Abstract

The field of terahertz (THz) waveguides continues to grow rapidly, with many being tailored to suit the specific demands of a particular final application. Here, we explore waveguides capable of enabling efficient and accurate power delivery within cryogenic environments (< 4 K). The performance of extruded hollow cylindrical metal waveguides made of un-annealed and annealed copper, as well as stainless steel, have been investigated for bore diameters between 1.75 - 4.6 mm, and at frequencies of 2.0, 2.85 and 3.4 THz, provided by a suitable selection of THz quantum cascade lasers. The annealed copper resulted in the lowest transmission losses, < 3 dB/m for a 4.6 mm diameter waveguide, along with 90° bending losses as low as ~2 dB for a bend radius of 15.9 mm. The observed trends in losses were subsequently analyzed and related to measured inner surface roughness parameters. These results provide a foundation for the development of a wide array of demanding low-temperature THz applications, and enabling the study of fundamental physics.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of bending loss in hollow flexible terahertz waveguides

Pallavi Doradla, Cecil S. Joseph, Jayant Kumar, and Robert H. Giles
Opt. Express 20(17) 19176-19184 (2012)

Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5-5 THz band

Miguel Navarro-Cía, Miriam S. Vitiello, Carlos M. Bledt, Jeffrey E. Melzer, James A. Harrington, and Oleg Mitrofanov
Opt. Express 21(20) 23748-23755 (2013)

Efficient coupling of double-metal terahertz quantum cascade lasers to flexible dielectric-lined hollow metallic waveguides

R. Wallis, R. Degl’Innocenti, D. S. Jessop, Y. Ren, A. Klimont, Y. D. Shah, O. Mitrofanov, C. M. Bledt, J. E. Melzer, J. A. Harrington, H. E. Beere, and D. A. Ritchie
Opt. Express 23(20) 26276-26287 (2015)

References

  • View by:
  • |
  • |
  • |

  1. O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1(1), 124–132 (2011).
    [Crossref]
  2. M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86(22), 221107 (2005).
    [Crossref]
  3. H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18(9), 9643–9650 (2010).
    [Crossref] [PubMed]
  4. R. Wallis, R. Degl’Iinnocenti, D. S. Jessop, Y. Ren, A. Klimont, Y. D. Shah, O. Mitrofanov, C. M. Bledt, J. E. Melzer, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Efficient coupling of double-metal terahertz quantum cascade lasers to flexible dielectric-lined hollow metallic waveguides,” Opt. Express 23(20), 26276–26287 (2015).
    [Crossref] [PubMed]
  5. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  6. A. Cosentino, “Terahertz and cultural heritage science: examination of art and archaeology,” Technologies 4(1), 6–19 (2016).
    [Crossref]
  7. C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
    [Crossref] [PubMed]
  8. T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
    [Crossref]
  9. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944–9954 (2006).
    [Crossref] [PubMed]
  10. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(28), 317–319 (2004).
    [Crossref]
  11. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [Crossref] [PubMed]
  12. D. R. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1122–1135 (2000).
    [Crossref]
  13. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999).
    [Crossref] [PubMed]
  14. P. Doradla and R. H. Giles, “Dual-frequency characterization of bending losses in hollow flexible terahertz waveguides,” Proc. SPIE 8985, 898518 (2014).
    [Crossref]
  15. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18(3), 1898–1903 (2010).
    [Crossref] [PubMed]
  16. P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Characterization of bending loss in hollow flexible terahertz waveguides,” Opt. Express 20(17), 19176–19184 (2012).
    [Crossref] [PubMed]
  17. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
    [Crossref]
  18. J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
    [Crossref] [PubMed]
  19. H. D. Young and R. A. Freedman, University Physics (Addison Wesley, 1996).
  20. J. R. Davis, Copper and Copper Alloys (ASM International, 2001).
  21. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [Crossref] [PubMed]
  22. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
    [Crossref]
  23. J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett. 99(24), 241108 (2011).
    [Crossref]
  24. M. Navarro-Cía, M. S. Vitiello, C. M. Bledt, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5-5 THz band,” Opt. Express 21(20), 23748–23755 (2013).
    [Crossref] [PubMed]
  25. S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
    [Crossref]
  26. M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
    [Crossref]
  27. R. Degl’Innocenti, Y. D. Shah, D. S. Jessop, Y. Ren, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “Hollow metallic waveguides integrated with terahertz quantum cascade lasers,” Opt. Express 22(20), 24439–24449 (2014).
    [Crossref] [PubMed]
  28. J. A. Harrington, Infrared Fibre Optics and Their Applications (SPIE, 2004).
  29. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
    [Crossref]
  30. Y. Matsuura, A. Hongo, M. Saito, and M. Miyagi, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6(3), 423–427 (1989).
    [Crossref]
  31. C. D. Rabii, D. J. Gibson, and J. A. Harrington, “Processing and characterization of silver films used to fabricate hollow glass waveguides,” Appl. Opt. 38(21), 4486–4493 (1999).
    [Crossref] [PubMed]
  32. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77(11), 1617 (2000).
    [Crossref]

2016 (1)

A. Cosentino, “Terahertz and cultural heritage science: examination of art and archaeology,” Technologies 4(1), 6–19 (2016).
[Crossref]

2015 (1)

2014 (3)

R. Degl’Innocenti, Y. D. Shah, D. S. Jessop, Y. Ren, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “Hollow metallic waveguides integrated with terahertz quantum cascade lasers,” Opt. Express 22(20), 24439–24449 (2014).
[Crossref] [PubMed]

P. Doradla and R. H. Giles, “Dual-frequency characterization of bending losses in hollow flexible terahertz waveguides,” Proc. SPIE 8985, 898518 (2014).
[Crossref]

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (2)

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett. 99(24), 241108 (2011).
[Crossref]

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1(1), 124–132 (2011).
[Crossref]

2010 (2)

2009 (1)

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (1)

2005 (2)

M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86(22), 221107 (2005).
[Crossref]

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

2004 (4)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(28), 317–319 (2004).
[Crossref]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
[Crossref] [PubMed]

2003 (1)

T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[Crossref]

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

2000 (3)

D. R. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1122–1135 (2000).
[Crossref]

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77(11), 1617 (2000).
[Crossref]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
[Crossref]

1999 (2)

1994 (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

1989 (1)

Agarwal, A.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77(11), 1617 (2000).
[Crossref]

Akiyama, T.

T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[Crossref]

Alton, J.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

Amanti, M. I.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Awad, M. M.

M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86(22), 221107 (2005).
[Crossref]

Barbieri, S.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

Beck, M.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Beere, H. E.

R. Wallis, R. Degl’Iinnocenti, D. S. Jessop, Y. Ren, A. Klimont, Y. D. Shah, O. Mitrofanov, C. M. Bledt, J. E. Melzer, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Efficient coupling of double-metal terahertz quantum cascade lasers to flexible dielectric-lined hollow metallic waveguides,” Opt. Express 23(20), 26276–26287 (2015).
[Crossref] [PubMed]

R. Degl’Innocenti, Y. D. Shah, D. S. Jessop, Y. Ren, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “Hollow metallic waveguides integrated with terahertz quantum cascade lasers,” Opt. Express 22(20), 24439–24449 (2014).
[Crossref] [PubMed]

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett. 99(24), 241108 (2011).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Bledt, C. M.

Brewer, A.

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett. 99(24), 241108 (2011).
[Crossref]

Cavalié, P.

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett. 99(24), 241108 (2011).
[Crossref]

Chen, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Cheville, R. A.

M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86(22), 221107 (2005).
[Crossref]

Cosentino, A.

A. Cosentino, “Terahertz and cultural heritage science: examination of art and archaeology,” Technologies 4(1), 6–19 (2016).
[Crossref]

Davies, A. G.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Dean, P.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Degl’Iinnocenti, R.

Degl’Innocenti, R.

Dhillon, S. S.

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett. 99(24), 241108 (2011).
[Crossref]

Doradla, P.

P. Doradla and R. H. Giles, “Dual-frequency characterization of bending losses in hollow flexible terahertz waveguides,” Proc. SPIE 8985, 898518 (2014).
[Crossref]

P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Characterization of bending loss in hollow flexible terahertz waveguides,” Opt. Express 20(17), 19176–19184 (2012).
[Crossref] [PubMed]

Faist, J.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Fernandez, F. A.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1(1), 124–132 (2011).
[Crossref]

Fischer, M.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Foresi, J.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77(11), 1617 (2000).
[Crossref]

Fowler, J.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

Freeman, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Freeman, J. R.

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett. 99(24), 241108 (2011).
[Crossref]

Gallo, P.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Gallot, G.

George, R.

Gibson, D. J.

Giles, R. H.

P. Doradla and R. H. Giles, “Dual-frequency characterization of bending losses in hollow flexible terahertz waveguides,” Proc. SPIE 8985, 898518 (2014).
[Crossref]

P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Characterization of bending loss in hollow flexible terahertz waveguides,” Opt. Express 20(17), 19176–19184 (2012).
[Crossref] [PubMed]

Gordon, K. C.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(28), 317–319 (2004).
[Crossref]

Grischkowsky, D.

Grischkowsky, D. R.

D. R. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1122–1135 (2000).
[Crossref]

Harrington, J.

Harrington, J. A.

Hidaka, T.

T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[Crossref]

Hongo, A.

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Ito, H.

T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[Crossref]

James, R.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1(1), 124–132 (2011).
[Crossref]

Jamison, S. P.

Jessop, D. S.

Joseph, C. S.

Kapon, E.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Kimerling, L. C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77(11), 1617 (2000).
[Crossref]

Klimont, A.

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Kumar, J.

Kurz, H.

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Lee, K. K.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77(11), 1617 (2000).
[Crossref]

Li, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Lim, D. R.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77(11), 1617 (2000).
[Crossref]

Linfield, E. H.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Luan, H.-C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77(11), 1617 (2000).
[Crossref]

Madéo, J.

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett. 99(24), 241108 (2011).
[Crossref]

Maeta, S.-I.

T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[Crossref]

Marchewka, A.

Matsuura, Y.

Mavrogordatos, T. K.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1(1), 124–132 (2011).
[Crossref]

McGowan, R. W.

Melzer, J. E.

Mendis, R.

Minamide, H.

T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[Crossref]

Mitrofanov, O.

Mittleman, D. M.

Miyagi, M.

Mueller, E.

Nagel, M.

Navarro-Cía, M.

Newnham, D. A.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(28), 317–319 (2004).
[Crossref]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Pedersen, P.

Pepper, M.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(28), 317–319 (2004).
[Crossref]

Rabii, C. D.

Rades, T.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

Ren, Y.

Ritchie, D. A.

R. Wallis, R. Degl’Iinnocenti, D. S. Jessop, Y. Ren, A. Klimont, Y. D. Shah, O. Mitrofanov, C. M. Bledt, J. E. Melzer, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Efficient coupling of double-metal terahertz quantum cascade lasers to flexible dielectric-lined hollow metallic waveguides,” Opt. Express 23(20), 26276–26287 (2015).
[Crossref] [PubMed]

R. Degl’Innocenti, Y. D. Shah, D. S. Jessop, Y. Ren, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “Hollow metallic waveguides integrated with terahertz quantum cascade lasers,” Opt. Express 22(20), 24439–24449 (2014).
[Crossref] [PubMed]

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett. 99(24), 241108 (2011).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Rudra, A.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Saito, M.

Sarukura, N.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(28), 317–319 (2004).
[Crossref]

Scalari, G.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Shah, Y. D.

Strachan, C. J.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

Taday, P. F.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(28), 317–319 (2004).
[Crossref]

Terazzi, R.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Tignon, J.

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett. 99(24), 241108 (2011).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Valavanis, A.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Vitiello, M. S.

Wallis, R.

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Zeitler, J. A.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

Zhan, H.

Zhu, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77(11), 1617 (2000).
[Crossref]

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett. 99(24), 241108 (2011).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86(22), 221107 (2005).
[Crossref]

Electron. Lett. (1)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. R. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1122–1135 (2000).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1(1), 124–132 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Pharm. Sci. (1)

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(28), 317–319 (2004).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nature (2)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

New J. Phys. (1)

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Opt. Express (8)

R. Degl’Innocenti, Y. D. Shah, D. S. Jessop, Y. Ren, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “Hollow metallic waveguides integrated with terahertz quantum cascade lasers,” Opt. Express 22(20), 24439–24449 (2014).
[Crossref] [PubMed]

O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18(3), 1898–1903 (2010).
[Crossref] [PubMed]

P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Characterization of bending loss in hollow flexible terahertz waveguides,” Opt. Express 20(17), 19176–19184 (2012).
[Crossref] [PubMed]

M. Navarro-Cía, M. S. Vitiello, C. M. Bledt, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5-5 THz band,” Opt. Express 21(20), 23748–23755 (2013).
[Crossref] [PubMed]

J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
[Crossref] [PubMed]

H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18(9), 9643–9650 (2010).
[Crossref] [PubMed]

R. Wallis, R. Degl’Iinnocenti, D. S. Jessop, Y. Ren, A. Klimont, Y. D. Shah, O. Mitrofanov, C. M. Bledt, J. E. Melzer, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Efficient coupling of double-metal terahertz quantum cascade lasers to flexible dielectric-lined hollow metallic waveguides,” Opt. Express 23(20), 26276–26287 (2015).
[Crossref] [PubMed]

M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944–9954 (2006).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Proc. SPIE (2)

P. Doradla and R. H. Giles, “Dual-frequency characterization of bending losses in hollow flexible terahertz waveguides,” Proc. SPIE 8985, 898518 (2014).
[Crossref]

T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding terahertz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[Crossref]

Technologies (1)

A. Cosentino, “Terahertz and cultural heritage science: examination of art and archaeology,” Technologies 4(1), 6–19 (2016).
[Crossref]

Other (3)

H. D. Young and R. A. Freedman, University Physics (Addison Wesley, 1996).

J. R. Davis, Copper and Copper Alloys (ASM International, 2001).

J. A. Harrington, Infrared Fibre Optics and Their Applications (SPIE, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the setup used to characterize the HMWGs. A QCL was placed within the cryostat, and coupled into the external PS-MWG through a cylindrical HDPE window of 1.35 mm wall thickness. For the case of single-plasmon waveguided QCL designs, radiation was directly coupled into the PS-MWG, and for metal-metal waveguided devices, the beam was initially shaped using a copper waveguide monolithically integrated into the mounting block (IWG), prior to out-coupling from the cryostat, in order to increase coupling efficiency [4]. Initial and final powers were measured from the end of the PS-MWG (P0) and from the end of the HMWG (P1) respectively using a Golay cell detector. Inset c) – Photograph showing the 1.75 mm diameter SS, AnCu and UnCu waveguides.
Fig. 2
Fig. 2 a) Frequency spectra for the three QCL devices used to characterize the HMWGs, showing quasi-single mode operation at 2.0 THz (red), and 2.85 THz (green), and multimode emission for the hybrid active region device between 3.2 and 3.4 THz (blue). b) Representative far field profile from the end of the PS-MWG using the 2.0 THz device, showing the Gaussian-like HE11 mode used as a launch beam. The same mode was observed for all three QCLs used.
Fig. 3
Fig. 3 Exemplary plot of loss as a function of waveguide length for the case of the 1.75 mm diameter AnCu waveguide, measured at 3.2 THz. A linear fit (red) provides the coupling loss from the intercept, and the transmission loss from the gradient. The squares and triangles represent data from two separate measuring runs, showing the reproducibility of the measurements.
Fig. 4
Fig. 4 Transmission losses recorded with waveguides of varying material, bore diameter, and at varying frequencies. Bore diameters ranged from 1.75 mm (left panel), 2.5 mm (middle panel), and 4.6 mm (right panel). The three frequencies tested are shown as solid red (2.0 THz), up-hatched green (2.85 THz) and down-hatched blue (3.2 THz). Faded bars show measurements taken in standard atmosphere with a relative humidity of 38%, and solid bars show measurements taken whilst purging with nitrogen gas.
Fig. 5
Fig. 5 a) Beam profiles of the HMWGs, measured at a distance of 4.5 mm using a Golay cell detector with 1 mm aperture. The top row shows profiles for 1.75 mm bore diameters (green), the middle 2.5 mm diameters (yellow) and the lower row 4.6 mm diameters (cyan). Primarily single mode transmission is observed for the 1.75 mm diameters. b) Theoretical lowest order modes supported in such cylindrical hollow metallic waveguides, as calculated by FEA simulations, showing the TE01, TE11, TM01, and TM11 modes.
Fig. 6
Fig. 6 Bending losses as a function of bend angle for a given diameter and material of waveguide. The bend radius for each diameter was fixed at a constant value - 9.5, 12.7, and 15.9 mm, for the 1.75, 2.5, and 4.6 mm diameters respectively. The lowest bend losses over the entire bend range were observed for the 4.6 mm AnCu waveguide.
Fig. 7
Fig. 7 Transmission loss as a function of bore radius for the three UnCu waveguides tested. The solid red line is an inverse cube fit, showing that the measured results deviate from the idealized case described in Eq. (1) for larger bore radii.
Fig. 8
Fig. 8 Left panels - profiles of the inner surface of the 4.6 mm diameter UnCu and AnCu waveguides, recorded with a 500 nm step over a distance of 2 mm in the axial direction. Right panels - magnitude of the power spectral densities for each profile, with exponential fit (solid red line) to extract the associated correlation length. The correlation length of the AnCu varies on a significantly longer length scale.
Fig. 9
Fig. 9 a) Correlation length (red left axis) and RMS roughness (black right axis) as a function of HNO3 etch time. The RMS roughness shows an increasing trend with etch time, whilst the correlation length remains comparatively constant. b) Measured transmission loss (unpurged) at 2.0 THz as a function of HNO3 etch time, showing that the variation in RMS roughness on this scale has no influence on the transmission loss, within the experimental uncertainty.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α lm = ( u lm 2π ) 2 λ 2 a 3 Re( ν l )
α= ( 4πσsinθ λ ) 2

Metrics