Abstract

We present the polarization dependence of strong asymmetric long period fiber gratings written on tapered fibers. We found that for off-resonance conditions the spectral response and the output mode strongly depend on the input state of polarization. We utilize this dependence to obtain a mode selective device and demonstrate radially polarized and azimuthally polarized fiber lasers based on these asymmetric long period fiber gratings.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

Gilad Masri, Shir Shahal, Avi Klein, Hamootal Duadi, and Moti Fridman, "Polarization dependence of asymmetric off-resonance long period fiber gratings: erratum," Opt. Express 25, 5787-5787 (2017)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-5-5787

OSA Recommended Articles
Long period fiber gratings with off-resonance spectral response based on mechanical oscillations

Shir Shahal, Avi Klein, Gilad Masri, Hamootal Duadi, and Moti Fridman
J. Opt. Soc. Am. A 34(2) 264-269 (2017)

Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating

Hyung Suk Ryu, Yongwoo Park, Seong Tae Oh, Youngjoo Chung, and Dug Young Kim
Opt. Lett. 28(3) 155-157 (2003)

Mode converter based on the long-period fiber gratings written in the two-mode fiber

Yunhe Zhao, Yunqi Liu, Liang Zhang, Chenyi Zhang, Jianxiang Wen, and Tingyun Wang
Opt. Express 24(6) 6186-6195 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692 (1996).
    [Crossref] [PubMed]
  2. X. Daxhelet and M. Kulishov, “Theory and practice of long-period gratings: when a loss become a gain,” Opt. Lett. 28686 (2003).
    [Crossref] [PubMed]
  3. T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13296 (1996).
    [Crossref]
  4. M. Z. Alam and J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightwave Technol. 31, 3167 (2013).
    [Crossref]
  5. D. McGloin, N. B. Simpson, and M. J. Padgett, “Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam,” Appl. Opt. 37, 469 (1998).
    [Crossref]
  6. F. Y. Chan and K. Yasumoto, “Design of wavelength tunable long-period grating couplers based on asymmetric nonlinear dual-core fibres,” Opt. Lett. 32, 3377 (2007).
    [Crossref]
  7. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 1458 (1996).
    [Crossref]
  8. T. Erdogan and J. E. Sipe, “Radiation-mode coupling loss in tilted fiber phase gratings,” Opt. Lett. 20, 1838 (1995).
    [Crossref] [PubMed]
  9. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58 (1996).
    [Crossref]
  10. W. Mohamed and X. Gu, “Long-period grating and its application in laser beam shaping in the 1.0µ m wavelength region,” App. Opt. 48, 2249 (2009).
    [Crossref]
  11. Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J Sel. Top. Quantum Electron. 19, 1701311 (2013).
    [Crossref]
  12. W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index senor based on adiabatically tapered microfiber long period grating”, Sensors 13, 14055 (2003).
    [Crossref]
  13. S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol 14, R49 (2003).
    [Crossref]
  14. B. H. Lee, J. Cheong, and U. C. Paek, “Spectral polarization-dependent loss of cascaded long-period fiber gratings,” Opt. Lett. 27, 1096 (2002).
    [Crossref]
  15. B. O. Guan, J. Li, L. Jin, and Y. Ran, “Fiber Bragg gratings in optical microfibers,” Opt. Fiber Tech. 19, 793 (2013).
    [Crossref]
  16. L. Chunn-Yenn, L. A. Wang, and C. Gia-Wei, “Corrugated long-period fibre gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 191159 (2001).
    [Crossref]
  17. A. Martinez-Rios, D. Monzon-Hernandez, I. Torres-Gomez, and G. Salceda-Delgado, Long Period Fiber Grating (Artech House, 2012), Chap. 11.
  18. Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19, 18577 (2011).
    [Crossref] [PubMed]
  19. Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” Photon. J. 4, 181 (2012).
    [Crossref]
  20. Y. Wang, “Review of long period fiber grating written by CO2 laser,” App. Phys. 108, 081101 (2010)
    [Crossref]
  21. J. R. Heflin, A. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, and T. Inzana, “Rapid identification of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Bio. Opt. 2016, OSA Tech. Digest (online) JTu3A.5. (Optical Society of America, 2016).
  22. A. B. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, J. R. Heflin, and T. J. Inzana, “Detection of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Biosensors and Bioelectronics 70, 433 (2015).
    [Crossref] [PubMed]
  23. T. Grosjean, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203,1 (2002).
    [Crossref]
  24. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre Gaussian beams,” Opt. Comm. 237, 89 (2004).
    [Crossref]
  25. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525 (2009).
    [Crossref] [PubMed]
  26. S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2, 455 (2016).
  27. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
    [Crossref]
  28. T. He, L. Rishoj, J. Demas, and S. Ramachandran, “Dispersion compensation using chirped long period gratings,” Conference on Lasers and Electro-Optics, OSA Technical Digest STu3P.7. (2016)
  29. S. Shahal, A. Klein, G. Masri, H. Duadi, and M. Fridman, “Long period fiber gratings with off-resonance spectral response based on mechanical oscillations,” submitted to J. Opt. Soc. Am. A (arXiv:1509.06151)
  30. D. Gloge, “Weakly guiding fibers,” App. Opt. 10, 2252 (1971).
    [Crossref]
  31. M. Fridman, M. Nixon, E. Grinvald, N. Davidson, and A. A. Friesem, “Real-time measurement of space-variant polarizations,” Opt. Express 18, 10805 (2010).
    [Crossref] [PubMed]
  32. M. Fridman, E. Grinvald, A. Godel, M. Nixon, A. A. Friesem, and N. Davidson, “Compact achromatic real-time measurement of space-variant polarizations,” Appl. Phys. Lett. 98, 141107 (2011).
    [Crossref]
  33. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10, 324 (2002).
    [Crossref] [PubMed]
  34. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77 (2000).
    [Crossref] [PubMed]
  35. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D: Appl. Phys. 33, 1817 (2000).
    [Crossref]
  36. K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603 (2006).
    [Crossref]
  37. M. O. Scully, “A simple laser linac,” Appl. Phys. B. 51, 238 (1990).
    [Crossref]
  38. E. J. Bochove, G. T. Moore, and M. O. Scully, “Acceleration of particles by an asymmetric Hermite-Gaussian laser beam,” Phys. Rev. A 46, 6640 (1992).
    [Crossref] [PubMed]
  39. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28, 807 (2003).
    [Crossref] [PubMed]
  40. Y. Zhang, F. S. Roux, M. McLaren, and A. Forbes, “Radial modal dependence of the azimuthal spectrum after parametric down-conversion,” Phys. Rev. A 89, 043820 (2014).
    [Crossref]
  41. S. Ngcobo, K. Alt-Ameur, N. Passilly, A. Hasnaoui, and A. Forbes, “Exciting higher-order radial Laguerre-Gaussian modes in a diode-pumped solid-state laser resonator,” Appl. Opt. 52, 2093 (2013).
    [Crossref] [PubMed]
  42. B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low threshold single wavelength all fiber laser generating cylindrical vector beam using a few mode fiber Bragg grating,” Opt. Lett. 37, 464 (2012).
    [Crossref] [PubMed]
  43. B. Sun, A. Wang, L. Xu, C. Gu, Y. Zhou, Z. Lin, H. Ming, and Q. Zhan, “Transverse mode switchable fiber laser through wavelength tuning,” Opt. Lett. 38, 667 (2013).
    [Crossref] [PubMed]
  44. M. Fridman, N. Davidson, G. Machavariani, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” App. Phy. Lett. 93, 191104 (2008).
    [Crossref]
  45. M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, “Fiber amplification of radially and azimuthally polarized laser light,” Opt. Lett. 35, 1332 (2010).
    [Crossref] [PubMed]

2016 (1)

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2, 455 (2016).

2015 (1)

A. B. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, J. R. Heflin, and T. J. Inzana, “Detection of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Biosensors and Bioelectronics 70, 433 (2015).
[Crossref] [PubMed]

2014 (1)

Y. Zhang, F. S. Roux, M. McLaren, and A. Forbes, “Radial modal dependence of the azimuthal spectrum after parametric down-conversion,” Phys. Rev. A 89, 043820 (2014).
[Crossref]

2013 (6)

S. Ngcobo, K. Alt-Ameur, N. Passilly, A. Hasnaoui, and A. Forbes, “Exciting higher-order radial Laguerre-Gaussian modes in a diode-pumped solid-state laser resonator,” Appl. Opt. 52, 2093 (2013).
[Crossref] [PubMed]

B. Sun, A. Wang, L. Xu, C. Gu, Y. Zhou, Z. Lin, H. Ming, and Q. Zhan, “Transverse mode switchable fiber laser through wavelength tuning,” Opt. Lett. 38, 667 (2013).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref]

M. Z. Alam and J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightwave Technol. 31, 3167 (2013).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

B. O. Guan, J. Li, L. Jin, and Y. Ran, “Fiber Bragg gratings in optical microfibers,” Opt. Fiber Tech. 19, 793 (2013).
[Crossref]

2012 (2)

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” Photon. J. 4, 181 (2012).
[Crossref]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low threshold single wavelength all fiber laser generating cylindrical vector beam using a few mode fiber Bragg grating,” Opt. Lett. 37, 464 (2012).
[Crossref] [PubMed]

2011 (2)

M. Fridman, E. Grinvald, A. Godel, M. Nixon, A. A. Friesem, and N. Davidson, “Compact achromatic real-time measurement of space-variant polarizations,” Appl. Phys. Lett. 98, 141107 (2011).
[Crossref]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19, 18577 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (2)

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525 (2009).
[Crossref] [PubMed]

W. Mohamed and X. Gu, “Long-period grating and its application in laser beam shaping in the 1.0µ m wavelength region,” App. Opt. 48, 2249 (2009).
[Crossref]

2008 (1)

M. Fridman, N. Davidson, G. Machavariani, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” App. Phy. Lett. 93, 191104 (2008).
[Crossref]

2007 (1)

F. Y. Chan and K. Yasumoto, “Design of wavelength tunable long-period grating couplers based on asymmetric nonlinear dual-core fibres,” Opt. Lett. 32, 3377 (2007).
[Crossref]

2006 (1)

K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603 (2006).
[Crossref]

2004 (1)

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre Gaussian beams,” Opt. Comm. 237, 89 (2004).
[Crossref]

2003 (4)

X. Daxhelet and M. Kulishov, “Theory and practice of long-period gratings: when a loss become a gain,” Opt. Lett. 28686 (2003).
[Crossref] [PubMed]

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index senor based on adiabatically tapered microfiber long period grating”, Sensors 13, 14055 (2003).
[Crossref]

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol 14, R49 (2003).
[Crossref]

I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28, 807 (2003).
[Crossref] [PubMed]

2002 (3)

2001 (1)

2000 (2)

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77 (2000).
[Crossref] [PubMed]

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D: Appl. Phys. 33, 1817 (2000).
[Crossref]

1998 (1)

1996 (4)

T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13296 (1996).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 1458 (1996).
[Crossref]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692 (1996).
[Crossref] [PubMed]

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58 (1996).
[Crossref]

1995 (1)

1992 (1)

E. J. Bochove, G. T. Moore, and M. O. Scully, “Acceleration of particles by an asymmetric Hermite-Gaussian laser beam,” Phys. Rev. A 46, 6640 (1992).
[Crossref] [PubMed]

1990 (1)

M. O. Scully, “A simple laser linac,” Appl. Phys. B. 51, 238 (1990).
[Crossref]

1971 (1)

D. Gloge, “Weakly guiding fibers,” App. Opt. 10, 2252 (1971).
[Crossref]

Alam, M. Z.

Albert, J.

Alt-Ameur, K.

Bandara, A.

J. R. Heflin, A. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, and T. Inzana, “Rapid identification of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Bio. Opt. 2016, OSA Tech. Digest (online) JTu3A.5. (Optical Society of America, 2016).

Bandara, A. B.

A. B. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, J. R. Heflin, and T. J. Inzana, “Detection of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Biosensors and Bioelectronics 70, 433 (2015).
[Crossref] [PubMed]

Bhatia, V.

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692 (1996).
[Crossref] [PubMed]

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58 (1996).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 1458 (1996).
[Crossref]

Bochove, E. J.

E. J. Bochove, G. T. Moore, and M. O. Scully, “Acceleration of particles by an asymmetric Hermite-Gaussian laser beam,” Phys. Rev. A 46, 6640 (1992).
[Crossref] [PubMed]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref]

Brown, T. G.

Chan, F. Y.

F. Y. Chan and K. Yasumoto, “Design of wavelength tunable long-period grating couplers based on asymmetric nonlinear dual-core fibres,” Opt. Lett. 32, 3377 (2007).
[Crossref]

Chang-Hasnain, C. J.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Chase, C.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Cheong, J.

Chitgarha, M. R.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Chunn-Yenn, L.

Davidson, N.

M. Fridman, E. Grinvald, A. Godel, M. Nixon, A. A. Friesem, and N. Davidson, “Compact achromatic real-time measurement of space-variant polarizations,” Appl. Phys. Lett. 98, 141107 (2011).
[Crossref]

M. Fridman, M. Nixon, E. Grinvald, N. Davidson, and A. A. Friesem, “Real-time measurement of space-variant polarizations,” Opt. Express 18, 10805 (2010).
[Crossref] [PubMed]

M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, “Fiber amplification of radially and azimuthally polarized laser light,” Opt. Lett. 35, 1332 (2010).
[Crossref] [PubMed]

M. Fridman, N. Davidson, G. Machavariani, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” App. Phy. Lett. 93, 191104 (2008).
[Crossref]

Daxhelet, X.

Demas, J.

T. He, L. Rishoj, J. Demas, and S. Ramachandran, “Dispersion compensation using chirped long period gratings,” Conference on Lasers and Electro-Optics, OSA Technical Digest STu3P.7. (2016)

Duadi, H.

S. Shahal, A. Klein, G. Masri, H. Duadi, and M. Fridman, “Long period fiber gratings with off-resonance spectral response based on mechanical oscillations,” submitted to J. Opt. Soc. Am. A (arXiv:1509.06151)

Dubinskii, M.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 1458 (1996).
[Crossref]

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58 (1996).
[Crossref]

T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13296 (1996).
[Crossref]

T. Erdogan and J. E. Sipe, “Radiation-mode coupling loss in tilted fiber phase gratings,” Opt. Lett. 20, 1838 (1995).
[Crossref] [PubMed]

Forbes, A.

Y. Zhang, F. S. Roux, M. McLaren, and A. Forbes, “Radial modal dependence of the azimuthal spectrum after parametric down-conversion,” Phys. Rev. A 89, 043820 (2014).
[Crossref]

S. Ngcobo, K. Alt-Ameur, N. Passilly, A. Hasnaoui, and A. Forbes, “Exciting higher-order radial Laguerre-Gaussian modes in a diode-pumped solid-state laser resonator,” Appl. Opt. 52, 2093 (2013).
[Crossref] [PubMed]

Fridman, M.

M. Fridman, E. Grinvald, A. Godel, M. Nixon, A. A. Friesem, and N. Davidson, “Compact achromatic real-time measurement of space-variant polarizations,” Appl. Phys. Lett. 98, 141107 (2011).
[Crossref]

M. Fridman, M. Nixon, E. Grinvald, N. Davidson, and A. A. Friesem, “Real-time measurement of space-variant polarizations,” Opt. Express 18, 10805 (2010).
[Crossref] [PubMed]

M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, “Fiber amplification of radially and azimuthally polarized laser light,” Opt. Lett. 35, 1332 (2010).
[Crossref] [PubMed]

M. Fridman, N. Davidson, G. Machavariani, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” App. Phy. Lett. 93, 191104 (2008).
[Crossref]

S. Shahal, A. Klein, G. Masri, H. Duadi, and M. Fridman, “Long period fiber gratings with off-resonance spectral response based on mechanical oscillations,” submitted to J. Opt. Soc. Am. A (arXiv:1509.06151)

Friesem, A. A.

M. Fridman, E. Grinvald, A. Godel, M. Nixon, A. A. Friesem, and N. Davidson, “Compact achromatic real-time measurement of space-variant polarizations,” Appl. Phys. Lett. 98, 141107 (2011).
[Crossref]

M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, “Fiber amplification of radially and azimuthally polarized laser light,” Opt. Lett. 35, 1332 (2010).
[Crossref] [PubMed]

M. Fridman, M. Nixon, E. Grinvald, N. Davidson, and A. A. Friesem, “Real-time measurement of space-variant polarizations,” Opt. Express 18, 10805 (2010).
[Crossref] [PubMed]

M. Fridman, N. Davidson, G. Machavariani, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” App. Phy. Lett. 93, 191104 (2008).
[Crossref]

Gao, S.

Gia-Wei, C.

Gloge, D.

D. Gloge, “Weakly guiding fibers,” App. Opt. 10, 2252 (1971).
[Crossref]

Godel, A.

M. Fridman, E. Grinvald, A. Godel, M. Nixon, A. A. Friesem, and N. Davidson, “Compact achromatic real-time measurement of space-variant polarizations,” Appl. Phys. Lett. 98, 141107 (2011).
[Crossref]

Grinvald, E.

M. Fridman, E. Grinvald, A. Godel, M. Nixon, A. A. Friesem, and N. Davidson, “Compact achromatic real-time measurement of space-variant polarizations,” Appl. Phys. Lett. 98, 141107 (2011).
[Crossref]

M. Fridman, M. Nixon, E. Grinvald, N. Davidson, and A. A. Friesem, “Real-time measurement of space-variant polarizations,” Opt. Express 18, 10805 (2010).
[Crossref] [PubMed]

Grosjean, T.

T. Grosjean, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203,1 (2002).
[Crossref]

Gu, C.

Gu, X.

W. Mohamed and X. Gu, “Long-period grating and its application in laser beam shaping in the 1.0µ m wavelength region,” App. Opt. 48, 2249 (2009).
[Crossref]

Guan, B. O.

B. O. Guan, J. Li, L. Jin, and Y. Ran, “Fiber Bragg gratings in optical microfibers,” Opt. Fiber Tech. 19, 793 (2013).
[Crossref]

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” Photon. J. 4, 181 (2012).
[Crossref]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19, 18577 (2011).
[Crossref] [PubMed]

Hasnaoui, A.

He, T.

T. He, L. Rishoj, J. Demas, and S. Ramachandran, “Dispersion compensation using chirped long period gratings,” Conference on Lasers and Electro-Optics, OSA Technical Digest STu3P.7. (2016)

Heflin, J. R.

A. B. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, J. R. Heflin, and T. J. Inzana, “Detection of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Biosensors and Bioelectronics 70, 433 (2015).
[Crossref] [PubMed]

J. R. Heflin, A. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, and T. Inzana, “Rapid identification of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Bio. Opt. 2016, OSA Tech. Digest (online) JTu3A.5. (Optical Society of America, 2016).

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref]

Huang, M. C. Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Inzana, T.

J. R. Heflin, A. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, and T. Inzana, “Rapid identification of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Bio. Opt. 2016, OSA Tech. Digest (online) JTu3A.5. (Optical Society of America, 2016).

Inzana, T. J.

A. B. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, J. R. Heflin, and T. J. Inzana, “Detection of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Biosensors and Bioelectronics 70, 433 (2015).
[Crossref] [PubMed]

Jackel, S.

James, S. W.

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol 14, R49 (2003).
[Crossref]

Ji, W. B.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index senor based on adiabatically tapered microfiber long period grating”, Sensors 13, 14055 (2003).
[Crossref]

Jin, L.

B. O. Guan, J. Li, L. Jin, and Y. Ran, “Fiber Bragg gratings in optical microfibers,” Opt. Fiber Tech. 19, 793 (2013).
[Crossref]

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” Photon. J. 4, 181 (2012).
[Crossref]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19, 18577 (2011).
[Crossref] [PubMed]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 1458 (1996).
[Crossref]

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Khaleghi, S.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Klein, A.

S. Shahal, A. Klein, G. Masri, H. Duadi, and M. Fridman, “Long period fiber gratings with off-resonance spectral response based on mechanical oscillations,” submitted to J. Opt. Soc. Am. A (arXiv:1509.06151)

Kristensen, P.

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2, 455 (2016).

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525 (2009).
[Crossref] [PubMed]

Kulishov, M.

Lee, B. H.

Leger, J. R.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 1458 (1996).
[Crossref]

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Li, J.

B. O. Guan, J. Li, L. Jin, and Y. Ran, “Fiber Bragg gratings in optical microfibers,” Opt. Fiber Tech. 19, 793 (2013).
[Crossref]

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” Photon. J. 4, 181 (2012).
[Crossref]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19, 18577 (2011).
[Crossref] [PubMed]

Lin, B.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index senor based on adiabatically tapered microfiber long period grating”, Sensors 13, 14055 (2003).
[Crossref]

Lin, Z.

Machavariani, G.

M. Fridman, N. Davidson, G. Machavariani, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” App. Phy. Lett. 93, 191104 (2008).
[Crossref]

Martinez-Rios, A.

A. Martinez-Rios, D. Monzon-Hernandez, I. Torres-Gomez, and G. Salceda-Delgado, Long Period Fiber Grating (Artech House, 2012), Chap. 11.

Masri, G.

S. Shahal, A. Klein, G. Masri, H. Duadi, and M. Fridman, “Long period fiber gratings with off-resonance spectral response based on mechanical oscillations,” submitted to J. Opt. Soc. Am. A (arXiv:1509.06151)

McGloin, D.

McLaren, M.

Y. Zhang, F. S. Roux, M. McLaren, and A. Forbes, “Radial modal dependence of the azimuthal spectrum after parametric down-conversion,” Phys. Rev. A 89, 043820 (2014).
[Crossref]

Meir, A.

Ming, H.

Mohamed, W.

W. Mohamed and X. Gu, “Long-period grating and its application in laser beam shaping in the 1.0µ m wavelength region,” App. Opt. 48, 2249 (2009).
[Crossref]

Monzon-Hernandez, D.

A. Martinez-Rios, D. Monzon-Hernandez, I. Torres-Gomez, and G. Salceda-Delgado, Long Period Fiber Grating (Artech House, 2012), Chap. 11.

Moore, G. T.

E. J. Bochove, G. T. Moore, and M. O. Scully, “Acceleration of particles by an asymmetric Hermite-Gaussian laser beam,” Phys. Rev. A 46, 6640 (1992).
[Crossref] [PubMed]

Moshe, I.

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D: Appl. Phys. 33, 1817 (2000).
[Crossref]

Ng, C. L.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index senor based on adiabatically tapered microfiber long period grating”, Sensors 13, 14055 (2003).
[Crossref]

Ngcobo, S.

Nixon, M.

Niziev, V. G.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D: Appl. Phys. 33, 1817 (2000).
[Crossref]

Padgett, M. J.

Paek, U. C.

Passilly, N.

Petrov, D.

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre Gaussian beams,” Opt. Comm. 237, 89 (2004).
[Crossref]

Ramachandran, S.

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2, 455 (2016).

A. B. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, J. R. Heflin, and T. J. Inzana, “Detection of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Biosensors and Bioelectronics 70, 433 (2015).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525 (2009).
[Crossref] [PubMed]

T. He, L. Rishoj, J. Demas, and S. Ramachandran, “Dispersion compensation using chirped long period gratings,” Conference on Lasers and Electro-Optics, OSA Technical Digest STu3P.7. (2016)

J. R. Heflin, A. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, and T. Inzana, “Rapid identification of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Bio. Opt. 2016, OSA Tech. Digest (online) JTu3A.5. (Optical Society of America, 2016).

Ran, Y.

B. O. Guan, J. Li, L. Jin, and Y. Ran, “Fiber Bragg gratings in optical microfibers,” Opt. Fiber Tech. 19, 793 (2013).
[Crossref]

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” Photon. J. 4, 181 (2012).
[Crossref]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19, 18577 (2011).
[Crossref] [PubMed]

Rao, Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref]

Rishoj, L.

T. He, L. Rishoj, J. Demas, and S. Ramachandran, “Dispersion compensation using chirped long period gratings,” Conference on Lasers and Electro-Optics, OSA Technical Digest STu3P.7. (2016)

Ritter, A.

A. B. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, J. R. Heflin, and T. J. Inzana, “Detection of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Biosensors and Bioelectronics 70, 433 (2015).
[Crossref] [PubMed]

J. R. Heflin, A. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, and T. Inzana, “Rapid identification of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Bio. Opt. 2016, OSA Tech. Digest (online) JTu3A.5. (Optical Society of America, 2016).

Roux, F. S.

Y. Zhang, F. S. Roux, M. McLaren, and A. Forbes, “Radial modal dependence of the azimuthal spectrum after parametric down-conversion,” Phys. Rev. A 89, 043820 (2014).
[Crossref]

Salceda-Delgado, G.

A. Martinez-Rios, D. Monzon-Hernandez, I. Torres-Gomez, and G. Salceda-Delgado, Long Period Fiber Grating (Artech House, 2012), Chap. 11.

Scully, M. O.

E. J. Bochove, G. T. Moore, and M. O. Scully, “Acceleration of particles by an asymmetric Hermite-Gaussian laser beam,” Phys. Rev. A 46, 6640 (1992).
[Crossref] [PubMed]

M. O. Scully, “A simple laser linac,” Appl. Phys. B. 51, 238 (1990).
[Crossref]

Shahal, S.

S. Shahal, A. Klein, G. Masri, H. Duadi, and M. Fridman, “Long period fiber gratings with off-resonance spectral response based on mechanical oscillations,” submitted to J. Opt. Soc. Am. A (arXiv:1509.06151)

Simpson, N. B.

Sipe, J. E.

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58 (1996).
[Crossref]

T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13296 (1996).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 1458 (1996).
[Crossref]

T. Erdogan and J. E. Sipe, “Radiation-mode coupling loss in tilted fiber phase gratings,” Opt. Lett. 20, 1838 (1995).
[Crossref] [PubMed]

Sun, B.

Sun, L. P.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” Photon. J. 4, 181 (2012).
[Crossref]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19, 18577 (2011).
[Crossref] [PubMed]

Tan, B.

K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603 (2006).
[Crossref]

Tan, Y. N.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” Photon. J. 4, 181 (2012).
[Crossref]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19, 18577 (2011).
[Crossref] [PubMed]

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol 14, R49 (2003).
[Crossref]

Tjin, S. C.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index senor based on adiabatically tapered microfiber long period grating”, Sensors 13, 14055 (2003).
[Crossref]

Torres-Gomez, I.

A. Martinez-Rios, D. Monzon-Hernandez, I. Torres-Gomez, and G. Salceda-Delgado, Long Period Fiber Grating (Artech House, 2012), Chap. 11.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 1458 (1996).
[Crossref]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692 (1996).
[Crossref] [PubMed]

Vengsarkar, M.

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Venkatakrishnan, K.

K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603 (2006).
[Crossref]

Volpe, G.

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre Gaussian beams,” Opt. Comm. 237, 89 (2004).
[Crossref]

Wang, A.

Wang, L. A.

Wang, Y.

Y. Wang, “Review of long period fiber grating written by CO2 laser,” App. Phys. 108, 081101 (2010)
[Crossref]

Willner, A. E.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref]

Worland, D. P.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Xu, L.

Yan, M. F.

Yang, W.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Yasumoto, K.

F. Y. Chan and K. Yasumoto, “Design of wavelength tunable long-period grating couplers based on asymmetric nonlinear dual-core fibres,” Opt. Lett. 32, 3377 (2007).
[Crossref]

Youngworth, K. S.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref]

Zhan, Q.

Zhang, Y.

Y. Zhang, F. S. Roux, M. McLaren, and A. Forbes, “Radial modal dependence of the azimuthal spectrum after parametric down-conversion,” Phys. Rev. A 89, 043820 (2014).
[Crossref]

Zhou, Y.

Ziyadi, M.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Zuo, Z.

A. B. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, J. R. Heflin, and T. J. Inzana, “Detection of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Biosensors and Bioelectronics 70, 433 (2015).
[Crossref] [PubMed]

J. R. Heflin, A. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, and T. Inzana, “Rapid identification of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Bio. Opt. 2016, OSA Tech. Digest (online) JTu3A.5. (Optical Society of America, 2016).

App. Opt. (2)

W. Mohamed and X. Gu, “Long-period grating and its application in laser beam shaping in the 1.0µ m wavelength region,” App. Opt. 48, 2249 (2009).
[Crossref]

D. Gloge, “Weakly guiding fibers,” App. Opt. 10, 2252 (1971).
[Crossref]

App. Phy. Lett. (1)

M. Fridman, N. Davidson, G. Machavariani, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” App. Phy. Lett. 93, 191104 (2008).
[Crossref]

App. Phys. (1)

Y. Wang, “Review of long period fiber grating written by CO2 laser,” App. Phys. 108, 081101 (2010)
[Crossref]

Appl. Opt. (2)

Appl. Phys. B. (1)

M. O. Scully, “A simple laser linac,” Appl. Phys. B. 51, 238 (1990).
[Crossref]

Appl. Phys. Lett. (1)

M. Fridman, E. Grinvald, A. Godel, M. Nixon, A. A. Friesem, and N. Davidson, “Compact achromatic real-time measurement of space-variant polarizations,” Appl. Phys. Lett. 98, 141107 (2011).
[Crossref]

Biosensors and Bioelectronics (1)

A. B. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, J. R. Heflin, and T. J. Inzana, “Detection of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Biosensors and Bioelectronics 70, 433 (2015).
[Crossref] [PubMed]

IEEE J Sel. Top. Quantum Electron. (1)

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

J. Lightwave Technol. (4)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 1458 (1996).
[Crossref]

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58 (1996).
[Crossref]

L. Chunn-Yenn, L. A. Wang, and C. Gia-Wei, “Corrugated long-period fibre gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 191159 (2001).
[Crossref]

M. Z. Alam and J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightwave Technol. 31, 3167 (2013).
[Crossref]

J. Micromech. Microeng. (1)

K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (1)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D: Appl. Phys. 33, 1817 (2000).
[Crossref]

Meas. Sci. Technol (1)

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol 14, R49 (2003).
[Crossref]

Nanophotonics (1)

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2, 455 (2016).

Opt. Comm. (1)

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre Gaussian beams,” Opt. Comm. 237, 89 (2004).
[Crossref]

Opt. Commun. (1)

T. Grosjean, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203,1 (2002).
[Crossref]

Opt. Express (4)

Opt. Fiber Tech. (1)

B. O. Guan, J. Li, L. Jin, and Y. Ran, “Fiber Bragg gratings in optical microfibers,” Opt. Fiber Tech. 19, 793 (2013).
[Crossref]

Opt. Lett. (10)

F. Y. Chan and K. Yasumoto, “Design of wavelength tunable long-period grating couplers based on asymmetric nonlinear dual-core fibres,” Opt. Lett. 32, 3377 (2007).
[Crossref]

B. Sun, A. Wang, L. Xu, C. Gu, Y. Zhou, Z. Lin, H. Ming, and Q. Zhan, “Transverse mode switchable fiber laser through wavelength tuning,” Opt. Lett. 38, 667 (2013).
[Crossref] [PubMed]

B. H. Lee, J. Cheong, and U. C. Paek, “Spectral polarization-dependent loss of cascaded long-period fiber gratings,” Opt. Lett. 27, 1096 (2002).
[Crossref]

I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28, 807 (2003).
[Crossref] [PubMed]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low threshold single wavelength all fiber laser generating cylindrical vector beam using a few mode fiber Bragg grating,” Opt. Lett. 37, 464 (2012).
[Crossref] [PubMed]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692 (1996).
[Crossref] [PubMed]

T. Erdogan and J. E. Sipe, “Radiation-mode coupling loss in tilted fiber phase gratings,” Opt. Lett. 20, 1838 (1995).
[Crossref] [PubMed]

M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, “Fiber amplification of radially and azimuthally polarized laser light,” Opt. Lett. 35, 1332 (2010).
[Crossref] [PubMed]

X. Daxhelet and M. Kulishov, “Theory and practice of long-period gratings: when a loss become a gain,” Opt. Lett. 28686 (2003).
[Crossref] [PubMed]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525 (2009).
[Crossref] [PubMed]

Photon. J. (1)

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” Photon. J. 4, 181 (2012).
[Crossref]

Phys. Rev. A (2)

E. J. Bochove, G. T. Moore, and M. O. Scully, “Acceleration of particles by an asymmetric Hermite-Gaussian laser beam,” Phys. Rev. A 46, 6640 (1992).
[Crossref] [PubMed]

Y. Zhang, F. S. Roux, M. McLaren, and A. Forbes, “Radial modal dependence of the azimuthal spectrum after parametric down-conversion,” Phys. Rev. A 89, 043820 (2014).
[Crossref]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref]

Sensors (1)

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index senor based on adiabatically tapered microfiber long period grating”, Sensors 13, 14055 (2003).
[Crossref]

Other (4)

A. Martinez-Rios, D. Monzon-Hernandez, I. Torres-Gomez, and G. Salceda-Delgado, Long Period Fiber Grating (Artech House, 2012), Chap. 11.

T. He, L. Rishoj, J. Demas, and S. Ramachandran, “Dispersion compensation using chirped long period gratings,” Conference on Lasers and Electro-Optics, OSA Technical Digest STu3P.7. (2016)

S. Shahal, A. Klein, G. Masri, H. Duadi, and M. Fridman, “Long period fiber gratings with off-resonance spectral response based on mechanical oscillations,” submitted to J. Opt. Soc. Am. A (arXiv:1509.06151)

J. R. Heflin, A. Bandara, Z. Zuo, S. Ramachandran, A. Ritter, and T. Inzana, “Rapid identification of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings,” Bio. Opt. 2016, OSA Tech. Digest (online) JTu3A.5. (Optical Society of America, 2016).

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (6911 KB)      A video showing the electric field propagation in an asymmetric LPFG

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Normalized propagation parameter [30], as a function of the fiber diameter for the first three modes: HE11, TE01 and TM01 modes. Insets show the power distribution and the local state of polarization of the three modes. (b) Relative difference between the propagation parameters of TE01 and TM01 as a function of the fiber diameter.
Fig. 2
Fig. 2 Schematics of the asymmetric LPFG presenting a tapered fiber with diameter oscillations in the x direction and constant diameter in the y direction. (b) cross section of the xz plane showing the oscillations in the fiber diameter, (c) cross-section of the yz plane showing a constant fiber diameter. Insets (a) and (d) shows numerical simulation of an HE11 mode propagating in such asymmetric LPFG where inset (a) shows the input electric field distribution and inset (d) shows the output electric field distribution. A video showing the electric field propagation in an asymmetric LPFG is presented in Visualization 1.
Fig. 3
Fig. 3 Transmission spectrum of the LPFG as a function of the input state of polarization. (a) and (b) show calculated and measured transmission spectra for horizontal (blue asterisks) and vertical (red dots) states of polarization. (c) and (d) show calculated and measured transmission spectra as a function of the polarization orientation, where H denotes horizontal, D denotes diagonal and V denotes vertical states of polarization.
Fig. 4
Fig. 4 Measured spectral response of the asymmetric LPFG as presented by the red dots in Fig. 3(b) separated into two spectral oscillations presented as the dashed and the dotted curves.
Fig. 5
Fig. 5 Measurement scheme of the output mode from an asymmetric LPFG as a function of the input state of polarization. The calcite crystal splits the output beam into two orthogonal states of polarization where a CCD camera measures the intensity distribution. The local state of polarization is recovered from the camera output. Horizontal input state of polarization: insets (a) and (b) present the output intensity distributions and inset (c) presents the recovered output local state of polarization showing an azimuthal mode. Vertical input state of polarization: inset (d) and (e) present the output intensity distributions and inset (f) presents the recovered output local state of polarization showing a radial mode.
Fig. 6
Fig. 6 Schematics of the radially or azimuthally polarized modes fiber laser based on asymmetric LPFG. HR - high reflecting, LPFG - long period fiber grating, OC - output coupler. The doped fiber length was 1.5 m with core diameter of 15 µm.
Fig. 7
Fig. 7 Measured output intensity distribution and the reconstructed polarization distributions of the fiber lasers output. (top) Azimuthally polarized laser; (a) measured output intensity distribution after vertical polarizer and (b) after horizontal polarizer (right), (c) reconstructed local state of polarization showing an azimuthally polarized beam. (bottom) Radially polarized laser; (d) measured output intensity distribution after vertical polarizer and (e) after horizontal polarizer, (f) reconstructed local state of polarization showing a radially polarized beam.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( u / n c ) [ J l ± 1 ( u ) / J l ( u ) ] = ± ( w / n ) [ K l ± 1 ( w ) / K l ( w ) ] ,
2 E ( r ) + k 2 n 2 ( r ) E ( r ) = 0 .
t × = 1 + S S ^ 1 2 κ 2 κ 2 + σ ^ 1 2 sin 2 ( κ 2 + σ ^ 1 2 z ) + 1 S S ^ 1 2 κ 2 κ 2 + σ ^ 2 2 sin 2 ( κ 2 + σ ^ 2 2 z ) ,

Metrics