Abstract

We milled a sub-wavelength diffraction grating on the facet of a large mode area fiber. The diffraction grating had different reflectivities for TE and TM polarized light. It was tested in a thulium-doped fiber laser where it functioned as a low reflectivity output mirror integrated with an intracavity polarizer. Compared to the laser with a perpendicularly cleaved output fiber, the laser with diffraction grating had a slightly increased threshold power and the same slope efficiency. The beam quality factor M2 was not impaired. Polarization extinction ratios of about 20 dB that were observed at low laser powers dropped to 10 dB at high powers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power widely tunable thulium fiber lasers

Timothy S. McComb, R. Andrew Sims, Christina C. C. Willis, Pankaj Kadwani, Vikas Sudesh, Lawrence Shah, and Martin Richardson
Appl. Opt. 49(32) 6236-6242 (2010)

Quantum cascade lasers with a tilted facet utilizing the inherent polarization purity

Sangil Ahn, Daniela Ristanic, Roman Gansch, Peter Reininger, Clemens Schwarzer, Donald C. MacFarland, Hermann Detz, Werner Schrenk, and Gottfried Strasser
Opt. Express 22(21) 26294-26301 (2014)

Enhanced light output power of quantum cascade lasers from a tilted front facet

Sangil Ahn, Clemens Schwarzer, Tobias Zederbauer, Hermann Detz, Aaron M. Andrews, Werner Schrenk, and Gottfried Strasser
Opt. Express 21(13) 15869-15877 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Devi, S. C. Kumar, and M. Ebrahim-Zadeh, “High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source,” Opt. Lett. 37, 5049–5051 (2012).
    [Crossref] [PubMed]
  2. G. K. Samanta, S. C. Kumar, A. Aadhi, and M. Ebrahim-Zadeh, “Yb-fiber-laser-pumped, high-repetition-rate picosecond optical parametric oscillator tunable in the ultraviolet,” Opt. Express 22, 11476–11487 (2014).
    [Crossref] [PubMed]
  3. G. K. Samanta, S. C. Kumar, M. Mathew, C. Canalias, V. Pasiskevicius, F. Laurell, and M. Ebrahim-Zadeh, “High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO4,” Opt. Lett. 33, 2955–2957 (2008).
    [Crossref] [PubMed]
  4. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” Journal of Physics D: Applied Physics 32, 1455 (1999).
    [Crossref]
  5. R. L. Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett. 36, 229–231 (2011).
    [Crossref] [PubMed]
  6. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE Journal of Selected Topics in Quantum Electronics 11, 567–577 (2005).
    [Crossref]
  7. P. Honzatko, P. Peterka, and J. Kanka, “Modulational-instability σ-resonator fiber laser,” Opt. Lett. 26, 810–812 (2001).
    [Crossref]
  8. A. Liem, J. Limpert, T. Schreiber, M. Reich, H. Zellmer, A. Tünnermann, A. Carter, and K. Tankala, “High power linearly polarized fiber laser,” in “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2004), p. CMS4.
  9. J. Wang, J. Hu, L. Zhang, X. Gu, J. Chen, and Y. Feng, “A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm,” Opt. Express 20, 28373–28378 (2012).
    [Crossref] [PubMed]
  10. U. H. Manyam, B. Samson, V. Khitrov, D. P. Machewirth, N. Jacobson, J. Farroni, D. Guertin, J. Abrmczyk, A. Carter, and K. Tankala, “Laser fibers designed for single polarization output,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. MA6.
  11. X. Yang, N. Ileri, C. C. Larson, T. C. Carlson, J. A. Britten, A. S. P. Chang, C. Gu, and T. C. Bond, “Nanopillar array on a fiber facet for highly sensitive surface-enhanced raman scattering,” Opt. Express 20, 24819–24826 (2012).
    [Crossref] [PubMed]
  12. E. G. Johnson, J. Stack, T. J. Suleski, C. Koehler, and W. Delaney, “Fabrication of micro optics on coreless fiber segments,” Appl. Opt. 42, 785–791 (2003).
    [Crossref] [PubMed]
  13. M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
    [Crossref]
  14. F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. D. Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. D. Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectronic Engineering 73–74, 397–404 (2004). Micro and Nano Engineering 2003.
    [Crossref]
  15. G. Kostovski, D. White, A. Mitchell, M. Austin, and P. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosensors and Bioelectronics 24, 1531–1535 (2009). Selected Papers from the Tenth World Congress on Biosensors Shangai, China, May 14–16, 2008.
    [Crossref]
  16. G. Kostovski, U. Chinnasamy, S. Jayawardhana, P. R. Stoddart, and A. Mitchell, “Sub-15nm optical fiber nanoimprint lithography: A parallel, self-aligned and portable approach,” Advanced Materials 23, 531–535 (2011).
    [Crossref] [PubMed]
  17. H. E. Williams, D. J. Freppon, S. M. Kuebler, R. C. Rumpf, and M. A. Melino, “Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8,” Opt. Express 19, 22910–22922 (2011).
    [Crossref] [PubMed]
  18. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nature Communications 7, 11763 (2016).
    [Crossref] [PubMed]
  19. T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3, 448–451 (2016).
    [Crossref]
  20. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
    [Crossref]
  21. J. Čtyroký, “3-D bidirectional propagation algorithm based on fourier series,” J. Lightwave Technol. 30, 3699–3708 (2012).
    [Crossref]
  22. P. Lalanne and J.-P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A 15, 1843–1851 (1998).
    [Crossref]
  23. P. Honzatko, Y. Baravets, F. Todorov, P. Peterka, and M. Becker, “Coherently combined power of 20 W at 2000 nm from a pair of thulium-doped fiber lasers,” Laser Physics Letters 10, 095104 (2013).
    [Crossref]
  24. M. Michalska, W. Brojek, Z. Rybak, P. Sznelewski, M. Mamajek, and J. Swiderski, “Highly stable, efficient Tm-doped fiber laser – a potential scalpel for low invasive surgery,” Laser Physics Letters 13, 115101 (2016).
    [Crossref]

2016 (3)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nature Communications 7, 11763 (2016).
[Crossref] [PubMed]

T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3, 448–451 (2016).
[Crossref]

M. Michalska, W. Brojek, Z. Rybak, P. Sznelewski, M. Mamajek, and J. Swiderski, “Highly stable, efficient Tm-doped fiber laser – a potential scalpel for low invasive surgery,” Laser Physics Letters 13, 115101 (2016).
[Crossref]

2014 (1)

2013 (1)

P. Honzatko, Y. Baravets, F. Todorov, P. Peterka, and M. Becker, “Coherently combined power of 20 W at 2000 nm from a pair of thulium-doped fiber lasers,” Laser Physics Letters 10, 095104 (2013).
[Crossref]

2012 (4)

2011 (3)

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

2009 (1)

G. Kostovski, D. White, A. Mitchell, M. Austin, and P. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosensors and Bioelectronics 24, 1531–1535 (2009). Selected Papers from the Tenth World Congress on Biosensors Shangai, China, May 14–16, 2008.
[Crossref]

2008 (1)

2005 (1)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE Journal of Selected Topics in Quantum Electronics 11, 567–577 (2005).
[Crossref]

2004 (1)

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. D. Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. D. Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectronic Engineering 73–74, 397–404 (2004). Micro and Nano Engineering 2003.
[Crossref]

2003 (2)

E. G. Johnson, J. Stack, T. J. Suleski, C. Koehler, and W. Delaney, “Fabrication of micro optics on coreless fiber segments,” Appl. Opt. 42, 785–791 (2003).
[Crossref] [PubMed]

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

2001 (1)

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” Journal of Physics D: Applied Physics 32, 1455 (1999).
[Crossref]

1998 (1)

Aadhi, A.

Abrmczyk, J.

U. H. Manyam, B. Samson, V. Khitrov, D. P. Machewirth, N. Jacobson, J. Farroni, D. Guertin, J. Abrmczyk, A. Carter, and K. Tankala, “Laser fibers designed for single polarization output,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. MA6.

Austin, M.

G. Kostovski, D. White, A. Mitchell, M. Austin, and P. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosensors and Bioelectronics 24, 1531–1535 (2009). Selected Papers from the Tenth World Congress on Biosensors Shangai, China, May 14–16, 2008.
[Crossref]

Baravets, Y.

P. Honzatko, Y. Baravets, F. Todorov, P. Peterka, and M. Becker, “Coherently combined power of 20 W at 2000 nm from a pair of thulium-doped fiber lasers,” Laser Physics Letters 10, 095104 (2013).
[Crossref]

Becker, M.

P. Honzatko, Y. Baravets, F. Todorov, P. Peterka, and M. Becker, “Coherently combined power of 20 W at 2000 nm from a pair of thulium-doped fiber lasers,” Laser Physics Letters 10, 095104 (2013).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Bond, T. C.

Britten, J. A.

Brojek, W.

M. Michalska, W. Brojek, Z. Rybak, P. Sznelewski, M. Mamajek, and J. Swiderski, “Highly stable, efficient Tm-doped fiber laser – a potential scalpel for low invasive surgery,” Laser Physics Letters 13, 115101 (2016).
[Crossref]

Businaro, L.

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

Cabrini, S.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. D. Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. D. Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectronic Engineering 73–74, 397–404 (2004). Micro and Nano Engineering 2003.
[Crossref]

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

Canalias, C.

Candeloro, P.

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

Carlson, T. C.

Carter, A.

U. H. Manyam, B. Samson, V. Khitrov, D. P. Machewirth, N. Jacobson, J. Farroni, D. Guertin, J. Abrmczyk, A. Carter, and K. Tankala, “Laser fibers designed for single polarization output,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. MA6.

A. Liem, J. Limpert, T. Schreiber, M. Reich, H. Zellmer, A. Tünnermann, A. Carter, and K. Tankala, “High power linearly polarized fiber laser,” in “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2004), p. CMS4.

Chang, A. S. P.

Chen, J.

Chinnasamy, U.

G. Kostovski, U. Chinnasamy, S. Jayawardhana, P. R. Stoddart, and A. Mitchell, “Sub-15nm optical fiber nanoimprint lithography: A parallel, self-aligned and portable approach,” Advanced Materials 23, 531–535 (2011).
[Crossref] [PubMed]

Cingolani, R.

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

Cojoc, D.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. D. Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. D. Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectronic Engineering 73–74, 397–404 (2004). Micro and Nano Engineering 2003.
[Crossref]

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

Ctyroký, J.

Degiorgio, V.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. D. Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. D. Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectronic Engineering 73–74, 397–404 (2004). Micro and Nano Engineering 2003.
[Crossref]

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

Delaney, W.

Devi, K.

Dörr, D.

Ebrahim-Zadeh, M.

Epple, M.

Fabrizio, E. D.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. D. Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. D. Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectronic Engineering 73–74, 397–404 (2004). Micro and Nano Engineering 2003.
[Crossref]

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

Fan, T. Y.

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE Journal of Selected Topics in Quantum Electronics 11, 567–577 (2005).
[Crossref]

Farroni, J.

U. H. Manyam, B. Samson, V. Khitrov, D. P. Machewirth, N. Jacobson, J. Farroni, D. Guertin, J. Abrmczyk, A. Carter, and K. Tankala, “Laser fibers designed for single polarization output,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. MA6.

Feng, Y.

Freppon, D. J.

Gerardino, A.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. D. Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. D. Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectronic Engineering 73–74, 397–404 (2004). Micro and Nano Engineering 2003.
[Crossref]

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

Giessen, H.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nature Communications 7, 11763 (2016).
[Crossref] [PubMed]

T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3, 448–451 (2016).
[Crossref]

Gigli, G.

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

Gissibl, T.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nature Communications 7, 11763 (2016).
[Crossref] [PubMed]

T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3, 448–451 (2016).
[Crossref]

Gu, C.

Gu, X.

Guertin, D.

U. H. Manyam, B. Samson, V. Khitrov, D. P. Machewirth, N. Jacobson, J. Farroni, D. Guertin, J. Abrmczyk, A. Carter, and K. Tankala, “Laser fibers designed for single polarization output,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. MA6.

Harzic, R. L.

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nature Communications 7, 11763 (2016).
[Crossref] [PubMed]

Honzatko, P.

P. Honzatko, Y. Baravets, F. Todorov, P. Peterka, and M. Becker, “Coherently combined power of 20 W at 2000 nm from a pair of thulium-doped fiber lasers,” Laser Physics Letters 10, 095104 (2013).
[Crossref]

P. Honzatko, P. Peterka, and J. Kanka, “Modulational-instability σ-resonator fiber laser,” Opt. Lett. 26, 810–812 (2001).
[Crossref]

Hu, J.

Hugonin, J.-P.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Ileri, N.

Jacobson, N.

U. H. Manyam, B. Samson, V. Khitrov, D. P. Machewirth, N. Jacobson, J. Farroni, D. Guertin, J. Abrmczyk, A. Carter, and K. Tankala, “Laser fibers designed for single polarization output,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. MA6.

Jayawardhana, S.

G. Kostovski, U. Chinnasamy, S. Jayawardhana, P. R. Stoddart, and A. Mitchell, “Sub-15nm optical fiber nanoimprint lithography: A parallel, self-aligned and portable approach,” Advanced Materials 23, 531–535 (2011).
[Crossref] [PubMed]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Johnson, E. G.

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Kanka, J.

Khitrov, V.

U. H. Manyam, B. Samson, V. Khitrov, D. P. Machewirth, N. Jacobson, J. Farroni, D. Guertin, J. Abrmczyk, A. Carter, and K. Tankala, “Laser fibers designed for single polarization output,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. MA6.

Koehler, C.

Kostovski, G.

G. Kostovski, U. Chinnasamy, S. Jayawardhana, P. R. Stoddart, and A. Mitchell, “Sub-15nm optical fiber nanoimprint lithography: A parallel, self-aligned and portable approach,” Advanced Materials 23, 531–535 (2011).
[Crossref] [PubMed]

G. Kostovski, D. White, A. Mitchell, M. Austin, and P. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosensors and Bioelectronics 24, 1531–1535 (2009). Selected Papers from the Tenth World Congress on Biosensors Shangai, China, May 14–16, 2008.
[Crossref]

Kuebler, S. M.

Kumar, R.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. D. Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. D. Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectronic Engineering 73–74, 397–404 (2004). Micro and Nano Engineering 2003.
[Crossref]

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

Kumar, S. C.

Lalanne, P.

Larson, C. C.

Laurell, F.

Liberale, C.

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

Liem, A.

A. Liem, J. Limpert, T. Schreiber, M. Reich, H. Zellmer, A. Tünnermann, A. Carter, and K. Tankala, “High power linearly polarized fiber laser,” in “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2004), p. CMS4.

Limpert, J.

A. Liem, J. Limpert, T. Schreiber, M. Reich, H. Zellmer, A. Tünnermann, A. Carter, and K. Tankala, “High power linearly polarized fiber laser,” in “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2004), p. CMS4.

Machewirth, D. P.

U. H. Manyam, B. Samson, V. Khitrov, D. P. Machewirth, N. Jacobson, J. Farroni, D. Guertin, J. Abrmczyk, A. Carter, and K. Tankala, “Laser fibers designed for single polarization output,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. MA6.

Mamajek, M.

M. Michalska, W. Brojek, Z. Rybak, P. Sznelewski, M. Mamajek, and J. Swiderski, “Highly stable, efficient Tm-doped fiber laser – a potential scalpel for low invasive surgery,” Laser Physics Letters 13, 115101 (2016).
[Crossref]

Manyam, U. H.

U. H. Manyam, B. Samson, V. Khitrov, D. P. Machewirth, N. Jacobson, J. Farroni, D. Guertin, J. Abrmczyk, A. Carter, and K. Tankala, “Laser fibers designed for single polarization output,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. MA6.

Mathew, M.

Melino, M. A.

Michalska, M.

M. Michalska, W. Brojek, Z. Rybak, P. Sznelewski, M. Mamajek, and J. Swiderski, “Highly stable, efficient Tm-doped fiber laser – a potential scalpel for low invasive surgery,” Laser Physics Letters 13, 115101 (2016).
[Crossref]

Mitchell, A.

G. Kostovski, U. Chinnasamy, S. Jayawardhana, P. R. Stoddart, and A. Mitchell, “Sub-15nm optical fiber nanoimprint lithography: A parallel, self-aligned and portable approach,” Advanced Materials 23, 531–535 (2011).
[Crossref] [PubMed]

G. Kostovski, D. White, A. Mitchell, M. Austin, and P. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosensors and Bioelectronics 24, 1531–1535 (2009). Selected Papers from the Tenth World Congress on Biosensors Shangai, China, May 14–16, 2008.
[Crossref]

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” Journal of Physics D: Applied Physics 32, 1455 (1999).
[Crossref]

Neumeier, M.

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” Journal of Physics D: Applied Physics 32, 1455 (1999).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Pasiskevicius, V.

Peterka, P.

P. Honzatko, Y. Baravets, F. Todorov, P. Peterka, and M. Becker, “Coherently combined power of 20 W at 2000 nm from a pair of thulium-doped fiber lasers,” Laser Physics Letters 10, 095104 (2013).
[Crossref]

P. Honzatko, P. Peterka, and J. Kanka, “Modulational-instability σ-resonator fiber laser,” Opt. Lett. 26, 810–812 (2001).
[Crossref]

Pisignano, D.

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

Prasciolu, M.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. D. Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. D. Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectronic Engineering 73–74, 397–404 (2004). Micro and Nano Engineering 2003.
[Crossref]

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

Reich, M.

A. Liem, J. Limpert, T. Schreiber, M. Reich, H. Zellmer, A. Tünnermann, A. Carter, and K. Tankala, “High power linearly polarized fiber laser,” in “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2004), p. CMS4.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Rumpf, R. C.

Rybak, Z.

M. Michalska, W. Brojek, Z. Rybak, P. Sznelewski, M. Mamajek, and J. Swiderski, “Highly stable, efficient Tm-doped fiber laser – a potential scalpel for low invasive surgery,” Laser Physics Letters 13, 115101 (2016).
[Crossref]

Samanta, G. K.

Samson, B.

U. H. Manyam, B. Samson, V. Khitrov, D. P. Machewirth, N. Jacobson, J. Farroni, D. Guertin, J. Abrmczyk, A. Carter, and K. Tankala, “Laser fibers designed for single polarization output,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. MA6.

Sauer, D.

Schiappelli, F.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. D. Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. D. Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectronic Engineering 73–74, 397–404 (2004). Micro and Nano Engineering 2003.
[Crossref]

Schmid, M.

Schreiber, T.

A. Liem, J. Limpert, T. Schreiber, M. Reich, H. Zellmer, A. Tünnermann, A. Carter, and K. Tankala, “High power linearly polarized fiber laser,” in “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2004), p. CMS4.

Stack, J.

Stoddart, P.

G. Kostovski, D. White, A. Mitchell, M. Austin, and P. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosensors and Bioelectronics 24, 1531–1535 (2009). Selected Papers from the Tenth World Congress on Biosensors Shangai, China, May 14–16, 2008.
[Crossref]

Stoddart, P. R.

G. Kostovski, U. Chinnasamy, S. Jayawardhana, P. R. Stoddart, and A. Mitchell, “Sub-15nm optical fiber nanoimprint lithography: A parallel, self-aligned and portable approach,” Advanced Materials 23, 531–535 (2011).
[Crossref] [PubMed]

Stracke, F.

Suleski, T. J.

Swiderski, J.

M. Michalska, W. Brojek, Z. Rybak, P. Sznelewski, M. Mamajek, and J. Swiderski, “Highly stable, efficient Tm-doped fiber laser – a potential scalpel for low invasive surgery,” Laser Physics Letters 13, 115101 (2016).
[Crossref]

Sznelewski, P.

M. Michalska, W. Brojek, Z. Rybak, P. Sznelewski, M. Mamajek, and J. Swiderski, “Highly stable, efficient Tm-doped fiber laser – a potential scalpel for low invasive surgery,” Laser Physics Letters 13, 115101 (2016).
[Crossref]

Tankala, K.

A. Liem, J. Limpert, T. Schreiber, M. Reich, H. Zellmer, A. Tünnermann, A. Carter, and K. Tankala, “High power linearly polarized fiber laser,” in “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2004), p. CMS4.

U. H. Manyam, B. Samson, V. Khitrov, D. P. Machewirth, N. Jacobson, J. Farroni, D. Guertin, J. Abrmczyk, A. Carter, and K. Tankala, “Laser fibers designed for single polarization output,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. MA6.

Thiele, S.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nature Communications 7, 11763 (2016).
[Crossref] [PubMed]

Todorov, F.

P. Honzatko, Y. Baravets, F. Todorov, P. Peterka, and M. Becker, “Coherently combined power of 20 W at 2000 nm from a pair of thulium-doped fiber lasers,” Laser Physics Letters 10, 095104 (2013).
[Crossref]

Tormen, M.

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

Tünnermann, A.

A. Liem, J. Limpert, T. Schreiber, M. Reich, H. Zellmer, A. Tünnermann, A. Carter, and K. Tankala, “High power linearly polarized fiber laser,” in “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2004), p. CMS4.

Visimberga, G.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. D. Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. D. Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectronic Engineering 73–74, 397–404 (2004). Micro and Nano Engineering 2003.
[Crossref]

Vittorio, M. D.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. D. Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. D. Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectronic Engineering 73–74, 397–404 (2004). Micro and Nano Engineering 2003.
[Crossref]

Wang, J.

White, D.

G. Kostovski, D. White, A. Mitchell, M. Austin, and P. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosensors and Bioelectronics 24, 1531–1535 (2009). Selected Papers from the Tenth World Congress on Biosensors Shangai, China, May 14–16, 2008.
[Crossref]

Williams, H. E.

Yang, X.

Zellmer, H.

A. Liem, J. Limpert, T. Schreiber, M. Reich, H. Zellmer, A. Tünnermann, A. Carter, and K. Tankala, “High power linearly polarized fiber laser,” in “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2004), p. CMS4.

Zhang, L.

Zimmermann, H.

Advanced Materials (1)

G. Kostovski, U. Chinnasamy, S. Jayawardhana, P. R. Stoddart, and A. Mitchell, “Sub-15nm optical fiber nanoimprint lithography: A parallel, self-aligned and portable approach,” Advanced Materials 23, 531–535 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Biosensors and Bioelectronics (1)

G. Kostovski, D. White, A. Mitchell, M. Austin, and P. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosensors and Bioelectronics 24, 1531–1535 (2009). Selected Papers from the Tenth World Congress on Biosensors Shangai, China, May 14–16, 2008.
[Crossref]

Computer Physics Communications (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

IEEE Journal of Selected Topics in Quantum Electronics (1)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE Journal of Selected Topics in Quantum Electronics 11, 567–577 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Journal of Physics D: Applied Physics (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” Journal of Physics D: Applied Physics 32, 1455 (1999).
[Crossref]

Laser Physics Letters (2)

P. Honzatko, Y. Baravets, F. Todorov, P. Peterka, and M. Becker, “Coherently combined power of 20 W at 2000 nm from a pair of thulium-doped fiber lasers,” Laser Physics Letters 10, 095104 (2013).
[Crossref]

M. Michalska, W. Brojek, Z. Rybak, P. Sznelewski, M. Mamajek, and J. Swiderski, “Highly stable, efficient Tm-doped fiber laser – a potential scalpel for low invasive surgery,” Laser Physics Letters 13, 115101 (2016).
[Crossref]

Microelectronic Engineering (2)

M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. D. Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectronic Engineering 67–68, 169–174 (2003). Proceedings of the 28th International Conference on Micro- and Nano-Engineering.
[Crossref]

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. D. Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. D. Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectronic Engineering 73–74, 397–404 (2004). Micro and Nano Engineering 2003.
[Crossref]

Nature Communications (1)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nature Communications 7, 11763 (2016).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Optica (1)

Other (2)

A. Liem, J. Limpert, T. Schreiber, M. Reich, H. Zellmer, A. Tünnermann, A. Carter, and K. Tankala, “High power linearly polarized fiber laser,” in “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2004), p. CMS4.

U. H. Manyam, B. Samson, V. Khitrov, D. P. Machewirth, N. Jacobson, J. Farroni, D. Guertin, J. Abrmczyk, A. Carter, and K. Tankala, “Laser fibers designed for single polarization output,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. MA6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Zeroth order reflectivity of the grating R 0 TE as a function of the grating depth and grating fill factor, and (b) figure-of-merit defined as the product ( R 0 TE R 0 TM ) R 0 TE.
Fig. 2
Fig. 2 (a) Zero-order diffraction efficiency in reflection of TE and TM polarized light from diffraction grating numerically predicted by RCWA (dashed), FMM (dotted), and FDTD (solid) methods. (b) Loss by diffraction into higher orders predicted by RCWA technique (dashed) and modal loss predicted by FDTD method (solid).
Fig. 3
Fig. 3 Ez component (parallel to grating grooves) of the field calculated by the FDTD method short after the reflection of the pulse propagating in the slab waveguide from the grating. The slab waveguide represents the fiber core in 2D simulations. The light pulse was emited from the fiber to right while the reflected pulse propagates in the fiber core to left and part of the incident pulse energy is lost in the cladding through diffraction into ±1 orders in reflection.
Fig. 4
Fig. 4 (a) Diffraction grating fabricated on the fiber facet. It is seen as a rectangle on backlit fiber core. The grating grooves are vertical. Stress elements of the PM fiber are seen as dark circles in the cladding. Test gratings are situated in the upper right part of the figure. (b) SEM image of the milled diffraction grating.
Fig. 5
Fig. 5 Thulium-doped fiber laser.
Fig. 6
Fig. 6 (a) Dependence of the laser output power on the launched pump power for the perpendicularly cleaved fiber (blue) and fiber with difraction grating (red). (b) The maximum (red) and minimum (blue) power behind the external polarizer.
Fig. 7
Fig. 7 Dependence of the laser output polarization extinction ratio on the launched pump power.
Fig. 8
Fig. 8 (a) Dependence of the beam diameter on the camera position for the laser with a perpendicularly cleaved output fiber (blue) and with difraction grating (red). (b) The optical spectrum of the laser with diffraction grating.

Tables (1)

Tables Icon

Table 1 Parameters of optimized diffraction grating

Metrics