Abstract

In this paper, we present a method for the simultaneous measurement of rotation and displacement or rotation and bending using single tilted fiber Bragg grating (TFBG). The insensitivity of the proposed system to temperature changes and the stretching direction of the fiber section in the sensing structure have been demonstrated. The experimentally determined sensitivities for rotation, displacement and bending are as follows: −0.0018 1/deg., 0.0054 nm/mm, and −0.055 1/mm over the measurement ranges of approximately 25-80 degrees, 34-74 mm, and 26.4-20 mm, respectively. The presented measurement system is versatile due to the ability to tune the measurement range by changing the fiber-loop radius.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous directional curvature and temperature sensor based on a tilted few-mode fiber Bragg grating

Yunhe Zhao, Changle Wang, Guolu Yin, Biqiang Jiang, Kaiming Zhou, Chengbo Mou, Yunqi Liu, Lin Zhang, and Tingyun Wang
Appl. Opt. 57(7) 1671-1678 (2018)

Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper

Wei Cui, Jinhai Si, Tao Chen, and Xun Hou
Opt. Express 23(9) 11031-11036 (2015)

Polarimetric multi-mode tilted fiber grating sensors

Tuan Guo, Fu Liu, Bai-Ou Guan, and Jacques Albert
Opt. Express 22(6) 7330-7336 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Cięszczyk and P. Kisała, “Inverse problem of determining periodic surface profile oscillation defects of steel materials with a fiber Bragg grating sensor,” Appl. Opt. 55(6), 1412–1420 (2016).
    [Crossref] [PubMed]
  2. D. J. M. Snelders, F. O. Valega Mackenzie, A. Boersma, and R. H. M. Peeters, “Zeolites as coating materials for Fiber Bragg Grating chemical sensor sfor extreme conditions,” Sens. Actuators B Chem. 235, 698–706 (2016).
    [Crossref]
  3. K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng. 47(10), 1018–1022 (2009).
    [Crossref]
  4. K. M. Tan, C. C. Chan, S. C. Tjin, and X. Y. Dong, “Embedded long-period fiber grating bending sensor,” Sens. Actuators A Phys. 125(2), 267–272 (2006).
    [Crossref]
  5. L. Jin, Z. Wang, Q. Fang, Y. Liu, B. Liu, G. Kai, and X. Dong, “Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers,” Opt. Express 15(23), 15555–15565 (2007).
    [Crossref] [PubMed]
  6. A. Taghipour, A. Rostami, M. Bahrami, H. Baghban, and M. Dolatyari, “Comparative study between LPFG- and FBG- based bending sensors,” Opt. Commun. 312, 99–105 (2014).
    [Crossref]
  7. L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
    [Crossref]
  8. Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
    [Crossref]
  9. X. Dong, Y. Liu, L. Y. Shao, J. Kang, and Ch. L. Zhao, “Temperature-Independent Fiber Bending Sensor Based on a Superimposed Grating,” IEEE Sens. J. 11(11), 3019–3022 (2011).
    [Crossref]
  10. C. Shen and C. Zhong, “Novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” Sens. Actuators A Phys. 170(1-2), 51–54 (2011).
    [Crossref]
  11. Q. Jiang and D. Hu, “Microdisplacement sensor based on tilted fiber Bragg grating transversal load effect,” IEEE Sens. J. 11(9), 1776–1779 (2011).
    [Crossref]
  12. Y. Lu, Ch. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol. 20(5), 491–494 (2014).
    [Crossref]
  13. B. Liu, Y. Miao, H. Zhou, and Q. Zhao, “Research on Pure Bending characteristic of tilted fiber Bragg grating,” in IEEE Optical Fiber Sensors Conference (IEEE, 2008), pp. 1–4.
  14. S. Baek, Y. Jeong, and B. Lee, “Characteristics of short-period blazed fiber Bragg gratings for use as macro-bending sensors,” Appl. Opt. 41(4), 631–636 (2002).
    [Crossref] [PubMed]
  15. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [Crossref]
  16. T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous measurement of liquid level and temperature using tilted fiber Bragg grating,” IEEE Sens. J. 16(5), 1205–1209 (2016).
    [Crossref]

2016 (3)

S. Cięszczyk and P. Kisała, “Inverse problem of determining periodic surface profile oscillation defects of steel materials with a fiber Bragg grating sensor,” Appl. Opt. 55(6), 1412–1420 (2016).
[Crossref] [PubMed]

D. J. M. Snelders, F. O. Valega Mackenzie, A. Boersma, and R. H. M. Peeters, “Zeolites as coating materials for Fiber Bragg Grating chemical sensor sfor extreme conditions,” Sens. Actuators B Chem. 235, 698–706 (2016).
[Crossref]

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous measurement of liquid level and temperature using tilted fiber Bragg grating,” IEEE Sens. J. 16(5), 1205–1209 (2016).
[Crossref]

2014 (2)

Y. Lu, Ch. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol. 20(5), 491–494 (2014).
[Crossref]

A. Taghipour, A. Rostami, M. Bahrami, H. Baghban, and M. Dolatyari, “Comparative study between LPFG- and FBG- based bending sensors,” Opt. Commun. 312, 99–105 (2014).
[Crossref]

2013 (1)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

2011 (3)

X. Dong, Y. Liu, L. Y. Shao, J. Kang, and Ch. L. Zhao, “Temperature-Independent Fiber Bending Sensor Based on a Superimposed Grating,” IEEE Sens. J. 11(11), 3019–3022 (2011).
[Crossref]

C. Shen and C. Zhong, “Novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” Sens. Actuators A Phys. 170(1-2), 51–54 (2011).
[Crossref]

Q. Jiang and D. Hu, “Microdisplacement sensor based on tilted fiber Bragg grating transversal load effect,” IEEE Sens. J. 11(9), 1776–1779 (2011).
[Crossref]

2010 (1)

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

2009 (2)

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng. 47(10), 1018–1022 (2009).
[Crossref]

2007 (1)

2006 (1)

K. M. Tan, C. C. Chan, S. C. Tjin, and X. Y. Dong, “Embedded long-period fiber grating bending sensor,” Sens. Actuators A Phys. 125(2), 267–272 (2006).
[Crossref]

2002 (1)

Albert, J.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Baek, S.

Baghban, H.

A. Taghipour, A. Rostami, M. Bahrami, H. Baghban, and M. Dolatyari, “Comparative study between LPFG- and FBG- based bending sensors,” Opt. Commun. 312, 99–105 (2014).
[Crossref]

Bahrami, M.

A. Taghipour, A. Rostami, M. Bahrami, H. Baghban, and M. Dolatyari, “Comparative study between LPFG- and FBG- based bending sensors,” Opt. Commun. 312, 99–105 (2014).
[Crossref]

Bock, W. J.

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Boersma, A.

D. J. M. Snelders, F. O. Valega Mackenzie, A. Boersma, and R. H. M. Peeters, “Zeolites as coating materials for Fiber Bragg Grating chemical sensor sfor extreme conditions,” Sens. Actuators B Chem. 235, 698–706 (2016).
[Crossref]

Caucheteur, C.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Chan, C. C.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

K. M. Tan, C. C. Chan, S. C. Tjin, and X. Y. Dong, “Embedded long-period fiber grating bending sensor,” Sens. Actuators A Phys. 125(2), 267–272 (2006).
[Crossref]

Chen, D.

Y. Lu, Ch. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol. 20(5), 491–494 (2014).
[Crossref]

Chu, J.

Y. Lu, Ch. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol. 20(5), 491–494 (2014).
[Crossref]

Cieszczyk, S.

Dolatyari, M.

A. Taghipour, A. Rostami, M. Bahrami, H. Baghban, and M. Dolatyari, “Comparative study between LPFG- and FBG- based bending sensors,” Opt. Commun. 312, 99–105 (2014).
[Crossref]

Dong, X.

Y. Lu, Ch. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol. 20(5), 491–494 (2014).
[Crossref]

X. Dong, Y. Liu, L. Y. Shao, J. Kang, and Ch. L. Zhao, “Temperature-Independent Fiber Bending Sensor Based on a Superimposed Grating,” IEEE Sens. J. 11(11), 3019–3022 (2011).
[Crossref]

L. Jin, Z. Wang, Q. Fang, Y. Liu, B. Liu, G. Kai, and X. Dong, “Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers,” Opt. Express 15(23), 15555–15565 (2007).
[Crossref] [PubMed]

Dong, X. Y.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

K. M. Tan, C. C. Chan, S. C. Tjin, and X. Y. Dong, “Embedded long-period fiber grating bending sensor,” Sens. Actuators A Phys. 125(2), 267–272 (2006).
[Crossref]

Ecke, W.

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng. 47(10), 1018–1022 (2009).
[Crossref]

Fang, Q.

Hu, D.

Q. Jiang and D. Hu, “Microdisplacement sensor based on tilted fiber Bragg grating transversal load effect,” IEEE Sens. J. 11(9), 1776–1779 (2011).
[Crossref]

Jedrzejewski, K.

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous measurement of liquid level and temperature using tilted fiber Bragg grating,” IEEE Sens. J. 16(5), 1205–1209 (2016).
[Crossref]

Jeong, Y.

Jiang, Q.

Q. Jiang and D. Hu, “Microdisplacement sensor based on tilted fiber Bragg grating transversal load effect,” IEEE Sens. J. 11(9), 1776–1779 (2011).
[Crossref]

Jin, L.

Jin, Y. X.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Jurek, T.

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous measurement of liquid level and temperature using tilted fiber Bragg grating,” IEEE Sens. J. 16(5), 1205–1209 (2016).
[Crossref]

Kai, G.

Kang, J.

X. Dong, Y. Liu, L. Y. Shao, J. Kang, and Ch. L. Zhao, “Temperature-Independent Fiber Bending Sensor Based on a Superimposed Grating,” IEEE Sens. J. 11(11), 3019–3022 (2011).
[Crossref]

Kisala, P.

Laronche, A.

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Lee, B.

Liu, B.

L. Jin, Z. Wang, Q. Fang, Y. Liu, B. Liu, G. Kai, and X. Dong, “Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers,” Opt. Express 15(23), 15555–15565 (2007).
[Crossref] [PubMed]

B. Liu, Y. Miao, H. Zhou, and Q. Zhao, “Research on Pure Bending characteristic of tilted fiber Bragg grating,” in IEEE Optical Fiber Sensors Conference (IEEE, 2008), pp. 1–4.

Liu, Y.

X. Dong, Y. Liu, L. Y. Shao, J. Kang, and Ch. L. Zhao, “Temperature-Independent Fiber Bending Sensor Based on a Superimposed Grating,” IEEE Sens. J. 11(11), 3019–3022 (2011).
[Crossref]

L. Jin, Z. Wang, Q. Fang, Y. Liu, B. Liu, G. Kai, and X. Dong, “Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers,” Opt. Express 15(23), 15555–15565 (2007).
[Crossref] [PubMed]

Lu, Y.

Y. Lu, Ch. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol. 20(5), 491–494 (2014).
[Crossref]

Markowski, K.

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous measurement of liquid level and temperature using tilted fiber Bragg grating,” IEEE Sens. J. 16(5), 1205–1209 (2016).
[Crossref]

Miao, Y.

B. Liu, Y. Miao, H. Zhou, and Q. Zhao, “Research on Pure Bending characteristic of tilted fiber Bragg grating,” in IEEE Optical Fiber Sensors Conference (IEEE, 2008), pp. 1–4.

Mikulic, P.

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Osuch, T.

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous measurement of liquid level and temperature using tilted fiber Bragg grating,” IEEE Sens. J. 16(5), 1205–1209 (2016).
[Crossref]

Peeters, R. H. M.

D. J. M. Snelders, F. O. Valega Mackenzie, A. Boersma, and R. H. M. Peeters, “Zeolites as coating materials for Fiber Bragg Grating chemical sensor sfor extreme conditions,” Sens. Actuators B Chem. 235, 698–706 (2016).
[Crossref]

Rostami, A.

A. Taghipour, A. Rostami, M. Bahrami, H. Baghban, and M. Dolatyari, “Comparative study between LPFG- and FBG- based bending sensors,” Opt. Commun. 312, 99–105 (2014).
[Crossref]

Schroeder, K.

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng. 47(10), 1018–1022 (2009).
[Crossref]

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

X. Dong, Y. Liu, L. Y. Shao, J. Kang, and Ch. L. Zhao, “Temperature-Independent Fiber Bending Sensor Based on a Superimposed Grating,” IEEE Sens. J. 11(11), 3019–3022 (2011).
[Crossref]

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Shen, C.

C. Shen and C. Zhong, “Novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” Sens. Actuators A Phys. 170(1-2), 51–54 (2011).
[Crossref]

Shen, Ch.

Y. Lu, Ch. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol. 20(5), 491–494 (2014).
[Crossref]

Smietana, M.

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Snelders, D. J. M.

D. J. M. Snelders, F. O. Valega Mackenzie, A. Boersma, and R. H. M. Peeters, “Zeolites as coating materials for Fiber Bragg Grating chemical sensor sfor extreme conditions,” Sens. Actuators B Chem. 235, 698–706 (2016).
[Crossref]

Taghipour, A.

A. Taghipour, A. Rostami, M. Bahrami, H. Baghban, and M. Dolatyari, “Comparative study between LPFG- and FBG- based bending sensors,” Opt. Commun. 312, 99–105 (2014).
[Crossref]

Tan, K. M.

K. M. Tan, C. C. Chan, S. C. Tjin, and X. Y. Dong, “Embedded long-period fiber grating bending sensor,” Sens. Actuators A Phys. 125(2), 267–272 (2006).
[Crossref]

Tjin, S. C.

K. M. Tan, C. C. Chan, S. C. Tjin, and X. Y. Dong, “Embedded long-period fiber grating bending sensor,” Sens. Actuators A Phys. 125(2), 267–272 (2006).
[Crossref]

Valega Mackenzie, F. O.

D. J. M. Snelders, F. O. Valega Mackenzie, A. Boersma, and R. H. M. Peeters, “Zeolites as coating materials for Fiber Bragg Grating chemical sensor sfor extreme conditions,” Sens. Actuators B Chem. 235, 698–706 (2016).
[Crossref]

Wang, Q.

Y. Lu, Ch. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol. 20(5), 491–494 (2014).
[Crossref]

Wang, Z.

Willsch, R.

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng. 47(10), 1018–1022 (2009).
[Crossref]

Zhang, Y. F.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Zhao, Ch. L.

X. Dong, Y. Liu, L. Y. Shao, J. Kang, and Ch. L. Zhao, “Temperature-Independent Fiber Bending Sensor Based on a Superimposed Grating,” IEEE Sens. J. 11(11), 3019–3022 (2011).
[Crossref]

Zhao, Q.

B. Liu, Y. Miao, H. Zhou, and Q. Zhao, “Research on Pure Bending characteristic of tilted fiber Bragg grating,” in IEEE Optical Fiber Sensors Conference (IEEE, 2008), pp. 1–4.

Zhong, C.

C. Shen and C. Zhong, “Novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” Sens. Actuators A Phys. 170(1-2), 51–54 (2011).
[Crossref]

Zhou, H.

B. Liu, Y. Miao, H. Zhou, and Q. Zhao, “Research on Pure Bending characteristic of tilted fiber Bragg grating,” in IEEE Optical Fiber Sensors Conference (IEEE, 2008), pp. 1–4.

Appl. Opt. (2)

IEEE Sens. J. (3)

Q. Jiang and D. Hu, “Microdisplacement sensor based on tilted fiber Bragg grating transversal load effect,” IEEE Sens. J. 11(9), 1776–1779 (2011).
[Crossref]

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous measurement of liquid level and temperature using tilted fiber Bragg grating,” IEEE Sens. J. 16(5), 1205–1209 (2016).
[Crossref]

X. Dong, Y. Liu, L. Y. Shao, J. Kang, and Ch. L. Zhao, “Temperature-Independent Fiber Bending Sensor Based on a Superimposed Grating,” IEEE Sens. J. 11(11), 3019–3022 (2011).
[Crossref]

Laser Photonics Rev. (1)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Opt. Commun. (3)

A. Taghipour, A. Rostami, M. Bahrami, H. Baghban, and M. Dolatyari, “Comparative study between LPFG- and FBG- based bending sensors,” Opt. Commun. 312, 99–105 (2014).
[Crossref]

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

Y. Lu, Ch. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol. 20(5), 491–494 (2014).
[Crossref]

Opt. Lasers Eng. (1)

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng. 47(10), 1018–1022 (2009).
[Crossref]

Sens. Actuators A Phys. (2)

K. M. Tan, C. C. Chan, S. C. Tjin, and X. Y. Dong, “Embedded long-period fiber grating bending sensor,” Sens. Actuators A Phys. 125(2), 267–272 (2006).
[Crossref]

C. Shen and C. Zhong, “Novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” Sens. Actuators A Phys. 170(1-2), 51–54 (2011).
[Crossref]

Sens. Actuators B Chem. (1)

D. J. M. Snelders, F. O. Valega Mackenzie, A. Boersma, and R. H. M. Peeters, “Zeolites as coating materials for Fiber Bragg Grating chemical sensor sfor extreme conditions,” Sens. Actuators B Chem. 235, 698–706 (2016).
[Crossref]

Other (1)

B. Liu, Y. Miao, H. Zhou, and Q. Zhao, “Research on Pure Bending characteristic of tilted fiber Bragg grating,” in IEEE Optical Fiber Sensors Conference (IEEE, 2008), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Setup for the displacement, curvature and polarization testing of TFBG.
Fig. 2
Fig. 2 Schematic diagram of TFBG bending and polarization determination procedure: a) stretching in plane parallel to TFBG, b) stretching in plane perpendicular to TFBG.
Fig. 3
Fig. 3 Transmission spectra of 2° TFBG with different bending radius.
Fig. 4
Fig. 4 Close to ghost mode spectrum area with different TFBG bending radius.
Fig. 5
Fig. 5 Cladding mode LP1 1 transmission and wavelength versus displacement for 3 different polarization angles.
Fig. 6
Fig. 6 a) Measured TFBG transmission versus input light polarization, b) amplitude perturbation of LP0 18 mode versus input light polarization.
Fig. 7
Fig. 7 Cladding mode LP0 18 transmission versus input light polarization angle (processing characteristic with marked linear region).
Fig. 8
Fig. 8 Cladding mode LP0 18 transmission a) and wavelength b) versus displacement for 2 boundary polarization angles.

Tables (1)

Tables Icon

Table 1 Sensitivity factors of the proposed method considering the simultaneous fiber end displacement, bending, rotation and temperature.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ λ co = 2 n eff co Λ cos θ TFBG ,
Δ λ i cl = ( n eff co + n eff cl i )Λ cos θ TFBG ,
R i co,cl =tan h 2 { LC + E co * E cl Δncos( 4π Λ zcos( θ TFBG )+ysin( θ TFBG ) )dxdy },

Metrics