Abstract

Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. Combining this technique with low absorption multilayer dielectric gratings developed in our group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phased-array grating compression for high-energy chirped pulse amplification lasers

A. Cotel, M. Castaing, P. Pichon, and C. Le Blanc
Opt. Express 15(5) 2742-2752 (2007)

Investigation of the thermally induced laser beam distortion associated with vacuum compressor gratings in high energy and high average power femtosecond laser systems

S. Fourmaux, C. Serbanescu, L. Lecherbourg, S. Payeur, F. Martin, and J. C. Kieffer
Opt. Express 17(1) 178-184 (2009)

Large area high efficiency broad bandwidth 800 nm dielectric gratings for high energy laser pulse compression

D. H. Martz, H. T. Nguyen, D. Patel, J. A. Britten, D. Alessi, E. Krous, Y. Wang, M. A. Larotonda, J. George, B. Knollenberg, B. M. Luther, J. J. Rocca, and C. S. Menoni
Opt. Express 17(26) 23809-23816 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, 1 (2015).
  2. icuil.org.
  3. Y. Izawa, N. Miyanaga, J. Kawanaka, and K. Yamakawa, “High Power Lasers and Their New Applications,” J. Opt. Soc. Korea 12(3), 178–185 (2008).
    [Crossref]
  4. N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8, 1 (2016).
  5. refractiveindex.info.
  6. J. A. Britten, M. D. Perry, B. W. Shore, and R. D. Boyd, “Universal grating design for pulse stretching and compression in the 800-1100-nm range,” Opt. Lett. 21(7), 540–542 (1996).
    [PubMed]
  7. E. Chowdhury, P. Poole, S. Jiang, B. Taylor, R. Daskalova, L. Van Woerkom, R. Freeman, and D. Smith, “Damage Testing of critical optical components for high power ultra-fast lasers,” Proc. SPIE 7842, 78421Y (2010).
  8. P. Poole, S. Trendafilov, G. Shvets, D. Smith, and E. Chowdhury, “Femtosecond laser damage threshold of pulse compression gratings for petawatt scale laser systems,” Opt. Express 21(22), 26341–26351 (2013).
    [PubMed]
  9. J. A. Britten, D. Alessi, and C. Haefner, “Gold-overcoated metal/dielectric diffraction grating with engineered sidewall taper for maximum efficiency and bandwidth,” in 6th International Conference on Ultrahigh Intensity Lasers (2014), pp. 61.
  10. W. S. Brocklesby, “Progress in high average power ultrafast lasers,” Eur. Phys. J. Special Topics 2244, 2529 (2005).
  11. R. DiGennaro and T. Swain, “A directly cooled grating substrate for ALS undulator beam lines,” Nucl. Instrum. Meth. A 291(1-2), 305–312 (1990).
    [Crossref]
  12. T. Kita, T. Harada, H. Maezawa, Y. Muramatsu, and H. Namba, “High‐temperature diffraction gratings for synchrotron radiation,” Rev. Sci. Instrum. 63(1), 1424 (1992).
    [Crossref]
  13. S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, and M. M. Murnane, “High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system,” Opt. Lett. 26(7), 465–467 (2001).
    [Crossref] [PubMed]
  14. S. Fourmaux, C. Serbanescu, L. Lecherbourg, S. Payeur, F. Martin, and J. C. Kieffer, “Investigation of the thermally induced laser beam distortion associated with vacuum compressor gratings in high energy and high average power femtosecond laser systems,” Opt. Express 17(1), 178–184 (2009).
    [Crossref] [PubMed]
  15. W. P. Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.S. Mao, D.E. Mittelberger, K. Nakamura, J.R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “BELLA Laser and Operations,” in Proc. Of PAC2013 (2013), paper THYAA11097.
  16. https://str.llnl.gov/january-2014/haefner
  17. http://www.eli-beams.eu/
  18. Datasheet for Corning ULE 7972 (August 16, 2006) obtained from www.corning.com
  19. S. J. Augst, R. C. Lawrence, T. Y. Fan, D. V. Murphy and A. Sanchez, “Characterization of diffraction gratings for use in wavelength beam combining at high average power,” in Frontiers in Optics 2008/Laser Science XXIV/Plasmonics and Metamaterials/Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FWG2.

2016 (1)

N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8, 1 (2016).

2015 (1)

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, 1 (2015).

2013 (1)

2010 (1)

E. Chowdhury, P. Poole, S. Jiang, B. Taylor, R. Daskalova, L. Van Woerkom, R. Freeman, and D. Smith, “Damage Testing of critical optical components for high power ultra-fast lasers,” Proc. SPIE 7842, 78421Y (2010).

2009 (1)

2008 (1)

2005 (1)

W. S. Brocklesby, “Progress in high average power ultrafast lasers,” Eur. Phys. J. Special Topics 2244, 2529 (2005).

2001 (1)

1996 (1)

1992 (1)

T. Kita, T. Harada, H. Maezawa, Y. Muramatsu, and H. Namba, “High‐temperature diffraction gratings for synchrotron radiation,” Rev. Sci. Instrum. 63(1), 1424 (1992).
[Crossref]

1990 (1)

R. DiGennaro and T. Swain, “A directly cooled grating substrate for ALS undulator beam lines,” Nucl. Instrum. Meth. A 291(1-2), 305–312 (1990).
[Crossref]

Alessi, D.

J. A. Britten, D. Alessi, and C. Haefner, “Gold-overcoated metal/dielectric diffraction grating with engineered sidewall taper for maximum efficiency and bandwidth,” in 6th International Conference on Ultrahigh Intensity Lasers (2014), pp. 61.

Backus, S.

Bartels, R.

Bonod, N.

N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8, 1 (2016).

Boyd, R. D.

Britten, J. A.

J. A. Britten, M. D. Perry, B. W. Shore, and R. D. Boyd, “Universal grating design for pulse stretching and compression in the 800-1100-nm range,” Opt. Lett. 21(7), 540–542 (1996).
[PubMed]

J. A. Britten, D. Alessi, and C. Haefner, “Gold-overcoated metal/dielectric diffraction grating with engineered sidewall taper for maximum efficiency and bandwidth,” in 6th International Conference on Ultrahigh Intensity Lasers (2014), pp. 61.

Brocklesby, W. S.

W. S. Brocklesby, “Progress in high average power ultrafast lasers,” Eur. Phys. J. Special Topics 2244, 2529 (2005).

Chowdhury, E.

P. Poole, S. Trendafilov, G. Shvets, D. Smith, and E. Chowdhury, “Femtosecond laser damage threshold of pulse compression gratings for petawatt scale laser systems,” Opt. Express 21(22), 26341–26351 (2013).
[PubMed]

E. Chowdhury, P. Poole, S. Jiang, B. Taylor, R. Daskalova, L. Van Woerkom, R. Freeman, and D. Smith, “Damage Testing of critical optical components for high power ultra-fast lasers,” Proc. SPIE 7842, 78421Y (2010).

Daniels, J.

W. P. Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.S. Mao, D.E. Mittelberger, K. Nakamura, J.R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “BELLA Laser and Operations,” in Proc. Of PAC2013 (2013), paper THYAA11097.

Danson, C.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, 1 (2015).

Daskalova, R.

E. Chowdhury, P. Poole, S. Jiang, B. Taylor, R. Daskalova, L. Van Woerkom, R. Freeman, and D. Smith, “Damage Testing of critical optical components for high power ultra-fast lasers,” Proc. SPIE 7842, 78421Y (2010).

Deshmukh, A.

W. P. Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.S. Mao, D.E. Mittelberger, K. Nakamura, J.R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “BELLA Laser and Operations,” in Proc. Of PAC2013 (2013), paper THYAA11097.

DiGennaro, R.

R. DiGennaro and T. Swain, “A directly cooled grating substrate for ALS undulator beam lines,” Nucl. Instrum. Meth. A 291(1-2), 305–312 (1990).
[Crossref]

Dollinger, R.

Fourmaux, S.

Freeman, R.

E. Chowdhury, P. Poole, S. Jiang, B. Taylor, R. Daskalova, L. Van Woerkom, R. Freeman, and D. Smith, “Damage Testing of critical optical components for high power ultra-fast lasers,” Proc. SPIE 7842, 78421Y (2010).

Gonsalves, A.J.

W. P. Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.S. Mao, D.E. Mittelberger, K. Nakamura, J.R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “BELLA Laser and Operations,” in Proc. Of PAC2013 (2013), paper THYAA11097.

Haefner, C.

J. A. Britten, D. Alessi, and C. Haefner, “Gold-overcoated metal/dielectric diffraction grating with engineered sidewall taper for maximum efficiency and bandwidth,” in 6th International Conference on Ultrahigh Intensity Lasers (2014), pp. 61.

Harada, T.

T. Kita, T. Harada, H. Maezawa, Y. Muramatsu, and H. Namba, “High‐temperature diffraction gratings for synchrotron radiation,” Rev. Sci. Instrum. 63(1), 1424 (1992).
[Crossref]

Hillier, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, 1 (2015).

Hopps, N.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, 1 (2015).

Izawa, Y.

Jiang, S.

E. Chowdhury, P. Poole, S. Jiang, B. Taylor, R. Daskalova, L. Van Woerkom, R. Freeman, and D. Smith, “Damage Testing of critical optical components for high power ultra-fast lasers,” Proc. SPIE 7842, 78421Y (2010).

Kapteyn, H. C.

Kawanaka, J.

Kieffer, J. C.

Kita, T.

T. Kita, T. Harada, H. Maezawa, Y. Muramatsu, and H. Namba, “High‐temperature diffraction gratings for synchrotron radiation,” Rev. Sci. Instrum. 63(1), 1424 (1992).
[Crossref]

Lecherbourg, L.

Leemans, W. P.

W. P. Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.S. Mao, D.E. Mittelberger, K. Nakamura, J.R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “BELLA Laser and Operations,” in Proc. Of PAC2013 (2013), paper THYAA11097.

Maezawa, H.

T. Kita, T. Harada, H. Maezawa, Y. Muramatsu, and H. Namba, “High‐temperature diffraction gratings for synchrotron radiation,” Rev. Sci. Instrum. 63(1), 1424 (1992).
[Crossref]

Magana, A.

W. P. Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.S. Mao, D.E. Mittelberger, K. Nakamura, J.R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “BELLA Laser and Operations,” in Proc. Of PAC2013 (2013), paper THYAA11097.

Mao, H.S.

W. P. Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.S. Mao, D.E. Mittelberger, K. Nakamura, J.R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “BELLA Laser and Operations,” in Proc. Of PAC2013 (2013), paper THYAA11097.

Martin, F.

Mittelberger, D.E.

W. P. Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.S. Mao, D.E. Mittelberger, K. Nakamura, J.R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “BELLA Laser and Operations,” in Proc. Of PAC2013 (2013), paper THYAA11097.

Miyanaga, N.

Muramatsu, Y.

T. Kita, T. Harada, H. Maezawa, Y. Muramatsu, and H. Namba, “High‐temperature diffraction gratings for synchrotron radiation,” Rev. Sci. Instrum. 63(1), 1424 (1992).
[Crossref]

Murnane, M. M.

Nakamura, K.

W. P. Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.S. Mao, D.E. Mittelberger, K. Nakamura, J.R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “BELLA Laser and Operations,” in Proc. Of PAC2013 (2013), paper THYAA11097.

Namba, H.

T. Kita, T. Harada, H. Maezawa, Y. Muramatsu, and H. Namba, “High‐temperature diffraction gratings for synchrotron radiation,” Rev. Sci. Instrum. 63(1), 1424 (1992).
[Crossref]

Neauport, J.

N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8, 1 (2016).

Neely, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, 1 (2015).

Payeur, S.

Perry, M. D.

Poole, P.

P. Poole, S. Trendafilov, G. Shvets, D. Smith, and E. Chowdhury, “Femtosecond laser damage threshold of pulse compression gratings for petawatt scale laser systems,” Opt. Express 21(22), 26341–26351 (2013).
[PubMed]

E. Chowdhury, P. Poole, S. Jiang, B. Taylor, R. Daskalova, L. Van Woerkom, R. Freeman, and D. Smith, “Damage Testing of critical optical components for high power ultra-fast lasers,” Proc. SPIE 7842, 78421Y (2010).

Riley, J.R.

W. P. Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.S. Mao, D.E. Mittelberger, K. Nakamura, J.R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “BELLA Laser and Operations,” in Proc. Of PAC2013 (2013), paper THYAA11097.

Serbanescu, C.

Shore, B. W.

Shvets, G.

Smith, D.

P. Poole, S. Trendafilov, G. Shvets, D. Smith, and E. Chowdhury, “Femtosecond laser damage threshold of pulse compression gratings for petawatt scale laser systems,” Opt. Express 21(22), 26341–26351 (2013).
[PubMed]

E. Chowdhury, P. Poole, S. Jiang, B. Taylor, R. Daskalova, L. Van Woerkom, R. Freeman, and D. Smith, “Damage Testing of critical optical components for high power ultra-fast lasers,” Proc. SPIE 7842, 78421Y (2010).

Swain, T.

R. DiGennaro and T. Swain, “A directly cooled grating substrate for ALS undulator beam lines,” Nucl. Instrum. Meth. A 291(1-2), 305–312 (1990).
[Crossref]

Syversrud, D.

W. P. Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.S. Mao, D.E. Mittelberger, K. Nakamura, J.R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “BELLA Laser and Operations,” in Proc. Of PAC2013 (2013), paper THYAA11097.

Taylor, B.

E. Chowdhury, P. Poole, S. Jiang, B. Taylor, R. Daskalova, L. Van Woerkom, R. Freeman, and D. Smith, “Damage Testing of critical optical components for high power ultra-fast lasers,” Proc. SPIE 7842, 78421Y (2010).

Thompson, S.

Toth, C.

W. P. Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.S. Mao, D.E. Mittelberger, K. Nakamura, J.R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “BELLA Laser and Operations,” in Proc. Of PAC2013 (2013), paper THYAA11097.

Trendafilov, S.

Van Woerkom, L.

E. Chowdhury, P. Poole, S. Jiang, B. Taylor, R. Daskalova, L. Van Woerkom, R. Freeman, and D. Smith, “Damage Testing of critical optical components for high power ultra-fast lasers,” Proc. SPIE 7842, 78421Y (2010).

Yamakawa, K.

Ybarrolaza, N.

W. P. Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.S. Mao, D.E. Mittelberger, K. Nakamura, J.R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “BELLA Laser and Operations,” in Proc. Of PAC2013 (2013), paper THYAA11097.

Adv. Opt. Photonics (1)

N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8, 1 (2016).

Eur. Phys. J. Special Topics (1)

W. S. Brocklesby, “Progress in high average power ultrafast lasers,” Eur. Phys. J. Special Topics 2244, 2529 (2005).

High Power Laser Sci. Eng. (1)

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, 1 (2015).

J. Opt. Soc. Korea (1)

Nucl. Instrum. Meth. A (1)

R. DiGennaro and T. Swain, “A directly cooled grating substrate for ALS undulator beam lines,” Nucl. Instrum. Meth. A 291(1-2), 305–312 (1990).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (1)

E. Chowdhury, P. Poole, S. Jiang, B. Taylor, R. Daskalova, L. Van Woerkom, R. Freeman, and D. Smith, “Damage Testing of critical optical components for high power ultra-fast lasers,” Proc. SPIE 7842, 78421Y (2010).

Rev. Sci. Instrum. (1)

T. Kita, T. Harada, H. Maezawa, Y. Muramatsu, and H. Namba, “High‐temperature diffraction gratings for synchrotron radiation,” Rev. Sci. Instrum. 63(1), 1424 (1992).
[Crossref]

Other (8)

W. P. Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.S. Mao, D.E. Mittelberger, K. Nakamura, J.R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “BELLA Laser and Operations,” in Proc. Of PAC2013 (2013), paper THYAA11097.

https://str.llnl.gov/january-2014/haefner

http://www.eli-beams.eu/

Datasheet for Corning ULE 7972 (August 16, 2006) obtained from www.corning.com

S. J. Augst, R. C. Lawrence, T. Y. Fan, D. V. Murphy and A. Sanchez, “Characterization of diffraction gratings for use in wavelength beam combining at high average power,” in Frontiers in Optics 2008/Laser Science XXIV/Plasmonics and Metamaterials/Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FWG2.

J. A. Britten, D. Alessi, and C. Haefner, “Gold-overcoated metal/dielectric diffraction grating with engineered sidewall taper for maximum efficiency and bandwidth,” in 6th International Conference on Ultrahigh Intensity Lasers (2014), pp. 61.

icuil.org.

refractiveindex.info.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Finite element model of a 50cm wide x 27cm tall diffraction grating fabricated at LLNL. Cooling bars are attached on the top and bottom edges. The finite element boundaries used in our model are shown. The dark gray region in the middle indicates the laser beam footprint (39cm x 21cm) projected on the grating at the 57° incidence angle. (b) The instantaneous coefficient of thermal expansion (CTE) as a function of temperature for the ULE substrate from [18].
Fig. 2
Fig. 2 (a) Estimated distribution of heat flux absorbed by a diffraction grating which is irradiated by a 400W average power laser. For this case the peak heat flux absorbed is 164 W/m2 and the total absorbed power is 14W. This heat source is the input to the thermo-mechanical simulations. The grating surface (b) steady state temperature, (c) height deviation, and (d) horizontal deflection are shown for an actively top and bottom surface cooled grating in vacuum. The black lines indicate the FWHM of the beam footprint.
Fig. 3
Fig. 3 (a) Simulated surface PV across the beam aperture, and (b) peak surface temperature of a diffraction grating in vacuum as a function of time for a constant 14W thermal load from absorption of a 400W average power petawatt laser. The red lines are for radiation cooled only, while the blue lines are top and bottom surface cooled. A line is drawn where the surface PV exceeds 0.1λ.
Fig. 4
Fig. 4 (a) Surface PV across the beam aperture, and (b) peak surface temperature of a diffraction grating in vacuum as a function of total power absorbed in the grating with the fixed grating size and beam size described in Fig. 1. The red lines are simulation results for a BK7 substrate and the blue lines are results for a ULE substrate. Dotted lines are for radiative only cooling, while solid lines include top and bottom surface cooling and radiation cooling. Limits for surface PV and groove integrity are shown.
Fig. 5
Fig. 5 (a) Diagram of the experimental setup to actively cool a petawatt size diffraction grating exposed to a kilowatt laser diode array and measure the surface deformation with a 32” diameter interferometer. (b) A photo of the laser diode beam on an absorbing beam block at the grating plane. (c) The 50cm x 27cm diffraction grating and mounting hardware where the cooling bars used in this experiment are not shown.
Fig. 6
Fig. 6 (a) Measured and (b) simulated surface height deviation of a diffraction grating illuminated with 610W of CW laser diode light in an air environment after 1 hour. The black boxes correspond to the extent of the diode array footprint. (c) Peak surface deflection for the experiment (red squares) and simulation (blue line) as a function of time.

Metrics