, R. J. Runser, R. Fischer, Y. Huang, C-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[Crossref]

Varghese, L.T.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L.T. Varghese, Y. Xuan, D.E. Leaird, X. Wang, F. Gan, and A.M. Weiner, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nature Commun. 6, 6957 (2015).
[Crossref]

Wagner, L.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Wale, M.J.

S. Tahvili, S. Latkowski, B. Smalbrugge, X.J. Leijtens, P.J. Williams, M.J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M.K. Smit, and E.A.J.M. Bente, “InP-based integrated optical pulse shaper: demonstration of chirp compensation,” IEEE Photon. Technol. Lett. 25(5), 450–453 (2013).
[Crossref]

Wang, J.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L.T. Varghese, Y. Xuan, D.E. Leaird, X. Wang, F. Gan, and A.M. Weiner, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nature Commun. 6, 6957 (2015).
[Crossref]

Wang, X.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L.T. Varghese, Y. Xuan, D.E. Leaird, X. Wang, F. Gan, and A.M. Weiner, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nature Commun. 6, 6957 (2015).
[Crossref]

Wang, Y.

F.M. Soares, N.K. Fontaine, R.P. Scott, J.H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, and K.Y. Liou, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Wang, Z.

P. F. Mable, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

Weiner, A. M.

C-C. Chang, H. P. Sardesai, and A. M. Weiner, “Code-division multiple-access encoding and decoding of femtosecond optical pulses over a 2.5-km fiber link,” IEEE Photon. Technol. Lett. 10(1), 171–173 (1998).
[Crossref]

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Progress in Quantum Electronics 19(3), 161–237 (1995).
[Crossref]

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightw. Tech. 8(3), 478–491 (1990).
[Crossref]

Weiner, A.M.

A. Rashidinejad, Y. Li, and A.M. Weiner, “Recent Advances in Programmable Photonic-Assisted Ultrabroadband Radio-Frequency Arbitrary Waveform Generation,” IEEE J. Quantum Electron. 52(1), 1–17 (2016).
[Crossref]

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L.T. Varghese, Y. Xuan, D.E. Leaird, X. Wang, F. Gan, and A.M. Weiner, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nature Commun. 6, 6957 (2015).
[Crossref]

M.H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D.E. Leaird, A.M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4(2), 117–122 (2010).
[Crossref]

A.J. Metcalf, D.E. Leaird, J. Jaramillo, V. Lal, A. Hosseini, F. Kish, and A.M. Weiner, “32 channel, 25 GHz InP integrated pulse shaper with SOA amplitude control,” In 2015 IEEE Photonics Conference (IPC), TuF3, 500–501 (2015).

Welty, R.

C. Ji, R.G. Broeke, Y. Du, J. Cao, N. Chubun, P. Bjeletich, F. Olsson, S. Lourdudoss, R. Welty, C. Reinhardt, and P.L. Stephan, “Monolithically integrated InP-based photonic chip development for O-CDMA systems,” IEEE J. Sel. Top. Quantum Electron. 11(1), 66–77 (2005).
[Crossref]

Williams, P.J.

S. Tahvili, S. Latkowski, B. Smalbrugge, X.J. Leijtens, P.J. Williams, M.J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M.K. Smit, and E.A.J.M. Bente, “InP-based integrated optical pulse shaper: demonstration of chirp compensation,” IEEE Photon. Technol. Lett. 25(5), 450–453 (2013).
[Crossref]

Wolf, R.

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

Wu, R.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L.T. Varghese, Y. Xuan, D.E. Leaird, X. Wang, F. Gan, and A.M. Weiner, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nature Commun. 6, 6957 (2015).
[Crossref]

Xiao, S.

M.H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D.E. Leaird, A.M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4(2), 117–122 (2010).
[Crossref]

Xuan, Y.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L.T. Varghese, Y. Xuan, D.E. Leaird, X. Wang, F. Gan, and A.M. Weiner, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nature Commun. 6, 6957 (2015).
[Crossref]

M.H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D.E. Leaird, A.M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4(2), 117–122 (2010).
[Crossref]

Yan, J.

J. C. R.G. Broeke, C. Ji, S.W. Seo, Y. Du, N.K. Fontaine, J.H. Baek, J. Yan, F.M. Soares, F. Olsson, and S. Lourdudoss, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1497–1507 (2007).
[Crossref]

Yang, C.

C. Yang, R. P. Scott, D. J. Geisler, N. K. Fontaine, J. P. Heritage, and S. B. Yoo, “Four-state data encoding for enhanced security against upstream eavesdropping in SPECTS O-CDMA,” J. Lightw. Tech. 29(1), 62–68 (2011).
[Crossref]

V.J. Hernandez, W. Cong, J. Hu, C. Yang, N.K. Fontaine, R.P. Scott, Z. Ding, B.H. Kolner, J.P. Heritage, and S.B. Yoo, “A 320-Gb/s capacity (32-user × 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightw. Tech. 25(1), 79–86 (2007).
[Crossref]

Yoo, S. B.

C. Yang, R. P. Scott, D. J. Geisler, N. K. Fontaine, J. P. Heritage, and S. B. Yoo, “Four-state data encoding for enhanced security against upstream eavesdropping in SPECTS O-CDMA,” J. Lightw. Tech. 29(1), 62–68 (2011).
[Crossref]

Yoo, S. J.

P. Scott Ryan, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Yoo, “Demonstration of an error-free 4 × 10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[Crossref]

Yoo, S.B.

V.J. Hernandez, W. Cong, J. Hu, C. Yang, N.K. Fontaine, R.P. Scott, Z. Ding, B.H. Kolner, J.P. Heritage, and S.B. Yoo, “A 320-Gb/s capacity (32-user × 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightw. Tech. 25(1), 79–86 (2007).
[Crossref]

S.T. Cheung, F. Soares, J.H. Baek, B. Guan, F. Olsson, S. Lourdudoss, and S.B. Yoo, “Monolithically integrated 10-GHz ring colliding pulse mode-locked laser for on-chip coherent communications,” CLEO: Science and Innovations.Optical Society of America, CW1N (2012).

S.T. Cheung, B. Guan, S.S. Djordjevic, K. Okamoto, and S.B. Yoo, “Low-loss and high contrast silicon-on-insulator (SOI) arrayed waveguide grating,” In CLEO: Science and Innovations (pp. CM4A-5). Optical Society of America (2012).

Yoo, S.J.B.

S. Cheung, T. Su, K. Okamoto, and S.J.B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

Zhao, L.

M.H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D.E. Leaird, A.M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4(2), 117–122 (2010).
[Crossref]

Zhenxing, W.

W. Zhenxing, M. P. Fok, and P. R. Prucnal, “Physical encoding in optical layer security,” J. Cyber Secur. Mobility 1, 83–100 (2012).

Zhou, X.

F.M. Soares, N.K. Fontaine, R.P. Scott, J.H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, and K.Y. Liou, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Zhou, X.P.

X.P. Zhou, F.M. Soares, N.K. Fontaine, J.H. Baek, S. Cheung, M. Shearn, A. Scherer, F. Olsson, S. Lourdudoss, K.Y. Liu, and W.T. Tsang, “16-channel × 100-GHz monolithically integrated O-CDMA transmitter with SPECTS encoder and seven 10-GHz mode-locked lasers,” Proc. OFC, JWA32 (2010).

IEEE J. Quantum Electron. (2)

M. J. Heck, P. Munoz, B. W. Tilma, E. A. Bente, Y. Barbarin, Y. Oei, Richard Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

A. Rashidinejad, Y. Li, and A.M. Weiner, “Recent Advances in Programmable Photonic-Assisted Ultrabroadband Radio-Frequency Arbitrary Waveform Generation,” IEEE J. Quantum Electron. 52(1), 1–17 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

C. Ji, R.G. Broeke, Y. Du, J. Cao, N. Chubun, P. Bjeletich, F. Olsson, S. Lourdudoss, R. Welty, C. Reinhardt, and P.L. Stephan, “Monolithically integrated InP-based photonic chip development for O-CDMA systems,” IEEE J. Sel. Top. Quantum Electron. 11(1), 66–77 (2005).
[Crossref]

J. C. R.G. Broeke, C. Ji, S.W. Seo, Y. Du, N.K. Fontaine, J.H. Baek, J. Yan, F.M. Soares, F. Olsson, and S. Lourdudoss, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1497–1507 (2007).
[Crossref]

S. Cheung, T. Su, K. Okamoto, and S.J.B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

IEEE Photon. J. (1)

F.M. Soares, N.K. Fontaine, R.P. Scott, J.H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, and K.Y. Liou, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (4)

P. Scott Ryan, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Yoo, “Demonstration of an error-free 4 × 10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[Crossref]

S. Tahvili, S. Latkowski, B. Smalbrugge, X.J. Leijtens, P.J. Williams, M.J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M.K. Smit, and E.A.J.M. Bente, “InP-based integrated optical pulse shaper: demonstration of chirp compensation,” IEEE Photon. Technol. Lett. 25(5), 450–453 (2013).
[Crossref]

B. Varghese, I. Glesk, R. J. Runser, R. Fischer, Y. Huang, C-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[Crossref]

C-C. Chang, H. P. Sardesai, and A. M. Weiner, “Code-division multiple-access encoding and decoding of femtosecond optical pulses over a 2.5-km fiber link,” IEEE Photon. Technol. Lett. 10(1), 171–173 (1998).
[Crossref]

IEEE Photonic Tech. Lett. (1)

B. G. Lee, J. O. Plouchart, A. V. Rylyakov, J. H. Song, F. E. Doany, and C. L. Schow, “Passive photonics in an unmodified CMOS technology with no post-processing required,” IEEE Photonic Tech. Lett. 25(4), 393–396 (2013).
[Crossref]

IEEE Trans. Inf. Forensics Security (1)

P. F. Mable, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

J. Cyber Secur. Mobility (1)

W. Zhenxing, M. P. Fok, and P. R. Prucnal, “Physical encoding in optical layer security,” J. Cyber Secur. Mobility 1, 83–100 (2012).

J. Lightw. Tech. (3)

V.J. Hernandez, W. Cong, J. Hu, C. Yang, N.K. Fontaine, R.P. Scott, Z. Ding, B.H. Kolner, J.P. Heritage, and S.B. Yoo, “A 320-Gb/s capacity (32-user × 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightw. Tech. 25(1), 79–86 (2007).
[Crossref]

C. Yang, R. P. Scott, D. J. Geisler, N. K. Fontaine, J. P. Heritage, and S. B. Yoo, “Four-state data encoding for enhanced security against upstream eavesdropping in SPECTS O-CDMA,” J. Lightw. Tech. 29(1), 62–68 (2011).
[Crossref]

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightw. Tech. 8(3), 478–491 (1990).
[Crossref]

Nature Commun. (1)

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L.T. Varghese, Y. Xuan, D.E. Leaird, X. Wang, F. Gan, and A.M. Weiner, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nature Commun. 6, 6957 (2015).
[Crossref]

Nature Photon. (1)

M.H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D.E. Leaird, A.M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4(2), 117–122 (2010).
[Crossref]

Opt. Express (1)

Opt. Fiber Tech. (1)

J.F. Huang, Y.T. Chang, and C.C. Hsu, “Hybrid WDM and optical CDMA implemented over waveguide-grating-based fiber-to-the-home networks,” Opt. Fiber Tech. 13(3), 215–225 (2007).
[Crossref]

PloS one (1)

C. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PloS one 10(4), e0125106 (2015).
[Crossref] [PubMed]

Progress in Quantum Electronics (1)

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Progress in Quantum Electronics 19(3), 161–237 (1995).
[Crossref]

Other (9)

W. Ben, B. J. Shastri, and P. R. Prucnal, Secure Communication in Fiber-optic Networks (Elsevier, 2014).

A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannou, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, and J. Dunn, “A thin-film SOI 180nm CMOS RF switch technology,” SiRF’09, IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, 1–4 (2009).
[Crossref]

S.T. Cheung, B. Guan, S.S. Djordjevic, K. Okamoto, and S.B. Yoo, “Low-loss and high contrast silicon-on-insulator (SOI) arrayed waveguide grating,” In CLEO: Science and Innovations (pp. CM4A-5). Optical Society of America (2012).

X.P. Zhou, F.M. Soares, N.K. Fontaine, J.H. Baek, S. Cheung, M. Shearn, A. Scherer, F. Olsson, S. Lourdudoss, K.Y. Liu, and W.T. Tsang, “16-channel × 100-GHz monolithically integrated O-CDMA transmitter with SPECTS encoder and seven 10-GHz mode-locked lasers,” Proc. OFC, JWA32 (2010).

S.T. Cheung, F. Soares, J.H. Baek, B. Guan, F. Olsson, S. Lourdudoss, and S.B. Yoo, “Monolithically integrated 10-GHz ring colliding pulse mode-locked laser for on-chip coherent communications,” CLEO: Science and Innovations.Optical Society of America, CW1N (2012).

H. Abediasl and H. Hashemi, “RF-inspired silicon photonics: Beamforming at optical frequencies,” In 2016 IEEE 16th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 42–45 (2016).

R. Trebino, Frequency-resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer Science & Business Media, 2012).

J. Brouckaert, “Integration of Photodetectors on Silicon Photonic Integrated Circuits (PICs) for Spectroscopic Applications,” PhD thesis, Ghent University, 92(1–3), 235–241 (2010).

A.J. Metcalf, D.E. Leaird, J. Jaramillo, V. Lal, A. Hosseini, F. Kish, and A.M. Weiner, “32 channel, 25 GHz InP integrated pulse shaper with SOA amplitude control,” In 2015 IEEE Photonics Conference (IPC), TuF3, 500–501 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a generic spectral processor for femtosecond optical pulses.

Fig. 2
Fig. 2

(a) Schematic of the 128-bit monolithic optical short pulse en/de-coder with independent amplitude and phase control at each bit (wavelength-channel). Short pulse is diffracted off-chip and multiple wavelengths centered at 128 different wavelengths (colors) are coupled in to grating couplers. Each color is processed on chip using independent wavelength-dependent amplitude and phase control units, then coupled out of the chip using similar grating couplers; (b) Chip microphotograph of the fabricated 128-bit monolithic optical short pulse en/de-coder in a commercial 180 nm Silicon-On-Insulator (SOI) CMOS process featuring over 500 distinct optical components and over 150,000 distinct electrical components.

Fig. 3
Fig. 3

(a) Thermo-optical variable phase shifter realized as a meandered waveguide with poly-silicon heaters in between to increase the power efficiency and decrease the voltage swing that is needed to cover 2π optical phase shift. (b) Typical measured phase and amplitude responses of a variable phase shifter as a function of heater power consumption at peak wavelength. (c) Grating coupler to couple light in or out of the chip with 4 μm width and 30 μm length for high isolation between adjacent channels. (d) Typical passive response of grating coupler with 1 dB bandwidth of 26 nm.

Fig. 4
Fig. 4

(a) Optical variable attenuator is constructed as an interferometer with polysilicon heater in between. The relative phase change between the two paths, due to thermo-optical effect that is more prominent in the longer branch, results in amplitude tunability of around 16 dB. The arm length is slightly different (La has been adjusted) for each cluster to set the desired peak wavelength over the desired ≈ 30 nm wavelength range. (b) Typical passive response of attenuators of each cluster demonstrating peaks at different wavelengths. (c) Typical measured phase and amplitude responses of an optical variable attenuator as a function of heater power consumption at peak wavelength. (d) Simulated and measured peak wavelengths of variable attenuators of all clusters.

Fig. 5
Fig. 5

(a) Schematic of the measurement setup to characterize amplitude and phase responses of each channel; (b) Normalized measured spectrum of all channels plotted together after amplitude calibration. (c) Measured spectrum of channels 63 and 64 picked up by a lensed fiber at the top of grating couplers for two cases when phase shifter in channel 64 is tuned to give in or out of phase interference. The information at the mid-wavelength, here 1550.07 nm, is used to calibrate the phase shifter. (d) Example of normalized interference pattern at mid-wavelength of (c) as a function of active heater power of phase shifter in channel 64.

Fig. 6
Fig. 6

(a) Schematic of the measurement setup to measure processed optical pulse width using both very fast electro-optical detection and optical short pulse intensity auto-correlator; (b) Photograph of wirebonded chip that is mounted on PCB with required supply and programming signals as well as vias underneath chip for better thermal conductivity. (c) Measured optical pulse width when one, two, three, 10 and 128 channels are on and are in phase using very fast photodiode. (d) Detected optical pulse width using fast detector vs number of on channels. After three channels, pulse width is limited to electrical bandwidth of the detection system.

Fig. 7
Fig. 7

(a) Experimental result of intensity auto-correlation of the output processed light for three code lengths, 64, 88 and 128, in two cases: one is successfully constructed short pulse, and second is encoded pulse with Walsh orthogonal code. The data is normalized to the peak of constructed signal and encoded signal for each code length is relatively normalized to corresponding constructed signal. (b) Extracted constructed pulse width and intensity ratio of pulse peak to peak of encoded signal versus number of used channels; (c) Example of measured intensity auto-correlation of encoded pulse with 128 channels; (d) Intuitive explanation of the effect of code length on intensity and intensity auto-correlation for Gaussian pulse.

Tables (2)

Tables Icon

Table 1: Performance Summary of Selected Published State of the Art Integrated Wavelength Separation Devices.

Tables Icon

Table 2: Performance Summary in Comparison with other Semi- or Fully-Monolithic Spectral Light Processors.

Metrics