Abstract

We report for the first time and characterize experimentally the complex optical conductivity of graphene on silicon photonic waveguides. This permits us to predict accurately the behavior of photonic integrated devices encompassing graphene layers. Exploiting a Si microring add/drop resonator, we show the effect of electrical gating of graphene on the complex effective index of the waveguide by measuring both the wavelength shift of the resonance and the change in the drop peak transmission. Due to electro-refractive effect of graphene a giant (>10−3) change in the effective index is demonstrated for the first time on Si photonics waveguides and this large effect will crucially impact performances and consumption of Si photonics devices. We confirmed the results by two independent experiments involving two different gating schemes: Si gating through the ridge waveguide, and polymer-electrolyte gating. Both the experiments demonstrate a very large phase effect in good agreement with numerical calculations. The reported results validate the Kubo model for the case of graphene-Si photonics interfaces and for propagation in this type of waveguide. This is fundamental for the next design and fabrication of future graphene-silicon photonics devices.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

11 January 2017: A correction was made to the author listing.


OSA Recommended Articles
Design optimization of single and double layer Graphene phase modulators in SOI

Vito Sorianello, Michele Midrio, and Marco Romagnoli
Opt. Express 23(5) 6478-6490 (2015)

Graphene-based optical phase modulation of waveguide transverse electric modes

Michele Midrio, Paola Galli, Marco Romagnoli, Lionel C. Kimerling, and Jurgen Michel
Photon. Res. 2(3) A34-A40 (2014)

High-quality Si3N4 circuits as a platform for graphene-based nanophotonic devices

N. Gruhler, C. Benz, H. Jang, J.-H. Ahn, R. Danneau, and W. H. P. Pernice
Opt. Express 21(25) 31678-31689 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed and A. Knight, Silicon Photonics: An Introduction (J. Wiley & Sons Ltd, 2004).
  2. R. Soref, “The past, present and future of Silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  3. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2007).
    [Crossref]
  4. Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
    [Crossref]
  5. L. Pavesi and D. J. Lockwood, Silicon Photonics III, (Springer Verlag, 2016).
  6. R. A. Soref and J. P. Lorenzo, “All-Silicon active and passive guided wave components for λ = 1.3 and 1.6µm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
    [Crossref]
  7. G. T. Reed, Silicon Photonics: The State of the Art, (J. Wiley & Sons Ltd, 2008).
  8. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A Graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  9. M. Liu, X. Yin, and X. Zhang, “Double-layer Graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
    [Crossref] [PubMed]
  10. C. T. Phare, Y. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
    [Crossref]
  11. Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10(2), 307–316 (2016).
    [Crossref]
  12. C. Xu, Y. Jin, L. Yang, J. Yang, and X. Jiang, “Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide,” Opt. Express 20(20), 22398–22405 (2012).
    [Crossref] [PubMed]
  13. J. Gosciniak and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Sci. Rep. 3, 1897 (2013).
    [Crossref] [PubMed]
  14. M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in Graphene,” Sci. Rep. 5, 10967 (2015).
    [Crossref] [PubMed]
  15. A. Phatak, Z. Cheng, C. Qin, and K. Goda, “Design of electro-optic modulators based on Graphene-on-Silicon slot waveguides,” Opt. Lett. 41(11), 2501–2504 (2016).
    [Crossref] [PubMed]
  16. Y. M. Zuev, W. Chang, and P. Kim, “Thermoelectric and magnetothermoelectric transport measurements of graphene,” Phys. Rev. Lett. 102(9), 096807 (2009).
    [Crossref] [PubMed]
  17. P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, “Anomalous thermoelectric transport of Dirac particles in graphene,” Phys. Rev. Lett. 102(16), 166808 (2009).
    [Crossref] [PubMed]
  18. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
    [Crossref] [PubMed]
  19. T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
    [Crossref]
  20. R. J. Shiue, Y. Gao, Y. Wang, C. Peng, A. D. Robertson, D. K. Efetov, S. Assefa, F. H. L. Koppens, J. Hone, and D. Englund, “High-responsivity graphene−boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit,” Nano Lett. 15(11), 7288–7293 (2015).
    [Crossref] [PubMed]
  21. A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13(2), 515–518 (2013).
    [Crossref] [PubMed]
  22. X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
    [Crossref] [PubMed]
  23. V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer Graphene phase modulators in SOI,” Opt. Express 23(5), 6478–6490 (2015).
    [Crossref] [PubMed]
  24. C. W. Chen, F. Ren, G. C. Chi, S. C. Hung, Y. P. Huang, J. Kim, I. Kravchenko, and S. J. Pearton, “Effects of semiconductor processing chemicals on conductivity of Graphene,” J. Vac. Sci. Technol. B 30(4), 040602 (2012).
    [Crossref]
  25. J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, “Reducing extrinsic performance-limiting factors in Graphene grown by chemical vapor deposition,” ACS Nano 6(4), 3224–3229 (2012).
    [Crossref] [PubMed]
  26. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited Graphene transferred to SiO2,” Appl. Phys. Lett. 99(12), 122108 (2011).
    [Crossref]
  27. Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang, “Toward intrinsic Graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported Graphene devices,” Nano Lett. 11(2), 767–771 (2011).
    [Crossref] [PubMed]
  28. S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed Graphene on a SiO2 substrate,” Nano Lett. 10(12), 4944–4951 (2010).
    [Crossref] [PubMed]
  29. J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of Graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
    [Crossref] [PubMed]
  30. Y. C. Chang, C. H. Liu, C. H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer Graphene by ellipsometry,” Appl. Phys. Lett. 104(26), 261909 (2014).
    [Crossref]
  31. P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G Silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
    [Crossref]
  32. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
    [Crossref] [PubMed]
  33. Graphenea, “Graphenea granted patent on graphene transfer,” http://www.graphenea.com/blogs/graphene-news/16922317-graphenea-granted-patent-on-graphene-transfer .
  34. M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C. S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, and M. Heyns, “Transition metal contacts to Graphene,” Appl. Phys. Lett. 107(15), 153104 (2015).
  35. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional Graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
    [Crossref]
  36. Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in Graphene,” Phys. Rev. Lett. 99(24), 246803 (2007).
    [Crossref] [PubMed]
  37. H. A. Haus, M. A. Popović, M. R. Watts, and C. Manolatou, “Optical resonators and filters,” in Optical Microcavities, K. Vahala, ed. (World Scientific Publishing, 2004).
  38. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  39. D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in Graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
    [Crossref] [PubMed]

2016 (2)

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10(2), 307–316 (2016).
[Crossref]

A. Phatak, Z. Cheng, C. Qin, and K. Goda, “Design of electro-optic modulators based on Graphene-on-Silicon slot waveguides,” Opt. Lett. 41(11), 2501–2504 (2016).
[Crossref] [PubMed]

2015 (6)

C. T. Phare, Y. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in Graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer Graphene phase modulators in SOI,” Opt. Express 23(5), 6478–6490 (2015).
[Crossref] [PubMed]

R. J. Shiue, Y. Gao, Y. Wang, C. Peng, A. D. Robertson, D. K. Efetov, S. Assefa, F. H. L. Koppens, J. Hone, and D. Englund, “High-responsivity graphene−boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit,” Nano Lett. 15(11), 7288–7293 (2015).
[Crossref] [PubMed]

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G Silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C. S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, and M. Heyns, “Transition metal contacts to Graphene,” Appl. Phys. Lett. 107(15), 153104 (2015).

2014 (1)

Y. C. Chang, C. H. Liu, C. H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer Graphene by ellipsometry,” Appl. Phys. Lett. 104(26), 261909 (2014).
[Crossref]

2013 (4)

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref] [PubMed]

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[Crossref] [PubMed]

J. Gosciniak and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Sci. Rep. 3, 1897 (2013).
[Crossref] [PubMed]

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

2012 (5)

C. Xu, Y. Jin, L. Yang, J. Yang, and X. Jiang, “Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide,” Opt. Express 20(20), 22398–22405 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, and X. Zhang, “Double-layer Graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

C. W. Chen, F. Ren, G. C. Chi, S. C. Hung, Y. P. Huang, J. Kim, I. Kravchenko, and S. J. Pearton, “Effects of semiconductor processing chemicals on conductivity of Graphene,” J. Vac. Sci. Technol. B 30(4), 040602 (2012).
[Crossref]

J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, “Reducing extrinsic performance-limiting factors in Graphene grown by chemical vapor deposition,” ACS Nano 6(4), 3224–3229 (2012).
[Crossref] [PubMed]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2011 (4)

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional Graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited Graphene transferred to SiO2,” Appl. Phys. Lett. 99(12), 122108 (2011).
[Crossref]

Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang, “Toward intrinsic Graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported Graphene devices,” Nano Lett. 11(2), 767–771 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A Graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

2010 (3)

T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed Graphene on a SiO2 substrate,” Nano Lett. 10(12), 4944–4951 (2010).
[Crossref] [PubMed]

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in Graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

2009 (4)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Y. M. Zuev, W. Chang, and P. Kim, “Thermoelectric and magnetothermoelectric transport measurements of graphene,” Phys. Rev. Lett. 102(9), 096807 (2009).
[Crossref] [PubMed]

P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, “Anomalous thermoelectric transport of Dirac particles in graphene,” Phys. Rev. Lett. 102(16), 166808 (2009).
[Crossref] [PubMed]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

2008 (1)

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of Graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

2007 (2)

Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in Graphene,” Phys. Rev. Lett. 99(24), 246803 (2007).
[Crossref] [PubMed]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2007).
[Crossref]

2006 (1)

R. Soref, “The past, present and future of Silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

1986 (1)

R. A. Soref and J. P. Lorenzo, “All-Silicon active and passive guided wave components for λ = 1.3 and 1.6µm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[Crossref]

Absil, P.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10(2), 307–316 (2016).
[Crossref]

Absil, P. P.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G Silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Adam, S.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional Graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in Graphene,” Phys. Rev. Lett. 99(24), 246803 (2007).
[Crossref] [PubMed]

An, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Arakawa, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Assefa, S.

R. J. Shiue, Y. Gao, Y. Wang, C. Peng, A. D. Robertson, D. K. Efetov, S. Assefa, F. H. L. Koppens, J. Hone, and D. Englund, “High-responsivity graphene−boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit,” Nano Lett. 15(11), 7288–7293 (2015).
[Crossref] [PubMed]

Asselberghs, I.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10(2), 307–316 (2016).
[Crossref]

M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C. S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, and M. Heyns, “Transition metal contacts to Graphene,” Appl. Phys. Lett. 107(15), 153104 (2015).

Avouris, P.

T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Banerjee, S. K.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Bao, W.

P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, “Anomalous thermoelectric transport of Dirac particles in graphene,” Phys. Rev. Lett. 102(16), 166808 (2009).
[Crossref] [PubMed]

Berciaud, S.

S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed Graphene on a SiO2 substrate,” Nano Lett. 10(12), 4944–4951 (2010).
[Crossref] [PubMed]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bolotin, K.

Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in Graphene,” Phys. Rev. Lett. 99(24), 246803 (2007).
[Crossref] [PubMed]

Brems, S.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10(2), 307–316 (2016).
[Crossref]

Brus, L. E.

S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed Graphene on a SiO2 substrate,” Nano Lett. 10(12), 4944–4951 (2010).
[Crossref] [PubMed]

Cai, W.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Cardenas, J.

C. T. Phare, Y. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Chan, J.

J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, “Reducing extrinsic performance-limiting factors in Graphene grown by chemical vapor deposition,” ACS Nano 6(4), 3224–3229 (2012).
[Crossref] [PubMed]

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited Graphene transferred to SiO2,” Appl. Phys. Lett. 99(12), 122108 (2011).
[Crossref]

Chang, W.

Y. M. Zuev, W. Chang, and P. Kim, “Thermoelectric and magnetothermoelectric transport measurements of graphene,” Phys. Rev. Lett. 102(9), 096807 (2009).
[Crossref] [PubMed]

Chang, Y. C.

Y. C. Chang, C. H. Liu, C. H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer Graphene by ellipsometry,” Appl. Phys. Lett. 104(26), 261909 (2014).
[Crossref]

Chen, C. W.

C. W. Chen, F. Ren, G. C. Chi, S. C. Hung, Y. P. Huang, J. Kim, I. Kravchenko, and S. J. Pearton, “Effects of semiconductor processing chemicals on conductivity of Graphene,” J. Vac. Sci. Technol. B 30(4), 040602 (2012).
[Crossref]

Chen, H.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G Silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Chen, J. H.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of Graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Cheng, Z.

A. Phatak, Z. Cheng, C. Qin, and K. Goda, “Design of electro-optic modulators based on Graphene-on-Silicon slot waveguides,” Opt. Lett. 41(11), 2501–2504 (2016).
[Crossref] [PubMed]

Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang, “Toward intrinsic Graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported Graphene devices,” Nano Lett. 11(2), 767–771 (2011).
[Crossref] [PubMed]

Chi, G. C.

C. W. Chen, F. Ren, G. C. Chi, S. C. Hung, Y. P. Huang, J. Kim, I. Kravchenko, and S. J. Pearton, “Effects of semiconductor processing chemicals on conductivity of Graphene,” J. Vac. Sci. Technol. B 30(4), 040602 (2012).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Colombo, L.

J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, “Reducing extrinsic performance-limiting factors in Graphene grown by chemical vapor deposition,” ACS Nano 6(4), 3224–3229 (2012).
[Crossref] [PubMed]

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited Graphene transferred to SiO2,” Appl. Phys. Lett. 99(12), 122108 (2011).
[Crossref]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Conard, T.

M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C. S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, and M. Heyns, “Transition metal contacts to Graphene,” Appl. Phys. Lett. 107(15), 153104 (2015).

Das Sarma, S.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional Graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in Graphene,” Phys. Rev. Lett. 99(24), 246803 (2007).
[Crossref] [PubMed]

De Coster, J.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G Silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

De Gendt, S.

M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C. S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, and M. Heyns, “Transition metal contacts to Graphene,” Appl. Phys. Lett. 107(15), 153104 (2015).

De Heyn, P.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G Silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Drissi, Y.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G Silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Efetov, D. K.

R. J. Shiue, Y. Gao, Y. Wang, C. Peng, A. D. Robertson, D. K. Efetov, S. Assefa, F. H. L. Koppens, J. Hone, and D. Englund, “High-responsivity graphene−boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit,” Nano Lett. 15(11), 7288–7293 (2015).
[Crossref] [PubMed]

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in Graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

Englund, D.

R. J. Shiue, Y. Gao, Y. Wang, C. Peng, A. D. Robertson, D. K. Efetov, S. Assefa, F. H. L. Koppens, J. Hone, and D. Englund, “High-responsivity graphene−boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit,” Nano Lett. 15(11), 7288–7293 (2015).
[Crossref] [PubMed]

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[Crossref] [PubMed]

Fang, Y.

Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang, “Toward intrinsic Graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported Graphene devices,” Nano Lett. 11(2), 767–771 (2011).
[Crossref] [PubMed]

Fathpour, S.

Flynn, G. W.

S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed Graphene on a SiO2 substrate,” Nano Lett. 10(12), 4944–4951 (2010).
[Crossref] [PubMed]

Fuhrer, M. S.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of Graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Fujita, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Gan, X.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[Crossref] [PubMed]

Gao, Y.

R. J. Shiue, Y. Gao, Y. Wang, C. Peng, A. D. Robertson, D. K. Efetov, S. Assefa, F. H. L. Koppens, J. Hone, and D. Englund, “High-responsivity graphene−boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit,” Nano Lett. 15(11), 7288–7293 (2015).
[Crossref] [PubMed]

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A Graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Giesecke, A. L.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in Graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Goda, K.

Gosciniak, J.

J. Gosciniak and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Sci. Rep. 3, 1897 (2013).
[Crossref] [PubMed]

Heinz, T. F.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[Crossref] [PubMed]

Heyns, M.

M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C. S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, and M. Heyns, “Transition metal contacts to Graphene,” Appl. Phys. Lett. 107(15), 153104 (2015).

Hinojos, D.

J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, “Reducing extrinsic performance-limiting factors in Graphene grown by chemical vapor deposition,” ACS Nano 6(4), 3224–3229 (2012).
[Crossref] [PubMed]

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited Graphene transferred to SiO2,” Appl. Phys. Lett. 99(12), 122108 (2011).
[Crossref]

Hone, J.

R. J. Shiue, Y. Gao, Y. Wang, C. Peng, A. D. Robertson, D. K. Efetov, S. Assefa, F. H. L. Koppens, J. Hone, and D. Englund, “High-responsivity graphene−boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit,” Nano Lett. 15(11), 7288–7293 (2015).
[Crossref] [PubMed]

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[Crossref] [PubMed]

Hu, Y.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10(2), 307–316 (2016).
[Crossref]

Huang, Y. P.

C. W. Chen, F. Ren, G. C. Chi, S. C. Hung, Y. P. Huang, J. Kim, I. Kravchenko, and S. J. Pearton, “Effects of semiconductor processing chemicals on conductivity of Graphene,” J. Vac. Sci. Technol. B 30(4), 040602 (2012).
[Crossref]

Hung, S. C.

C. W. Chen, F. Ren, G. C. Chi, S. C. Hung, Y. P. Huang, J. Kim, I. Kravchenko, and S. J. Pearton, “Effects of semiconductor processing chemicals on conductivity of Graphene,” J. Vac. Sci. Technol. B 30(4), 040602 (2012).
[Crossref]

Huyghebaert, C.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10(2), 307–316 (2016).
[Crossref]

M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C. S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, and M. Heyns, “Transition metal contacts to Graphene,” Appl. Phys. Lett. 107(15), 153104 (2015).

Hwang, E. H.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional Graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in Graphene,” Phys. Rev. Lett. 99(24), 246803 (2007).
[Crossref] [PubMed]

Ishigami, M.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of Graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Jalali, B.

Jang, C.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of Graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Jiang, X.

Jin, Y.

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A Graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Jung, I.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Khanna, A.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G Silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Kim, J.

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref] [PubMed]

C. W. Chen, F. Ren, G. C. Chi, S. C. Hung, Y. P. Huang, J. Kim, I. Kravchenko, and S. J. Pearton, “Effects of semiconductor processing chemicals on conductivity of Graphene,” J. Vac. Sci. Technol. B 30(4), 040602 (2012).
[Crossref]

Kim, P.

S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed Graphene on a SiO2 substrate,” Nano Lett. 10(12), 4944–4951 (2010).
[Crossref] [PubMed]

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in Graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

Y. M. Zuev, W. Chang, and P. Kim, “Thermoelectric and magnetothermoelectric transport measurements of graphene,” Phys. Rev. Lett. 102(9), 096807 (2009).
[Crossref] [PubMed]

Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in Graphene,” Phys. Rev. Lett. 99(24), 246803 (2007).
[Crossref] [PubMed]

Kim, S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Koppens, F. H. L.

R. J. Shiue, Y. Gao, Y. Wang, C. Peng, A. D. Robertson, D. K. Efetov, S. Assefa, F. H. L. Koppens, J. Hone, and D. Englund, “High-responsivity graphene−boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit,” Nano Lett. 15(11), 7288–7293 (2015).
[Crossref] [PubMed]

Kravchenko, I.

C. W. Chen, F. Ren, G. C. Chi, S. C. Hung, Y. P. Huang, J. Kim, I. Kravchenko, and S. J. Pearton, “Effects of semiconductor processing chemicals on conductivity of Graphene,” J. Vac. Sci. Technol. B 30(4), 040602 (2012).
[Crossref]

Kurz, H.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in Graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Lau, C. N.

P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, “Anomalous thermoelectric transport of Dirac particles in graphene,” Phys. Rev. Lett. 102(16), 166808 (2009).
[Crossref] [PubMed]

Lee, C. S.

M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C. S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, and M. Heyns, “Transition metal contacts to Graphene,” Appl. Phys. Lett. 107(15), 153104 (2015).

Lee, Y. D.

C. T. Phare, Y. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Lepage, G.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G Silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Li, L.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[Crossref] [PubMed]

Li, Q.

Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang, “Toward intrinsic Graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported Graphene devices,” Nano Lett. 11(2), 767–771 (2011).
[Crossref] [PubMed]

Li, X.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Lin, Y. M.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Lipson, M.

C. T. Phare, Y. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Liu, C. H.

Y. C. Chang, C. H. Liu, C. H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer Graphene by ellipsometry,” Appl. Phys. Lett. 104(26), 261909 (2014).
[Crossref]

Y. C. Chang, C. H. Liu, C. H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer Graphene by ellipsometry,” Appl. Phys. Lett. 104(26), 261909 (2014).
[Crossref]

Liu, H.

S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed Graphene on a SiO2 substrate,” Nano Lett. 10(12), 4944–4951 (2010).
[Crossref] [PubMed]

Liu, L.

S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed Graphene on a SiO2 substrate,” Nano Lett. 10(12), 4944–4951 (2010).
[Crossref] [PubMed]

Liu, M.

M. Liu, X. Yin, and X. Zhang, “Double-layer Graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A Graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Lorenzo, J. P.

R. A. Soref and J. P. Lorenzo, “All-Silicon active and passive guided wave components for λ = 1.3 and 1.6µm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[Crossref]

Magnuson, C. W.

J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, “Reducing extrinsic performance-limiting factors in Graphene grown by chemical vapor deposition,” ACS Nano 6(4), 3224–3229 (2012).
[Crossref] [PubMed]

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited Graphene transferred to SiO2,” Appl. Phys. Lett. 99(12), 122108 (2011).
[Crossref]

Majumdar, A.

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref] [PubMed]

Mak, K. F.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[Crossref] [PubMed]

Martens, K.

M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C. S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, and M. Heyns, “Transition metal contacts to Graphene,” Appl. Phys. Lett. 107(15), 153104 (2015).

Matheisen, C.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in Graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

McDonnell, S.

J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, “Reducing extrinsic performance-limiting factors in Graphene grown by chemical vapor deposition,” ACS Nano 6(4), 3224–3229 (2012).
[Crossref] [PubMed]

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited Graphene transferred to SiO2,” Appl. Phys. Lett. 99(12), 122108 (2011).
[Crossref]

Midrio, M.

Mohsin, M.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in Graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Mueller, T.

T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Nah, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Nakamura, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Neumaier, D.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in Graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Norris, T. B.

Y. C. Chang, C. H. Liu, C. H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer Graphene by ellipsometry,” Appl. Phys. Lett. 104(26), 261909 (2014).
[Crossref]

Otto, M.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in Graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Pantouvaki, M.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10(2), 307–316 (2016).
[Crossref]

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G Silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Pearton, S. J.

C. W. Chen, F. Ren, G. C. Chi, S. C. Hung, Y. P. Huang, J. Kim, I. Kravchenko, and S. J. Pearton, “Effects of semiconductor processing chemicals on conductivity of Graphene,” J. Vac. Sci. Technol. B 30(4), 040602 (2012).
[Crossref]

Peng, C.

R. J. Shiue, Y. Gao, Y. Wang, C. Peng, A. D. Robertson, D. K. Efetov, S. Assefa, F. H. L. Koppens, J. Hone, and D. Englund, “High-responsivity graphene−boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit,” Nano Lett. 15(11), 7288–7293 (2015).
[Crossref] [PubMed]

Phare, C. T.

C. T. Phare, Y. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Phatak, A.

Piner, R.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Pirkle, A.

J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, “Reducing extrinsic performance-limiting factors in Graphene grown by chemical vapor deposition,” ACS Nano 6(4), 3224–3229 (2012).
[Crossref] [PubMed]

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited Graphene transferred to SiO2,” Appl. Phys. Lett. 99(12), 122108 (2011).
[Crossref]

Politou, M.

M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C. S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, and M. Heyns, “Transition metal contacts to Graphene,” Appl. Phys. Lett. 107(15), 153104 (2015).

Pu, Y.

P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, “Anomalous thermoelectric transport of Dirac particles in graphene,” Phys. Rev. Lett. 102(16), 166808 (2009).
[Crossref] [PubMed]

Qin, C.

Radu, I.

M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C. S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, and M. Heyns, “Transition metal contacts to Graphene,” Appl. Phys. Lett. 107(15), 153104 (2015).

Ren, F.

C. W. Chen, F. Ren, G. C. Chi, S. C. Hung, Y. P. Huang, J. Kim, I. Kravchenko, and S. J. Pearton, “Effects of semiconductor processing chemicals on conductivity of Graphene,” J. Vac. Sci. Technol. B 30(4), 040602 (2012).
[Crossref]

Richard, O.

M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C. S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, and M. Heyns, “Transition metal contacts to Graphene,” Appl. Phys. Lett. 107(15), 153104 (2015).

Robertson, A. D.

R. J. Shiue, Y. Gao, Y. Wang, C. Peng, A. D. Robertson, D. K. Efetov, S. Assefa, F. H. L. Koppens, J. Hone, and D. Englund, “High-responsivity graphene−boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit,” Nano Lett. 15(11), 7288–7293 (2015).
[Crossref] [PubMed]

Romagnoli, M.

Rossi, E.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional Graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

Ruoff, R. S.

J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, “Reducing extrinsic performance-limiting factors in Graphene grown by chemical vapor deposition,” ACS Nano 6(4), 3224–3229 (2012).
[Crossref] [PubMed]

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited Graphene transferred to SiO2,” Appl. Phys. Lett. 99(12), 122108 (2011).
[Crossref]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Ryu, S.

S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed Graphene on a SiO2 substrate,” Nano Lett. 10(12), 4944–4951 (2010).
[Crossref] [PubMed]

Sagade, A. A.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in Graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Sayan, S.

M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C. S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, and M. Heyns, “Transition metal contacts to Graphene,” Appl. Phys. Lett. 107(15), 153104 (2015).

Schall, D.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in Graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Shi, J.

P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, “Anomalous thermoelectric transport of Dirac particles in graphene,” Phys. Rev. Lett. 102(16), 166808 (2009).
[Crossref] [PubMed]

Shiue, R. J.

R. J. Shiue, Y. Gao, Y. Wang, C. Peng, A. D. Robertson, D. K. Efetov, S. Assefa, F. H. L. Koppens, J. Hone, and D. Englund, “High-responsivity graphene−boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit,” Nano Lett. 15(11), 7288–7293 (2015).
[Crossref] [PubMed]

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[Crossref] [PubMed]

Soref, R.

R. Soref, “The past, present and future of Silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Soref, R. A.

R. A. Soref and J. P. Lorenzo, “All-Silicon active and passive guided wave components for λ = 1.3 and 1.6µm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[Crossref]

Sorianello, V.

Stormer, H. L.

Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in Graphene,” Phys. Rev. Lett. 99(24), 246803 (2007).
[Crossref] [PubMed]

Szep, A.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[Crossref] [PubMed]

Tan, D. T. H.

J. Gosciniak and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Sci. Rep. 3, 1897 (2013).
[Crossref] [PubMed]

Tan, Y. W.

Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in Graphene,” Phys. Rev. Lett. 99(24), 246803 (2007).
[Crossref] [PubMed]

Tokei, Z.

M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C. S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, and M. Heyns, “Transition metal contacts to Graphene,” Appl. Phys. Lett. 107(15), 153104 (2015).

Tutuc, E.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A Graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Urino, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Van Campenhout, J.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10(2), 307–316 (2016).
[Crossref]

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G Silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Van Thourhout, D.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10(2), 307–316 (2016).
[Crossref]

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G Silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Velamakanni, A.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Venugopal, A.

J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, “Reducing extrinsic performance-limiting factors in Graphene grown by chemical vapor deposition,” ACS Nano 6(4), 3224–3229 (2012).
[Crossref] [PubMed]

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited Graphene transferred to SiO2,” Appl. Phys. Lett. 99(12), 122108 (2011).
[Crossref]

Verheyen, P.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G Silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Vogel, E. M.

J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, “Reducing extrinsic performance-limiting factors in Graphene grown by chemical vapor deposition,” ACS Nano 6(4), 3224–3229 (2012).
[Crossref] [PubMed]

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited Graphene transferred to SiO2,” Appl. Phys. Lett. 99(12), 122108 (2011).
[Crossref]

Vuckovic, J.

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref] [PubMed]

Walker, D.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[Crossref] [PubMed]

Wallace, R. M.

J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, “Reducing extrinsic performance-limiting factors in Graphene grown by chemical vapor deposition,” ACS Nano 6(4), 3224–3229 (2012).
[Crossref] [PubMed]

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited Graphene transferred to SiO2,” Appl. Phys. Lett. 99(12), 122108 (2011).
[Crossref]

Wang, C.

Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang, “Toward intrinsic Graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported Graphene devices,” Nano Lett. 11(2), 767–771 (2011).
[Crossref] [PubMed]

Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang, “Toward intrinsic Graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported Graphene devices,” Nano Lett. 11(2), 767–771 (2011).
[Crossref] [PubMed]

Wang, F.

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A Graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, Y.

R. J. Shiue, Y. Gao, Y. Wang, C. Peng, A. D. Robertson, D. K. Efetov, S. Assefa, F. H. L. Koppens, J. Hone, and D. Englund, “High-responsivity graphene−boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit,” Nano Lett. 15(11), 7288–7293 (2015).
[Crossref] [PubMed]

Wei, P.

P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, “Anomalous thermoelectric transport of Dirac particles in graphene,” Phys. Rev. Lett. 102(16), 166808 (2009).
[Crossref] [PubMed]

Xia, F.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Xia, F. N.

T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Xiao, S.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of Graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Xu, C.

Yang, D.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Yang, J.

Yang, L.

Yao, X.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[Crossref] [PubMed]

Yin, X.

M. Liu, X. Yin, and X. Zhang, “Double-layer Graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A Graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, Y. J.

S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed Graphene on a SiO2 substrate,” Nano Lett. 10(12), 4944–4951 (2010).
[Crossref] [PubMed]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A Graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, X.

M. Liu, X. Yin, and X. Zhang, “Double-layer Graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A Graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in Graphene,” Phys. Rev. Lett. 99(24), 246803 (2007).
[Crossref] [PubMed]

Zhao, Y.

Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in Graphene,” Phys. Rev. Lett. 99(24), 246803 (2007).
[Crossref] [PubMed]

Zhong, Z.

Y. C. Chang, C. H. Liu, C. H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer Graphene by ellipsometry,” Appl. Phys. Lett. 104(26), 261909 (2014).
[Crossref]

Zhou, Q.

Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang, “Toward intrinsic Graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported Graphene devices,” Nano Lett. 11(2), 767–771 (2011).
[Crossref] [PubMed]

Zuev, Y. M.

Y. M. Zuev, W. Chang, and P. Kim, “Thermoelectric and magnetothermoelectric transport measurements of graphene,” Phys. Rev. Lett. 102(9), 096807 (2009).
[Crossref] [PubMed]

ACS Nano (1)

J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, “Reducing extrinsic performance-limiting factors in Graphene grown by chemical vapor deposition,” ACS Nano 6(4), 3224–3229 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited Graphene transferred to SiO2,” Appl. Phys. Lett. 99(12), 122108 (2011).
[Crossref]

Y. C. Chang, C. H. Liu, C. H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of mono- and bilayer Graphene by ellipsometry,” Appl. Phys. Lett. 104(26), 261909 (2014).
[Crossref]

M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C. S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, and M. Heyns, “Transition metal contacts to Graphene,” Appl. Phys. Lett. 107(15), 153104 (2015).

IEEE Commun. Mag. (1)

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Soref and J. P. Lorenzo, “All-Silicon active and passive guided wave components for λ = 1.3 and 1.6µm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present and future of Silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. B (1)

C. W. Chen, F. Ren, G. C. Chi, S. C. Hung, Y. P. Huang, J. Kim, I. Kravchenko, and S. J. Pearton, “Effects of semiconductor processing chemicals on conductivity of Graphene,” J. Vac. Sci. Technol. B 30(4), 040602 (2012).
[Crossref]

Laser Photonics Rev. (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10(2), 307–316 (2016).
[Crossref]

Nano Lett. (6)

M. Liu, X. Yin, and X. Zhang, “Double-layer Graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang, “Toward intrinsic Graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported Graphene devices,” Nano Lett. 11(2), 767–771 (2011).
[Crossref] [PubMed]

S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed Graphene on a SiO2 substrate,” Nano Lett. 10(12), 4944–4951 (2010).
[Crossref] [PubMed]

R. J. Shiue, Y. Gao, Y. Wang, C. Peng, A. D. Robertson, D. K. Efetov, S. Assefa, F. H. L. Koppens, J. Hone, and D. Englund, “High-responsivity graphene−boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit,” Nano Lett. 15(11), 7288–7293 (2015).
[Crossref] [PubMed]

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref] [PubMed]

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of Graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

C. T. Phare, Y. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A Graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (4)

Y. M. Zuev, W. Chang, and P. Kim, “Thermoelectric and magnetothermoelectric transport measurements of graphene,” Phys. Rev. Lett. 102(9), 096807 (2009).
[Crossref] [PubMed]

P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, “Anomalous thermoelectric transport of Dirac particles in graphene,” Phys. Rev. Lett. 102(16), 166808 (2009).
[Crossref] [PubMed]

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in Graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in Graphene,” Phys. Rev. Lett. 99(24), 246803 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G Silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Rev. Mod. Phys. (1)

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional Graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

Sci. Rep. (2)

J. Gosciniak and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Sci. Rep. 3, 1897 (2013).
[Crossref] [PubMed]

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in Graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Science (1)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform Graphene films on Copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Other (5)

Graphenea, “Graphenea granted patent on graphene transfer,” http://www.graphenea.com/blogs/graphene-news/16922317-graphenea-granted-patent-on-graphene-transfer .

G. T. Reed and A. Knight, Silicon Photonics: An Introduction (J. Wiley & Sons Ltd, 2004).

G. T. Reed, Silicon Photonics: The State of the Art, (J. Wiley & Sons Ltd, 2008).

L. Pavesi and D. J. Lockwood, Silicon Photonics III, (Springer Verlag, 2016).

H. A. Haus, M. A. Popović, M. R. Watts, and C. Manolatou, “Optical resonators and filters,” in Optical Microcavities, K. Vahala, ed. (World Scientific Publishing, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical micrograph of the fabricated device (a). Detail of the microring resonator (b). SEM image of the Graphene covered microring resonator (c). Device layout (d). Cross sections for two different gating schemes: Si gating (e), Electrolyte gating (f)

Fig. 2
Fig. 2

Left panel: Raman spectrum of graphene in the central part of the silicon microring. Right panel: I2D/IG mapping of graphene in the area of the silicon microring.

Fig. 3
Fig. 3

Effective index (top) and absorption (bottom) of the graphene integrated Si waveguide at 1.55µm versus chemical potential in graphene.

Fig. 4
Fig. 4

Microring through and drop transmission spectra at different voltages for Si (a) and electrolyte gating (b).

Fig. 5
Fig. 5

Experimental through and drop transmission spectra at two different gating voltage (solid line) compared to numerical simulations (dashed lines).

Fig. 6
Fig. 6

Extracted resonance shift and effective index change (a) calculated with Eq. (2) versus chemical potential. Peak transmission change versus chemical potential (b). In both figures, the dashed lines represent the numerical simulations while the green diamonds and the blue dots represent the experimental values extracted from the Si gating and electrolyte gating experiments respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ ( ω ) = σ 0 2 ( tan h ω + 2 μ C 4 k B T + tan h ω 2 μ C 4 k B T ) i σ 0 2 π l n [ ( ω + 2 μ C ) 2 ( ω 2 μ C ) 2 + ( 2 k B T ) 2 ] + i 4 σ 0 π μ C ω + i γ
Δ n e f f = Δ λ r e s n g λ r e s

Metrics