Abstract

We numerically demonstrate narrowband thermal emission with unity emissivity peak in the near-infrared range by critically coupling a flat tungsten surface with guided resonances of a dielectric photonic crystal slab. The tungsten surface is separated from the photonic crystal slab by a vacuum gap. The structure possesses significant tunability for both the center frequency and the linewidth of the thermal emission band. Moreover, the tungsten surface, being un-structured, should exhibit enhanced thermal stability at elevated temperature as compared to tungsten nanostructures.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Realization of narrowband thermal emission with optical nanostructures

Takuya Inoue, Menaka De Zoysa, Takashi Asano, and Susumu Noda
Optica 2(1) 27-35 (2015)

Highly efficient light emission at λ = 1.5 μm by a three-dimensional tungsten photonic crystal

S. Y. Lin, J. G. Fleming, and I. El-Kady
Opt. Lett. 28(18) 1683-1685 (2003)

High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals

Veronika Rinnerbauer, Yi Xiang Yeng, Walker R. Chan, Jay J. Senkevich, John D. Joannopoulos, Marin Soljačić, and Ivan Celanovic
Opt. Express 21(9) 11482-11491 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
    [Crossref] [PubMed]
  2. G. Chen and A. Shakouri, “Heat transfer in nanostructures for solid-state energy conversion,” J. Heat Transfer 124, 242–252 (2001).
    [Crossref]
  3. V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5, 8815–8823 (2012).
    [Crossref]
  4. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
    [Crossref]
  5. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
    [Crossref]
  6. M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
    [Crossref]
  7. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
    [Crossref]
  8. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3, 658–661 (2009).
    [Crossref]
  9. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [Crossref] [PubMed]
  10. T. Inoue, T. Asano, M. De Zoysa, A. Oskooi, and S. Noda, “Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources,” J. Opt. Soc. Am. B 30, 165 (2013).
    [Crossref]
  11. B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
    [Crossref]
  12. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
    [Crossref] [PubMed]
  13. T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102, 191110 (2013).
    [Crossref]
  14. Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophoto-voltaics,” Appl. Phys. Lett. 105, 073903 (2014).
    [Crossref]
  15. P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Y. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres,” Opt. Express 23, A1236 (2015).
    [Crossref] [PubMed]
  16. D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4, 014023 (2015).
    [Crossref]
  17. Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106, 101104 (2015).
    [Crossref]
  18. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Electrical tuning of emissivity and linewidth of thermal emission spectra,” Phys. Rev. B 91, 235316 (2015).
    [Crossref]
  19. C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and selective mid-infrared thermal emitters for sensing applications,” in Advanced Photonics 2015, OSA Technical Digest (OSA, 2015), paper SeW2B.2.
    [Crossref]
  20. A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
    [Crossref]
  21. S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).
    [Crossref]
  22. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15145 (2009).
    [Crossref] [PubMed]
  23. W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” PNAS 110, 5309–5314 (2013).
    [Crossref] [PubMed]
  24. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nano 9, 126–130 (2014).
    [Crossref]
  25. K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
    [Crossref] [PubMed]
  26. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
    [Crossref]
  27. M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
    [Crossref]
  28. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–2285 (2012).
    [Crossref] [PubMed]
  29. V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
    [Crossref]
  30. O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nano 11, 320–324 (2016).
    [Crossref]
  31. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569 (2003).
    [Crossref]
  32. J. R. Piper and S. Fan, “Total Absorption in a graphene Monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347–353 (2014).
    [Crossref]
  33. I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29, 863 (2004).
    [Crossref] [PubMed]
  34. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
    [Crossref]
  35. W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113, 127–132 (1959).
    [Crossref]
  36. Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
    [Crossref] [PubMed]

2016 (1)

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nano 11, 320–324 (2016).
[Crossref]

2015 (4)

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106, 101104 (2015).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Electrical tuning of emissivity and linewidth of thermal emission spectra,” Phys. Rev. B 91, 235316 (2015).
[Crossref]

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Y. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres,” Opt. Express 23, A1236 (2015).
[Crossref] [PubMed]

2014 (3)

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophoto-voltaics,” Appl. Phys. Lett. 105, 073903 (2014).
[Crossref]

J. R. Piper and S. Fan, “Total Absorption in a graphene Monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347–353 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nano 9, 126–130 (2014).
[Crossref]

2013 (7)

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” PNAS 110, 5309–5314 (2013).
[Crossref] [PubMed]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref] [PubMed]

T. Inoue, T. Asano, M. De Zoysa, A. Oskooi, and S. Noda, “Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources,” J. Opt. Soc. Am. B 30, 165 (2013).
[Crossref]

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102, 191110 (2013).
[Crossref]

2012 (3)

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5, 8815–8823 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–2285 (2012).
[Crossref] [PubMed]

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

2011 (2)

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

2009 (3)

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3, 658–661 (2009).
[Crossref]

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).
[Crossref]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15145 (2009).
[Crossref] [PubMed]

2008 (1)

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[Crossref]

2006 (1)

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

2005 (1)

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

2004 (1)

2003 (3)

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569 (2003).
[Crossref]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

2002 (3)

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

2001 (1)

G. Chen and A. Shakouri, “Heat transfer in nanostructures for solid-state energy conversion,” J. Heat Transfer 124, 242–252 (2001).
[Crossref]

1959 (1)

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113, 127–132 (1959).
[Crossref]

Abelson, J. R.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Arpin, K. A.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Asano, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Electrical tuning of emissivity and linewidth of thermal emission spectra,” Phys. Rev. B 91, 235316 (2015).
[Crossref]

T. Inoue, T. Asano, M. De Zoysa, A. Oskooi, and S. Noda, “Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources,” J. Opt. Soc. Am. B 30, 165 (2013).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102, 191110 (2013).
[Crossref]

Basu, S.

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).
[Crossref]

Benisty, H.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and selective mid-infrared thermal emitters for sensing applications,” in Advanced Photonics 2015, OSA Technical Digest (OSA, 2015), paper SeW2B.2.
[Crossref]

Bermel, P.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nano 11, 320–324 (2016).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” PNAS 110, 5309–5314 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–2285 (2012).
[Crossref] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nano 9, 126–130 (2014).
[Crossref]

Biswas, R.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Blanchard, C.

C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and selective mid-infrared thermal emitters for sensing applications,” in Advanced Photonics 2015, OSA Technical Digest (OSA, 2015), paper SeW2B.2.
[Crossref]

Boutami, S.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Braun, P. V.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3, 658–661 (2009).
[Crossref]

Carminati, R.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Celanovic, I.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nano 11, 320–324 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nano 9, 126–130 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” PNAS 110, 5309–5314 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–2285 (2012).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5, 8815–8823 (2012).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29, 863 (2004).
[Crossref] [PubMed]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nano 9, 126–130 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” PNAS 110, 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5, 8815–8823 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–2285 (2012).
[Crossref] [PubMed]

Chang, Y.-T.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Chen, G.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nano 11, 320–324 (2016).
[Crossref]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

G. Chen and A. Shakouri, “Heat transfer in nanostructures for solid-state energy conversion,” J. Heat Transfer 124, 242–252 (2001).
[Crossref]

Chen, Y.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Choi, D. S.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Chuang, T.-H.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Cloud, A. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Cortes, C. L.

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophoto-voltaics,” Appl. Phys. Lett. 105, 073903 (2014).
[Crossref]

Costantini, D.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and selective mid-infrared thermal emitters for sensing applications,” in Advanced Photonics 2015, OSA Technical Digest (OSA, 2015), paper SeW2B.2.
[Crossref]

Coutrot, A.-L.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and selective mid-infrared thermal emitters for sensing applications,” in Advanced Photonics 2015, OSA Technical Digest (OSA, 2015), paper SeW2B.2.
[Crossref]

Daly, J. T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

De Zoysa, M.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Electrical tuning of emissivity and linewidth of thermal emission spectra,” Phys. Rev. B 91, 235316 (2015).
[Crossref]

T. Inoue, T. Asano, M. De Zoysa, A. Oskooi, and S. Noda, “Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources,” J. Opt. Soc. Am. B 30, 165 (2013).
[Crossref]

Dewalt, C. J.

do Rosário, J. J.

Dyachenko, P. N.

Eich, M.

El-Kady, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Fan, S.

J. R. Piper and S. Fan, “Total Absorption in a graphene Monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347–353 (2014).
[Crossref]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15145 (2009).
[Crossref] [PubMed]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569 (2003).
[Crossref]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

Fu, C. J.

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).
[Crossref]

Gan, Q.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106, 101104 (2015).
[Crossref]

George, T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Ghebrebrhan, M.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–2285 (2012).
[Crossref] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Girolami, G. S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Greenwald, A. C.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Greffet, J.-J.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and selective mid-infrared thermal emitters for sensing applications,” in Advanced Photonics 2015, OSA Technical Digest (OSA, 2015), paper SeW2B.2.
[Crossref]

Grillet, C.

C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and selective mid-infrared thermal emitters for sensing applications,” in Advanced Photonics 2015, OSA Technical Digest (OSA, 2015), paper SeW2B.2.
[Crossref]

Guo, Y.

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophoto-voltaics,” Appl. Phys. Lett. 105, 073903 (2014).
[Crossref]

Hu, H.

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophoto-voltaics,” Appl. Phys. Lett. 105, 073903 (2014).
[Crossref]

Hugonin, J.-P.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Ilak, M.

Ilic, O.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nano 11, 320–324 (2016).
[Crossref]

Inoue, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Electrical tuning of emissivity and linewidth of thermal emission spectra,” Phys. Rev. B 91, 235316 (2015).
[Crossref]

T. Inoue, T. Asano, M. De Zoysa, A. Oskooi, and S. Noda, “Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources,” J. Opt. Soc. Am. B 30, 165 (2013).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102, 191110 (2013).
[Crossref]

Jacob, Z.

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophoto-voltaics,” Appl. Phys. Lett. 105, 073903 (2014).
[Crossref]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref] [PubMed]

Jamois, C.

C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and selective mid-infrared thermal emitters for sensing applications,” in Advanced Photonics 2015, OSA Technical Digest (OSA, 2015), paper SeW2B.2.
[Crossref]

Jensen, K. F.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” PNAS 110, 5309–5314 (2013).
[Crossref] [PubMed]

Ji, D.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106, 101104 (2015).
[Crossref]

Joannopoulos, J. D.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nano 11, 320–324 (2016).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” PNAS 110, 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5, 8815–8823 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–2285 (2012).
[Crossref] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569 (2003).
[Crossref]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

Johnson, E. A.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Jovanovic, N.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[Crossref]

Kalanyan, B.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Kassakian, J.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29, 863 (2004).
[Crossref] [PubMed]

Kleinman, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113, 127–132 (1959).
[Crossref]

Leclercq, J.-L.

C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and selective mid-infrared thermal emitters for sensing applications,” in Advanced Photonics 2015, OSA Technical Digest (OSA, 2015), paper SeW2B.2.
[Crossref]

Lee, S.-C.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Lefebvre, A.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Leib, E. W.

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nano 9, 126–130 (2014).
[Crossref]

Letartre, X.

C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and selective mid-infrared thermal emitters for sensing applications,” in Advanced Photonics 2015, OSA Technical Digest (OSA, 2015), paper SeW2B.2.
[Crossref]

Lévesque, Q.

C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and selective mid-infrared thermal emitters for sensing applications,” in Advanced Photonics 2015, OSA Technical Digest (OSA, 2015), paper SeW2B.2.
[Crossref]

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

Liu, V.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Losego, M. D.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Luk, T. S.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106, 101104 (2015).
[Crossref]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Mallek, J.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Marquier, F.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and selective mid-infrared thermal emitters for sensing applications,” in Advanced Photonics 2015, OSA Technical Digest (OSA, 2015), paper SeW2B.2.
[Crossref]

Marton, C. H.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” PNAS 110, 5309–5314 (2013).
[Crossref] [PubMed]

McNeal, M. P.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Meng, C.-Y.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Milord, L.

C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and selective mid-infrared thermal emitters for sensing applications,” in Advanced Photonics 2015, OSA Technical Digest (OSA, 2015), paper SeW2B.2.
[Crossref]

Moelders, N.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Moldovan-Doyen, I.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Molesky, S.

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophoto-voltaics,” Appl. Phys. Lett. 105, 073903 (2014).
[Crossref]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref] [PubMed]

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nano 9, 126–130 (2014).
[Crossref]

Narayanaswamy, A.

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

Ndao, S.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5, 8815–8823 (2012).
[Crossref]

Ning, H.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Noda, S.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Electrical tuning of emissivity and linewidth of thermal emission spectra,” Phys. Rev. B 91, 235316 (2015).
[Crossref]

T. Inoue, T. Asano, M. De Zoysa, A. Oskooi, and S. Noda, “Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources,” J. Opt. Soc. Am. B 30, 165 (2013).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102, 191110 (2013).
[Crossref]

O’Sullivan, F.

Oskooi, A.

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Parsons, G. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Perreault, D.

Petrov, A. Y.

Pilawa-Podgurski, R. C. N.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” PNAS 110, 5309–5314 (2013).
[Crossref] [PubMed]

Piper, J. R.

J. R. Piper and S. Fan, “Total Absorption in a graphene Monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347–353 (2014).
[Crossref]

Pralle, M. U.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Puscasu, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Rephaeli, E.

Rinnerbauer, V.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5, 8815–8823 (2012).
[Crossref]

Schneider, G. A.

Schuller, J. A.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3, 658–661 (2009).
[Crossref]

Senkevich, J. J.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” PNAS 110, 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5, 8815–8823 (2012).
[Crossref]

Sergeant, N. P.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

Shakouri, A.

G. Chen and A. Shakouri, “Heat transfer in nanostructures for solid-state energy conversion,” J. Heat Transfer 124, 242–252 (2001).
[Crossref]

Shuai, Y.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Skauli, T.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

Soljacic, M.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nano 11, 320–324 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nano 9, 126–130 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” PNAS 110, 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5, 8815–8823 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–2285 (2012).
[Crossref] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Spitzer, W. G.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113, 127–132 (1959).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Störmer, M.

Suh, W.

Tan, Y.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106, 101104 (2015).
[Crossref]

Taubner, T.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3, 658–661 (2009).
[Crossref]

Tsai, M.-W.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Viktorovitch, P.

C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and selective mid-infrared thermal emitters for sensing applications,” in Advanced Photonics 2015, OSA Technical Digest (OSA, 2015), paper SeW2B.2.
[Crossref]

Vossmeyer, T.

Walsh, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113, 127–132 (1959).
[Crossref]

Wang, E. N.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nano 9, 126–130 (2014).
[Crossref]

Wang, H.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

Wang, L.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Wang, Z.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106, 101104 (2015).
[Crossref]

Weller, H.

Yeng, Y. X.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–2285 (2012).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5, 8815–8823 (2012).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Yu, Z.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106, 101104 (2015).
[Crossref]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Zhang, G.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

Zhang, Z. M.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).
[Crossref]

Zhao, B.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Zhou, M.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106, 101104 (2015).
[Crossref]

Zhu, L.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Zoysa, M. D.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102, 191110 (2013).
[Crossref]

ACS Photonics (1)

J. R. Piper and S. Fan, “Total Absorption in a graphene Monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347–353 (2014).
[Crossref]

Appl. Phys. Lett. (8)

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102, 191110 (2013).
[Crossref]

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophoto-voltaics,” Appl. Phys. Lett. 105, 073903 (2014).
[Crossref]

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106, 101104 (2015).
[Crossref]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Energy Environ. Sci. (1)

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5, 8815–8823 (2012).
[Crossref]

Int. J. Energy Res. (1)

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).
[Crossref]

Int. J. Heat Mass Transfer (1)

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

J. Heat Transfer (1)

G. Chen and A. Shakouri, “Heat transfer in nanostructures for solid-state energy conversion,” J. Heat Transfer 124, 242–252 (2001).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (2)

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Nat. Nano (2)

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nano 11, 320–324 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nano 9, 126–130 (2014).
[Crossref]

Nat. Photonics (1)

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3, 658–661 (2009).
[Crossref]

Nature (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. (1)

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113, 127–132 (1959).
[Crossref]

Phys. Rev. A (1)

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Phys. Rev. Appl. (1)

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4, 014023 (2015).
[Crossref]

Phys. Rev. B (3)

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Electrical tuning of emissivity and linewidth of thermal emission spectra,” Phys. Rev. B 91, 235316 (2015).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

PNAS (1)

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” PNAS 110, 5309–5314 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (1)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–2285 (2012).
[Crossref] [PubMed]

Other (1)

C. Blanchard, Q. Lévesque, D. Costantini, C. Jamois, J.-L. Leclercq, A.-L. Coutrot, F. Marquier, L. Milord, C. Grillet, H. Benisty, P. Viktorovitch, X. Letartre, and J.-J. Greffet, “Directional and selective mid-infrared thermal emitters for sensing applications,” in Advanced Photonics 2015, OSA Technical Digest (OSA, 2015), paper SeW2B.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the emitter structure consisting of a photonic crystal slab with one-dimensional periodicity separated from a flat tungsten surface by a vacuum gap. (b) Thermal emission spectra from the structure shown in Fig. 1(a) with tunable linewidth. Here we vary the geometric parameters of the photonic crystal slab and then tune the vacuum gap size to achieve critical coupling. The structured parameters for each of the curves are as follows: yellow curve: d=0.06μm, g=0.12μm; red curve: d=0.04μm, g=0.16μm; blue curve: d=0.02μm, g=0.23μm. Structures with smaller gap size has higher intrinsic losses, leading to larger linewidths. (c) Thermal emission spectrum from a tungsten photonic crystal slab as shown in the inset. The structure has a period of 2μm and a grating depth of 3μm. (d) Thermal emission spectra from structures consisting of multiple layers of dielectric films placed on top of a flat tungsten surface separated by a vacuum gap. We use two sets of dielectrics to form the top mirror. The first set consists of high index layers with nH = 3.34, low index layer with nL = 1.45, with 3 layers in total (HLH), and the second set consists of high index layers with nH = 3.57, low index layers with nL = 2.90, with 5 layers in total (HLHLH). The emissivity spectra and hence the emission linewidth of the two structures are almost the same.

Fig. 2
Fig. 2

Distributions of the electric field intensity at critical coupling of (a) structure shown in Fig. 1(a) with a gap size of 0.16μm, (b) tungsten photonic crystal slab in Fig. 1(c), and (c) one-dimensional multilayer structure in Fig. 1(d). The dashed lines represent the outline of various elements of the structures.

Fig. 3
Fig. 3

(a) Optical modes of a uniform SiC slab with a thickness of 0.4μm. (b) Transmission spectrum of a SiC photonic crystal slab with a period of 1μm and a grating depth of 0.04μm. The spectrum has its lowest order resonance located around 0.6eV.

Fig. 4
Fig. 4

(a) Narrowband thermal emission peaking at 0.6eV. Parameters: period a = 1.00μm, grating depth d = 0.04μm, vacuum gap size g = 0.16μm. (b) The system goes from under coupling (yellow curve, g = 0.10μm), through critical coupling (blue curve, g = 0.16μm), to over coupling (red curve, g = 0.22μm) as the gap size increases. (c) Absorption spectrum as a function of photon energy and angle of incidence for s-polarized wave, where the structure has same parameters as subplot (a). (d) Angle averaged absorptivity as a function of photon energy for structure in subplot (c).

Fig. 5
Fig. 5

(a) Tuning of linewidth by varying vacuum gap size. Here we vary the vacuum gap size and then adjust the geometric parameters of the photonic crystal slab to achieve critical coupling. The structured parameters for each of the curves are as follows: yellow curve: g = 0.20μm, d = 0.027μm, a = 0.991μm; red curve: g = 0.10μm, d = 0.073μm, a = 1.013μm; blue curve: g = 0.05μm, d = 0.147μm, a = 1.048μm. (b) Tuning of peak position by varying the period. The structured parameters for each of the curves are as follows: red curve: a = 0.8μm, g = 0.18μm, d = 0.02μm; blue curve: a = 1.0μm, g = 0.16μm, d = 0.04μm; yellow curve: a = 1.5μm, g = 0.23μm, d = 0.24μm.

Fig. 6
Fig. 6

(a) Schematic of the emitter structure consisting of a photonic crystal slab with two-dimensional periodicity separated from a flat tungsten surface by a vacuum gap. (b) Narrowband thermal emission with unity peak emissivity by critical coupling to the lowest order TE-like guided resonance located at 0.6eV. The thickness of the SiC slab is 0.45μm, the period is 1.08μm, the radius of vacuum hole is 0.18μm, the vacuum gap size is 0.07μm. (c) Narrowband thermal emission with unity peak emissivity by critical coupling to the lowest order TM-like resonance located at 0.6eV. The thickness of the SiC slab is 0.58μm, the period is 1.03μm, the radius of vacuum hole is 0.10μm, the vacuum gap size is 0.13μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A = 4 γ δ ( ω ω 0 ) 2 + ( γ + δ ) 2

Metrics