Abstract

Second-order optical nonlinear effects (second-harmonic and sum-frequency generation) are demonstrated in the telecommunication band by periodic poling of thin films of lithium niobate wafer-bonded on silicon substrates and rib-loaded with silicon nitride channels to attain ridge waveguide with cross-sections of ~2 µm2. A nonlinear conversion of 8% is obtained with a pulsed input in 4 mm long waveguides. The choice of silicon substrate makes the platform potentially compatible with silicon photonics, and therefore may pave the path towards on-chip nonlinear and quantum-optic applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Second harmonic generation in nano-structured thin-film lithium niobate waveguides

Cheng Wang, Xiao Xiong, Nicolas Andrade, Vivek Venkataraman, Xi-Feng Ren, Guang-Can Guo, and Marko Lončar
Opt. Express 25(6) 6963-6973 (2017)

Design of folded hybrid silicon carbide-lithium niobate waveguides for efficient second-harmonic generation

Peter O. Weigel and Shayan Mookherjea
J. Opt. Soc. Am. B 35(3) 593-600 (2018)

High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide

Lu Ming, Corin B. E. Gawith, Katia Gallo, Martin V. O’Connor, Gregory D. Emmerson, and Peter G. R. Smith
Opt. Express 13(13) 4862-4868 (2005)

References

  • View by:
  • |
  • |
  • |

  1. L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
    [Crossref]
  2. E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
    [Crossref]
  3. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
    [Crossref]
  4. X. Yu, L. Scaccabarozzi, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Efficient continuous wave second harmonic generation pumped at 1.55 microm in quasi-phase-matched AlGaAs waveguides,” Opt. Express 13(26), 10742–10748 (2005).
    [Crossref] [PubMed]
  5. T. H. Stievater, R. Mahon, D. Park, W. S. Rabinovich, M. W. Pruessner, J. B. Khurgin, and C. J. K. Richardson, “Mid-infrared difference-frequency generation in suspended GaAs waveguides,” Opt. Lett. 39(4), 945–948 (2014).
    [Crossref] [PubMed]
  6. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  7. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
    [Crossref] [PubMed]
  8. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
    [Crossref]
  9. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
    [Crossref]
  10. J. Toney, V. Stenger, A. Pollick, J. Retz, P. Pontius, and S. Sriram, “Periodically poled lithium niobate waveguides for quantum frequency conversion,” in Proceedings of the 2014 COMSOL Conference (2014).
  11. F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
    [Crossref]
  12. S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in electric poled X-cut MgO-doped LiNbO3 waveguides,” Appl. Phys. Lett. 70(23), 3078 (1997).
    [Crossref]
  13. L. Gui, H. Hu, M. Garcia-Granda, and W. Sohler, “Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation,” Opt. Express 17(5), 3923–3928 (2009).
    [Crossref] [PubMed]
  14. M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “LiNbO3 ridge waveguides realized by precision dicing on silicon for high efficiency second harmonic generation,” arXiv:1603.05267 (2016).
  15. P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
    [Crossref]
  16. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
    [Crossref]
  17. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  18. A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
    [Crossref] [PubMed]
  19. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum,” Opt. Express 21(6), 6967–6972 (2013).
    [Crossref] [PubMed]
  20. P. Rabiei, A. Rao, J. Chiles, J. Ma, and S. Fathpour, “Low-loss and high index-contrast tantalum pentoxide microring resonators and grating couplers on silicon substrates,” Opt. Lett. 39(18), 5379–5382 (2014).
    [Crossref] [PubMed]
  21. J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106(11), 111110 (2015).
    [Crossref]
  22. A. Rao, A. Patil, P. Rabiei, R. DeSalvo, A. Paolella, and S. Fathpour, “Lithium niobate modulators on silicon beyond 20 GHz,” in IEEE Proceedings of Optical Interconnects Conf. 2016 (IEEE, 2016), paper WC6.
    [Crossref]
  23. G. D. Miller, “Periodically poled lithium niobate: modelling, fabrication, and nonlinear-optical performance,” Ph.D. thesis (Stanford University, 1998).
  24. T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1751–1753 (2001).
    [Crossref]
  25. F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate -A novel processing technique,” J. Lightwave Technol. 10(11), 1606–1609 (1992).
    [Crossref]
  26. E. Sidick, A. Knoesen, and A. Dienes, “Ultrashort-pulse second-harmonic generation. I. Transform-limited fundamental pulses,” J. Opt. Soc. Am. B 12(9), 1704–1712 (1995).
    [Crossref]
  27. E. Sidick, A. Dienes, and A. Knoesen, “Ultrashort-pulse second-harmonic generation. II. Non-transform-limited fundamental pulses,” J. Opt. Soc. Am. B 12(9), 1713–1722 (1995).
    [Crossref]
  28. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17(2), 304–318 (2000).
    [Crossref]
  29. Z. Zheng, A. M. Weiner, K. R. Parameswaran, M.-H. Chou, and M. M. Fejer, “Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group-velocity walk-off,” J. Opt. Soc. Am. B 19(4), 839–848 (2002).
    [Crossref]

2016 (2)

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
[Crossref]

2015 (3)

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref] [PubMed]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106(11), 111110 (2015).
[Crossref]

2014 (2)

2013 (2)

2009 (1)

2008 (1)

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[Crossref]

2007 (1)

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

2005 (1)

2002 (3)

2001 (1)

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1751–1753 (2001).
[Crossref]

2000 (2)

G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17(2), 304–318 (2000).
[Crossref]

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

1997 (1)

S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in electric poled X-cut MgO-doped LiNbO3 waveguides,” Appl. Phys. Lett. 70(23), 3078 (1997).
[Crossref]

1995 (2)

1992 (1)

F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate -A novel processing technique,” J. Lightwave Technol. 10(11), 1606–1609 (1992).
[Crossref]

1982 (1)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Arbore, M. A.

Arvidsson, G.

F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate -A novel processing technique,” J. Lightwave Technol. 10(11), 1606–1609 (1992).
[Crossref]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Baldenberger, G.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

Baldi, P.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Berth, G.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Bourliaguet, B.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

Bowers, J. E.

Chang, L.

Chiles, J.

Chou, M.-H.

Clausen, A. T.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[Crossref]

De Riedmatten, H.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

DeMicheli, M.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Dienes, A.

Erasme, D.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[Crossref]

Fathpour, S.

Fejer, M. M.

Fermann, M.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Fujimura, M.

Galili, M.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[Crossref]

Galvanauskas, A.

Garcia-Granda, M.

Généreux, F.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

Gisin, N.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Gomez Agis, F.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[Crossref]

Gui, L.

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Harris, J. S.

Harter, D.

Hatori, M.

S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in electric poled X-cut MgO-doped LiNbO3 waveguides,” Appl. Phys. Lett. 70(23), 3078 (1997).
[Crossref]

Holmberg, J.

F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate -A novel processing technique,” J. Lightwave Technol. 10(11), 1606–1609 (1992).
[Crossref]

Hu, H.

Ichikawa, J.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[Crossref]

Imeshev, G.

Jackel, J. L.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Jeppesen, P.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[Crossref]

Jin, J.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

Khan, S.

Khurgin, J. B.

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Kitamura, K.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[Crossref]

Kitaoka, Y.

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1751–1753 (2001).
[Crossref]

Knoesen, A.

Kuo, P. S.

Kurimura, S.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[Crossref]

Kurz, J. R.

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Laurell, F.

F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate -A novel processing technique,” J. Lightwave Technol. 10(11), 1606–1609 (1992).
[Crossref]

Li, Y.

Ma, J.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Mackwitz, P.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

Mahon, R.

Malinowski, M.

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref] [PubMed]

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106(11), 111110 (2015).
[Crossref]

Marsili, F.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Mizuuchi, K.

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1751–1753 (2001).
[Crossref]

Müller, K.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

Mulvad, H. C. H.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[Crossref]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Nakajima, H.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[Crossref]

Nam, S. W.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

Novak, S.

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106(11), 111110 (2015).
[Crossref]

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref] [PubMed]

Oblak, D.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

Ostrowsky, D. B.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Oxenløwe, L. K.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[Crossref]

Parameswaran, K. R.

Park, D.

Patil, A.

Peters, J.

Pollick, A.

J. Toney, V. Stenger, A. Pollick, J. Retz, P. Pontius, and S. Sriram, “Periodically poled lithium niobate waveguides for quantum frequency conversion,” in Proceedings of the 2014 COMSOL Conference (2014).

Pontius, P.

J. Toney, V. Stenger, A. Pollick, J. Retz, P. Pontius, and S. Sriram, “Periodically poled lithium niobate waveguides for quantum frequency conversion,” in Proceedings of the 2014 COMSOL Conference (2014).

Pruessner, M. W.

Rabiei, P.

Rabinovich, W. S.

Rao, A.

Retz, J.

J. Toney, V. Stenger, A. Pollick, J. Retz, P. Pontius, and S. Sriram, “Periodically poled lithium niobate waveguides for quantum frequency conversion,” in Proceedings of the 2014 COMSOL Conference (2014).

Rice, C. E.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Richardson, C. J. K.

Richardson, K.

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref] [PubMed]

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106(11), 111110 (2015).
[Crossref]

Roussev, R. V.

Route, R. K.

Rüsing, M.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

Saglamyurek, E.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

Scaccabarozzi, L.

Shaw, M. D.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

Sidick, E.

Sohler, W.

Sonoda, S.

S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in electric poled X-cut MgO-doped LiNbO3 waveguides,” Appl. Phys. Lett. 70(23), 3078 (1997).
[Crossref]

Sriram, S.

J. Toney, V. Stenger, A. Pollick, J. Retz, P. Pontius, and S. Sriram, “Periodically poled lithium niobate waveguides for quantum frequency conversion,” in Proceedings of the 2014 COMSOL Conference (2014).

Stenger, V.

J. Toney, V. Stenger, A. Pollick, J. Retz, P. Pontius, and S. Sriram, “Periodically poled lithium niobate waveguides for quantum frequency conversion,” in Proceedings of the 2014 COMSOL Conference (2014).

Stievater, T. H.

Sugita, T.

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1751–1753 (2001).
[Crossref]

Tanzilli, S.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Tittel, W.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Toney, J.

J. Toney, V. Stenger, A. Pollick, J. Retz, P. Pontius, and S. Sriram, “Periodically poled lithium niobate waveguides for quantum frequency conversion,” in Proceedings of the 2014 COMSOL Conference (2014).

Tsuruma, I.

S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in electric poled X-cut MgO-doped LiNbO3 waveguides,” Appl. Phys. Lett. 70(23), 3078 (1997).
[Crossref]

Vallée, R.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

Verma, V. B.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

Veselka, J. J.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Volet, N.

Wang, L.

Ware, C.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[Crossref]

Webjorn, J.

F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate -A novel processing technique,” J. Lightwave Technol. 10(11), 1606–1609 (1992).
[Crossref]

Weiner, A. M.

Widhalm, A.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Yamamoto, K.

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1751–1753 (2001).
[Crossref]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Yu, X.

Zbinden, H.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Zheng, Z.

Zrenner, A.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

Appl. Phys. Lett. (5)

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in electric poled X-cut MgO-doped LiNbO3 waveguides,” Appl. Phys. Lett. 70(23), 3078 (1997).
[Crossref]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108(15), 152902 (2016).
[Crossref]

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106(11), 111110 (2015).
[Crossref]

Electron. Lett. (1)

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[Crossref]

Eur. Phys. J. D (1)

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

J. Lightwave Technol. (1)

F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate -A novel processing technique,” J. Lightwave Technol. 10(11), 1606–1609 (1992).
[Crossref]

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (1)

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1751–1753 (2001).
[Crossref]

Nat. Photonics (1)

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9(2), 83–87 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Optica (1)

Other (5)

J. Toney, V. Stenger, A. Pollick, J. Retz, P. Pontius, and S. Sriram, “Periodically poled lithium niobate waveguides for quantum frequency conversion,” in Proceedings of the 2014 COMSOL Conference (2014).

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “LiNbO3 ridge waveguides realized by precision dicing on silicon for high efficiency second harmonic generation,” arXiv:1603.05267 (2016).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

A. Rao, A. Patil, P. Rabiei, R. DeSalvo, A. Paolella, and S. Fathpour, “Lithium niobate modulators on silicon beyond 20 GHz,” in IEEE Proceedings of Optical Interconnects Conf. 2016 (IEEE, 2016), paper WC6.
[Crossref]

G. D. Miller, “Periodically poled lithium niobate: modelling, fabrication, and nonlinear-optical performance,” Ph.D. thesis (Stanford University, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the device depicting the silicon nitride (SiN) rib, the lithium niobate (LN) slab, the silicon dioxide (SiO2) lower cladding, the silicon (Si) substrate, and the metal poling electrodes. The SiO2 top cladding is excluded for clarity; (b) & (c) COMSOLTM simulations of the fundamental TE waveguide modes at the pump wavelength (1580 nm) and the second harmonic wavelength (790 nm).
Fig. 2
Fig. 2 Numerical simulations for the generation of second harmonic (S.H.) power using PPLN waveguides across different input CW pump powers and propagation losses for varying effective mode overlap areas: (a) and (b) For an input power of 100 µW, there is about an order of magnitude improvement in nonlinear conversion for submicron waveguides, even for propagation lengths up to 4 cm, irrespective of propagation loss; (c) and (d) For an power of 1 W, the nonlinear conversion offered by submicron PPLN waveguides is ~50% in less than 1 cm of propagation, even at a relatively high loss of 1 dB/cm, while conventional PPLN solutions require much longer lengths.
Fig. 3
Fig. 3 Major fabrication steps (a) Y-cut LN on Si substrate (b) First lithography and etching of LN; (c) Metal electrode deposition; (d) Lithography and etching to completely define the periodic electrodes; (e) Poling of LN on Si with periodic domain reversal; (f) SiN rib definition by PECVD, lithography, and etching to form the ridge waveguide. Not shown in this figure is the final deposition of a SiO2 top cladding by PECVD.
Fig. 4
Fig. 4 Top-view SEM of a poled LN mesa after etching in hydrofluoric acid. The domain duty cycle is seen to be uniform and close to 0.35 based on the differential etching of the polar surfaces of LN.
Fig. 5
Fig. 5 (a) Autocorrelation and (b) optical spectrum, of the pulsed input to the PPLN waveguide; (c) Output of a reference unpoled waveguide; (d) Output of a poled waveguide, with a frequency doubled signal around 788 nm.
Fig. 6
Fig. 6 (a) Optical spectra for decreasing input pump powers (top to bottom), displaced by 60 dB. The input power for each trace can be read in part (c); (b) Optical spectra around the generated output signal wavelength of 3 of traces in part (a) with input average powers of 1.67, 0.87 and 0.31 mW, respectively; (c) A straight line fit of slope 1.91 on a logarithmic scale shows the quadratic dependence of the output signal on the input pump.

Metrics