Abstract

We demonstrate a Brillouin optical frequency-domain reflectometry (BOFDR) technique, which can measure the strain and/or temperature along an optical fiber with one-end access, by detecting the spontaneous Brillouin scattering from a sinusoidally modulated pump light. Compared to the Brillouin optical frequency-domain analysis (BOFDA), we show that BOFDR measurements are free from the distorting components related to acoustic wave modulation, thus simplifying data processing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Proposal of Brillouin optical correlation-domain reflectometry (BOCDR)

Yosuke Mizuno, Weiwen Zou, Zuyuan He, and Kazuo Hotate
Opt. Express 16(16) 12148-12153 (2008)

Operation of slope-assisted Brillouin optical correlation-domain reflectometry: comparison of system output with actual frequency shift distribution

Heeyoung Lee, Neisei Hayashi, Yosuke Mizuno, and Kentaro Nakamura
Opt. Express 24(25) 29190-29197 (2016)

Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber

Zhiyong Zhao, Yunli Dang, Ming Tang, Li Duan, Meng Wang, Hao Wu, Songnian Fu, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 24(22) 25111-25118 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).
  2. H. Naruse and M. Tateda, “Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber,” Appl. Opt. 38(31), 6516–6521 (1999).
    [Crossref] [PubMed]
  3. Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High Spatial Resolution BOTDR Based on Differential Brillouin Spectrum Technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
    [Crossref]
  4. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
    [Crossref] [PubMed]
  5. Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
    [Crossref] [PubMed]
  6. Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on double-modulation scheme,” Opt. Express 18(6), 5926–5933 (2010).
    [Crossref] [PubMed]
  7. Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light: Science & Applications accepted article preview 30 June 2016.
  8. D. Garus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical- fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15(4), 654–662 (1997).
    [Crossref]
  9. M. A. Farahani and T. Gogolla, “Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing,” J. Lightwave Technol. 17(8), 1379–1391 (1999).
    [Crossref]
  10. R. Bernini, A. Minardo, and L. Zeni, “Distributed Sensing at Centimeter-Scale Spatial Resolution by BOFDA: Measurements and Signal Processing,” IEEE Photonics J. 4(1), 48–56 (2012).
    [Crossref]
  11. A. Wosniok, Y. Mizuno, K. Krebber, and K. Nakamura, “L-BOFDA: a new sensor technique for distributed Brillouin sensing”, Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, 879431 (May 20, 2013).
    [Crossref]
  12. H. Ghafoori-Shiraz and T. Okoshi, “Fault location in optical fibers using optical frequency domain reflectometry,” J. Lightwave Technol. 4(3), 316–322 (1986).
    [Crossref]
  13. K. Nishiguchi, C. H. Li, A. Guzik, and K. Kishida, “Synthetic Spectrum Approach for Brillouin Optical Time-Domain Reflectometry,” Sensors (Basel) 14(3), 4731–4754 (2014).
    [Crossref] [PubMed]
  14. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  15. A. Minardo, G. Testa, L. Zeni, and R. Bernini, “Theoretical and Experimental Analysis of Brillouin Scattering in Single-Mode Optical Fiber Excited by an Intensity- and Phase-Modulated Pump,” J. Lightwave Technol. 28(2), 193–200 (2010).
    [Crossref]
  16. W. Robert, Boyd, Nonlinear optics 3rd edition, (Academic Press, 2008).
  17. A. Yeniay, J.-M. Delavaux, and J. Toulouse, “Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers,” J. Lightwave Technol. 20(8), 1425–1432 (2002).
    [Crossref]
  18. “The Basis of Spectrum Analyzers”, Technical Note. http://www.naic.edu/~phil/hardware/Misc/anritsu/SpectrumAnalyzer_basis_of.pdf
  19. Y. London, Y. Antman, E. Preter, N. Levanon, and A. Zadok, “Brillouin Optical Correlation Domain Analysis Addressing 440,000 Resolution Points,” J. Lightwave Technol. 34(19), 4421–4429 (2016).

2016 (2)

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High Spatial Resolution BOTDR Based on Differential Brillouin Spectrum Technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

Y. London, Y. Antman, E. Preter, N. Levanon, and A. Zadok, “Brillouin Optical Correlation Domain Analysis Addressing 440,000 Resolution Points,” J. Lightwave Technol. 34(19), 4421–4429 (2016).

2014 (1)

K. Nishiguchi, C. H. Li, A. Guzik, and K. Kishida, “Synthetic Spectrum Approach for Brillouin Optical Time-Domain Reflectometry,” Sensors (Basel) 14(3), 4731–4754 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

R. Bernini, A. Minardo, and L. Zeni, “Distributed Sensing at Centimeter-Scale Spatial Resolution by BOFDA: Measurements and Signal Processing,” IEEE Photonics J. 4(1), 48–56 (2012).
[Crossref]

2010 (2)

2009 (1)

2008 (1)

2002 (1)

1999 (2)

1997 (1)

D. Garus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical- fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15(4), 654–662 (1997).
[Crossref]

1993 (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

1986 (1)

H. Ghafoori-Shiraz and T. Okoshi, “Fault location in optical fibers using optical frequency domain reflectometry,” J. Lightwave Technol. 4(3), 316–322 (1986).
[Crossref]

Antman, Y.

Bernini, R.

R. Bernini, A. Minardo, and L. Zeni, “Distributed Sensing at Centimeter-Scale Spatial Resolution by BOFDA: Measurements and Signal Processing,” IEEE Photonics J. 4(1), 48–56 (2012).
[Crossref]

A. Minardo, G. Testa, L. Zeni, and R. Bernini, “Theoretical and Experimental Analysis of Brillouin Scattering in Single-Mode Optical Fiber Excited by an Intensity- and Phase-Modulated Pump,” J. Lightwave Technol. 28(2), 193–200 (2010).
[Crossref]

Delavaux, J.-M.

Farahani, M. A.

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Gan, J.

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High Spatial Resolution BOTDR Based on Differential Brillouin Spectrum Technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

Garus, D.

D. Garus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical- fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15(4), 654–662 (1997).
[Crossref]

Ghafoori-Shiraz, H.

H. Ghafoori-Shiraz and T. Okoshi, “Fault location in optical fibers using optical frequency domain reflectometry,” J. Lightwave Technol. 4(3), 316–322 (1986).
[Crossref]

Gogolla, T.

M. A. Farahani and T. Gogolla, “Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing,” J. Lightwave Technol. 17(8), 1379–1391 (1999).
[Crossref]

D. Garus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical- fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15(4), 654–662 (1997).
[Crossref]

Guzik, A.

K. Nishiguchi, C. H. Li, A. Guzik, and K. Kishida, “Synthetic Spectrum Approach for Brillouin Optical Time-Domain Reflectometry,” Sensors (Basel) 14(3), 4731–4754 (2014).
[Crossref] [PubMed]

He, Z.

Horiguchi, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Hotate, K.

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Kishida, K.

K. Nishiguchi, C. H. Li, A. Guzik, and K. Kishida, “Synthetic Spectrum Approach for Brillouin Optical Time-Domain Reflectometry,” Sensors (Basel) 14(3), 4731–4754 (2014).
[Crossref] [PubMed]

Koyamada, Y.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Krebber, K.

D. Garus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical- fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15(4), 654–662 (1997).
[Crossref]

Kurashima, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Levanon, N.

Li, C. H.

K. Nishiguchi, C. H. Li, A. Guzik, and K. Kishida, “Synthetic Spectrum Approach for Brillouin Optical Time-Domain Reflectometry,” Sensors (Basel) 14(3), 4731–4754 (2014).
[Crossref] [PubMed]

Li, J.

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High Spatial Resolution BOTDR Based on Differential Brillouin Spectrum Technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

Li, Q.

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High Spatial Resolution BOTDR Based on Differential Brillouin Spectrum Technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

London, Y.

Minardo, A.

R. Bernini, A. Minardo, and L. Zeni, “Distributed Sensing at Centimeter-Scale Spatial Resolution by BOFDA: Measurements and Signal Processing,” IEEE Photonics J. 4(1), 48–56 (2012).
[Crossref]

A. Minardo, G. Testa, L. Zeni, and R. Bernini, “Theoretical and Experimental Analysis of Brillouin Scattering in Single-Mode Optical Fiber Excited by an Intensity- and Phase-Modulated Pump,” J. Lightwave Technol. 28(2), 193–200 (2010).
[Crossref]

Mizuno, Y.

Naruse, H.

Nishiguchi, K.

K. Nishiguchi, C. H. Li, A. Guzik, and K. Kishida, “Synthetic Spectrum Approach for Brillouin Optical Time-Domain Reflectometry,” Sensors (Basel) 14(3), 4731–4754 (2014).
[Crossref] [PubMed]

Okoshi, T.

H. Ghafoori-Shiraz and T. Okoshi, “Fault location in optical fibers using optical frequency domain reflectometry,” J. Lightwave Technol. 4(3), 316–322 (1986).
[Crossref]

Preter, E.

Schliep, F.

D. Garus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical- fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15(4), 654–662 (1997).
[Crossref]

Soto, M. A.

Tateda, M.

Testa, G.

Thévenaz, L.

Toulouse, J.

Wu, Y.

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High Spatial Resolution BOTDR Based on Differential Brillouin Spectrum Technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

Yang, Z.

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High Spatial Resolution BOTDR Based on Differential Brillouin Spectrum Technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

Yeniay, A.

Zadok, A.

Zeni, L.

R. Bernini, A. Minardo, and L. Zeni, “Distributed Sensing at Centimeter-Scale Spatial Resolution by BOFDA: Measurements and Signal Processing,” IEEE Photonics J. 4(1), 48–56 (2012).
[Crossref]

A. Minardo, G. Testa, L. Zeni, and R. Bernini, “Theoretical and Experimental Analysis of Brillouin Scattering in Single-Mode Optical Fiber Excited by an Intensity- and Phase-Modulated Pump,” J. Lightwave Technol. 28(2), 193–200 (2010).
[Crossref]

Zhang, Z.

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High Spatial Resolution BOTDR Based on Differential Brillouin Spectrum Technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

Zou, W.

Appl. Opt. (1)

IEEE Photonics J. (1)

R. Bernini, A. Minardo, and L. Zeni, “Distributed Sensing at Centimeter-Scale Spatial Resolution by BOFDA: Measurements and Signal Processing,” IEEE Photonics J. 4(1), 48–56 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High Spatial Resolution BOTDR Based on Differential Brillouin Spectrum Technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

IEICE Trans. Commun. (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

J. Lightwave Technol. (6)

Opt. Express (4)

Sensors (Basel) (1)

K. Nishiguchi, C. H. Li, A. Guzik, and K. Kishida, “Synthetic Spectrum Approach for Brillouin Optical Time-Domain Reflectometry,” Sensors (Basel) 14(3), 4731–4754 (2014).
[Crossref] [PubMed]

Other (4)

“The Basis of Spectrum Analyzers”, Technical Note. http://www.naic.edu/~phil/hardware/Misc/anritsu/SpectrumAnalyzer_basis_of.pdf

W. Robert, Boyd, Nonlinear optics 3rd edition, (Academic Press, 2008).

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light: Science & Applications accepted article preview 30 June 2016.

A. Wosniok, Y. Mizuno, K. Krebber, and K. Nakamura, “L-BOFDA: a new sensor technique for distributed Brillouin sensing”, Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, 879431 (May 20, 2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup of BOFDR system. EOM: electro-optic modulator. OC: optical coupler; PS: polarization scrambler; PD: photodetector; BPF: electrical bandpass filter.
Fig. 2
Fig. 2 (a) Position-frequency Brillouin gain map acquired over a uniform 100-m long fiber, for a modulation frequency ranging from 100 kHz to 100 MHz; (b) BGS acquired at a generic position of the fiber using the custom-made BPF (blue solid line), or the Minicircuits VBFZ-780-S + (note that both BGS have been translated horizontally, by a quantity equal to the center frequency of the bandpass filter).
Fig. 3
Fig. 3 Frequency-domain data acquired using the proposed BOFDR method (a) or the BOFDA method (b). The white dashed lines in Fig. 3(b) highlight the three peaks in the frequency-domain Brillouin gain spectra. The gain visible at frequencies around 10860 MHz is due to the SBS occurring along short pigtails spliced to the test fiber.
Fig. 4
Fig. 4 Brillouin gain map computed by applying the IFFT on the frequency-domain data acquired using (a) the BOFDR method or (b) the BOFDA method.
Fig. 5
Fig. 5 (a) BFS reconstruction obtained by processing the BOFDA measurements or the BOFDR measurements. (b) BGS acquired by the BOFDA at the position of the second cold spot (z = 97 m), and BGS acquired by the BOFDR at the same position and at an unperturbed position.
Fig. 6
Fig. 6 BFS profile reconstruction along a 5-km fiber spool. The inset shows the zoomed view of the last 20 m of the reconstructed profile.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δz= c 2n 1 f max f min ,
L max = c 2n 1 Δ f m .
FoM=  ( α L eff ) 2 exp( 2αL ) Δz N AV δΔ υ B σ υ
T acq ( time domain )= 2nL c N av
T acq ( frequency domain )=3 L δz 1 RBW
N av,eff =  c 2n 3 δz 1 RBW

Metrics